
ACTA ARITHMETICA
117.2 (2005)

On the error term of an asymptotic formula of Ramanujan

by

H. Maier (Ulm) and A. Sankaranarayanan (Mumbai)

Dedicated to Professor Yoichi Motohashi
on his sixtieth birthday

1. Introduction. In [21], Ramanujan records (without proof) many cu-
rious asymptotic formulae. One of them is

d2(1) + d2(2) + · · ·+ d2(n) = An(log n)3 +Bn(logn)2 + Cn logn(1.1)

+Dn+O(n3/5+ε).

Also he records (without proof) the result that on the assumption of the
Riemann hypothesis, the error term in (1.1) can be improved to O(n1/2+ε).
In view of a method due to H. L. Montgomery and R. C. Vaughan (see [17]),
it is very likely that the error term is O(n1/2). We propose this as a conjec-
ture (see also [19], [22]). Unconditionally, the error term related to d2(j) is
known to be O(n1/2+ε) for any positive constant ε (see for example equation
(14.30) of [10] and also [5] and [28]). Professor A. Schinzel has already con-
sidered some of the problems of Ramanujan (see [24]), namely for the arith-
metic function r2(n), and he has proved that the corresponding error term is
Ω(n3/8). Also the corresponding error term is O(n1/2(logn)8/3(log logn)1/3)
which is due to M. Kühleitner and W. G. Nowak (see [15], [16]). Let

E(x) =
∑

n≤x
d2(n)− xP3(log x),(1.2)

where P3(y) is a polynomial in y of degree 3. From a general theorem of
M. Kühleitner and W. G. Nowak (see e.g. (5.4) of [15]), it follows that

E(x) = Ω(x3/8).
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Let ∑

n≤x
d4(n) = ax(log x)3 + bx(logx)2 + cx(log x) + dx+O(xα).(1.3)

Assuming that α < 1/2 in (1.3), D. Suryanarayana and R. Sitaramachandra
rao (see [25]) showed that (with some A > 0)

E(x)� x1/2 exp(−A(log x)3/5(log log x)−1/5),(1.4)

and assuming additionally the Riemann hypothesis, they established (see
[25]) that

E(x)� x
2−α
5−4α exp(A(log x)(log log x)−1).(1.5)

In [20], the second author jointly with K. Ramachandra proved that uncon-
ditionally, we have

E(x)� x1/2(logx)5(log log x).(1.6)

It should be mentioned that recently M. Kühleitner and W. G. Nowak (see
[16]) have given a precise upper bound for the error term related to the
average number of solutions of the Diophantine equation u2 + v2 = w3, and
their arguments are in fact more general. For some more general interesting
results, we refer to for example [1], [2], [3] and [23]; we also mention some
related references [4], [14] and [27].

The main aim of this paper is to prove:

For Y ≥ Y0, we have (unconditionally)

1
Y

2Y�

Y

(E(x))2 dx� Y exp(−C(log Y )3/5(log log Y )−1/5)(1.7)

for an effective positive constant C.

That is, the natural but unproven conjectural inequality (1.4) is true
in mean-square. This is established in a more general frame involving the
integers k, l in Theorem 2 below.

Let k ≥ 2 and l ≥ 2 be integers. We define the Dirichlet series (in σ > 1)

F (s) =
ζk(s)
ζ(ls)

=
∞∑

n=1

bnn
−s.

Then, from the Perron formula (see for example [18]), we obtain
∑

n≤x
bn = A(k−1)x(logx)k−1 + A(k−2)x(logx)k−2(1.8)

+A(k−3)x(log x)k−3 + · · ·+ A(0)x+ Ek,l(x)

=: Mk,l(x) + Ek,l(x),



Error term of an asymptotic formula of Ramanujan 173

∑

n≤x
dk(n) = D(k−1)x(log x)k−1 +D(k−2)x(log x)k−2(1.9)

+D(k−3)x(log x)k−3 + · · ·+D(0)x+∆k(x)

=: Mk(x) +∆k(x).

Note that the coefficients A(j) in (1.8) will depend on l whereas D(j) in (1.9)
are independent of l.

We study the more general error term Ek,l(x) of the Ramanujan type.
We define

αk := inf{α : ∆k(x)� xα}(1.10)

and

βk := inf
{
β :

Y�

2

(∆k(x))2 dx� Y 1+2β
}
.(1.11)

It is already known from the work of Kolesnik (see [13] and [12] respectively)
that α2 ≤ 139/429, α3 ≤ 43/96 (a better value of α2 ≤ 23/73 is known from
the work of M. N. Huxley (see [9]) and in fact α2 ≤ 131/416 from an
unpublished work of M. N. Huxley), and from the work of D. R. Heath-
Brown (see [7] and [8]) that

αk =
{

3/4− 1/k for 4 ≤ k ≤ 8,

1− 3/k for k ≥ 8.

Better upper bounds are available for certain intermediate values of k (see
Theorem 13.2 of [10]), namely α9 ≤ 35/54, α10 ≤ 41/60, α11 ≤ 7/10 and
α12 ≤ 5/7.

General Conjecture. For every integer k ≥ 2, we have

αk =
k − 1

2k
.

Regarding βk, first of all we observe that βk ≤ αk. It is already known
that (see Theorem 12.6(A) of [26])

βk ≥
k − 1

2k
.

We also know (see Theorem 12.8 of [26] and also Theorems 13.9 and 13.10
of [10]) that β2 = 1/4, β3 = 1/3, and from the work of D. R. Heath-Brown
(see [7] and [8]) that β4 = 3/8. We should also mention a result of Jutila
(see [11]) which states that if α2 = 1/4, then µ(1/2) ≤ 3/20 and E∗(T ) �
T 5/16+ε, where µ(1/2) = inf{ξ : ζ(1/2 + it)� (|t|+ 10)ξ} and

T�

0

∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
2

dt = T log
(
T

2π

)
+ (2γ − 1)T + E∗(T ).

Throughout the paper, we write

δ(x) := exp(−A(log x)3/5(log log x)−1/5)(1.12)
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with A being a positive constant, and we assume that x ≥ ele
l

and Y ≥
100ele

l
. We prove

Theorem 1. For every ε > 0 and for x ≥ x0(l), we have

Ek,l(x)�
{
xαk+2ε if lαk ≥ 1− lε,
x1/l if lαk < 1− lε.

Theorem 2. For every ε > 0 and Y ≥ Y0(l), we have

I =
1
Y

2Y�

Y

(Ek,l(x))2 dx

�
{
Y 2βk+2ε if lβk ≥ 1− lε/2,

Y 2/l exp(−C(log Y )3/5(log log Y )−1/5) if lβk < 1− lε/2,
where C is an effective positive constant depending only on k, l and ε.

2. Notation and preliminaries. C and A (with or without suffixes)
denote effective positive constants unless otherwise specified, which need not
be the same at each occurrence. We write f(x) � g(x) to mean |f(x)| <
C1g(x) (sometimes we use the O notation also). The notation [x] denotes
the integral part of x. The implied constants are all effective. We assume
that x ≥ x0(l) and Y ≥ Y0(l) where x0(l) and Y0(l) are positive constants
depending only on l.

3. Some lemmas

Lemma 3.1. We have the relation

bn =
∑

jl|n
µ(j)dk

(
n

jl

)
.

Proof. The proof is obvious.

Lemma 3.2. For s > 1 and r ≥ 0, we have

(3.2.1)
∑

n≤x
n−sµ(n)(logn)r = (−1)rη(r)(s) +O(x−(s−1)δ(x)(logx)r),

where η(0)(s) = η(s) = (ζ(s))−1 and η(r)(s) for r ≥ 1 denotes the rth
derivative of η(s) = (ζ(s))−1.

Proof. This is Lemma 2.2 of [25].

Lemma 3.3. For x ≥ x0(l), we have

(3.3.1) Ek,l(x)

�
∣∣∣∣
∑

n≤%x1/l

µ(n)∆k

(
x

nl

)∣∣∣∣+ x1/l%1−lδ(%x1/l)
(

log
(

max
(

1
%
, x

)))Ck
,
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where 0 < % (= %(x)) < 1 and Ck is an effective positive constant depending
only on k.

Proof. We fix z = x1/l and let % (= %(x)) be a number (or a function of x)
which satisfies 0 < % < 1. We will choose % appropriately later. We notice
that if nlr ≤ x, then both n > %z and r > %−l cannot hold simultaneously,
and hence∑

n≤x
bn =

∑

nlr≤x
n≤%z

µ(n)dk(r) +
∑

nlr≤x
r≤%−l

µ(n)dk(r)−
∑

n≤%z
r≤%−l

µ(n)dk(r)(3.3.2)

=: S1 + S2 − S3.

From (1.9), we have

(3.3.3) S1 =
∑

nlr≤x
n≤%z

µ(n)dk(r) =
∑

n≤%z
µ(n)

∑

r≤xn−l
dk(r)

=
∑

n≤%z
µ(n){Mk(xn−l) +∆k(xn−l)}

= {D(k−1)x(log x)k−1 +D(k−2)x(log x)k−2 + · · ·+D(0)x}

×
(∑

n≤%z
µ(n)n−l

)

− lx
(
D(k−1)

(
k − 1

1

)
(log x)k−2 +D(k−2)

(
k − 2

1

)
(log x)k−3 + · · ·

)

×
(∑

n≤%z
µ(n)n−l(logn)

)

+ l2x

(
D(k−1)

(
k − 1

2

)
(log x)k−3 +D(k−2)

(
k − 2

2

)
(log x)k−4 + · · ·

)

×
(∑

n≤%z
µ(n)n−l(logn)2

)

− · · ·+ (−1)k−1D(k−1)l
k−1x

(∑

n≤%z
µ(n)n−l(logn)k−1

)

+
∑

n≤%z
µ(n)∆k(xn−l).

Applying Lemma 3.2 for r = 0, 1, . . . , k − 1 and s = l, we obtain

S1 = {D(k−1)x(log x)k−1 +D(k−2)x(log x)k−2 + · · ·+D(0)x}(3.3.4)

× ((ζ(l))−1 +O((%z)1−lδ(%z)))
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− lx
(
D(k−1)

(
k − 1

1

)
(log x)k−2 +D(k−2)

(
k − 2

1

)
(log x)k−3 + · · ·

)

× (−η(1)(l) +O((%z)1−lδ(%z) log(%z)))

+ l2x

(
D(k−1)

(
k − 1

2

)
(log x)k−3 +D(k−2)

(
k − 2

2

)
(logx)k−4 + · · ·

)

× (η(2)(l) +O((%z)1−lδ(%z)(log(%z))2))

− · · ·+ (−1)k−1D(k−1)l
k−1x((−1)k−1η(k−1)(l)

+O((%z)1−lδ(%z)(log(%z))k−1)) +
∑

n≤%z
µ(n)∆k(xn−l)

= Mk,l(x) +O(x(%z)1−lδ(%z)(logx)k−1) +
∑

n≤%z
µ(n)∆k(xn−l).

We find that

S2 =
∑

nlr≤x
r≤%−l

µ(n)dk(r) =
∑

r≤%−l
dk(r)

∑

n≤(x/r)1/l

µ(n)(3.3.5)

=
∑

r≤%−l
dk(r)M((x/r)1/l)

� x1/l
∑

r≤%−l
dk(r)r−1/l

(
δ

((
x

r

)1/l))

� x1/l%1−lδ(%z)(log(%−l))Ck ,

since
(
x
r

)1/l
> %z, δ is decreasing, δ

((
x
r

)1/l) ≤ δ(%z), and

∑

r≤%−l
dk(r)r−1/l =

∑

r≤%−l

dk(r)
r

r1−1/l � %1−l(log(%−l))Ck .

We also notice that

S3 =
∑

n≤%z
r≤%−l

µ(n)dk(r) =
∑

r≤%−l
dk(r)M(%z)(3.3.6)

� %−l(log(%−l))C
′
k(%z)δ(%z)

� x1/l%1−lδ(%z)(log(%−l))C
′
k

for z = x1/l. Now the lemma follows from (3.3.2) and (3.3.4)–(3.3.6).
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4. Proof of the theorems

Proof of Theorem 1. We choose % = 1/10 and note that z = x1/l. There-
fore (from Lemma 3.3 and from the definition (1.10)), we obtain

(4.1) Ek,l(x)

�l

∑

n≤z/10

∣∣∣∣∆k

(
x

nl

)∣∣∣∣+ x1/lδ

(
z

10

)
(log x)Ck

�l

∑

n≤z/10

(
x

nl

)αk+ε

+ x1/lδ

(
z

10

)
(log x)Ck

�l

{
xαk+2ε + x1/lδ(z/10)(logx)Ck if lαk ≥ 1− lε,
xαk+ε(z/10)1−lαk−lε + x1/lδ(z/10)(logx)Ck if lαk < 1− lε

�l,ε

{
xαk+2ε if lαk ≥ 1− lε,
x1/l if lαk < 1− lε,

since, for x ≥ elel , we note that

x1/lδ

(
z

10

)
(log x)Ck = x1/lδ

(
x1/l

10

)
(logx)Ck

� x1/l exp(−C(log x)3/5(log log x)−1/5).

This proves Theorem 1.

Proof of Theorem 2. We choose here % = (δ(x1/l))1/10 and note that
z = x1/l. Set

f(x) := %z = x1/l((δ(x1/l))1/10).

From Lemma 3.3, we have

Ek,l(x)�
∑

n≤%x1/l

∣∣∣∣∆k

(
x

nl

)∣∣∣∣+ x1/l%1−lδ(%x1/l)
(

log
(

max
(

1
%
, x

)))Ck
(4.2)

� E1 +E2.

Without loss of generality the constant A in (1.12) can be taken to be < 1.
Note that x ≥ elel . Now, we observe that

f(x) := %z = x1/l((δ(x1/l))1/10) ≥ x1/2l(4.3)

if x ≥ el
1/2

; but we have already assumed that x ≥ ele
l
. Since the function

δ is decreasing, we find that

δ(%z) ≤ δ(x1/2l).

Note that

%1−lδ(%z) ≤ %−1δ(%z) ≤ δ(x1/2l)(δ(x1/l))−1/10(4.4)
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= exp(−A(log(x1/2l))3/5(log log(x1/2l))−1/5)

× exp
(
A

10
(log(x1/l))3/5(log log(x1/l))−1/5

)

≤ exp(−C(log x)3/5(log log x)−1/5),

provided x ≥ el2 . Hence, clearly,

1
Y

2Y�

Y

E2
2 dx� Y 2/l exp(−C(log Y )3/5(log log Y )−1/5).(4.5)

We note that for Y ≤ x ≤ 2Y , we have f(x) ≤ f(2Y ). Now,

I1 :=
2Y�

Y

E2
1 dx =

2Y�

Y

( ∑

n≤%x1/l

∣∣∣∣∆k

(
x

nl

)∣∣∣∣
)2

dx(4.6)

�
2Y�

Y

(
|∆k(x)|+

∣∣∣∣∆k

(
x

2l

)∣∣∣∣+ · · ·+
∣∣∣∣∆k

(
x

[f(x)]l

)∣∣∣∣
)2

dx

+
2Y�

Y

(
x

[f(x)]l

)2(αk+ε)

dx

�
2Y�

Y

(
|∆k(x)|+

∣∣∣∣∆k

(
x

2l

)∣∣∣∣+ · · ·+
∣∣∣∣∆k

(
x

[f(x)]l

)∣∣∣∣
)2

dx+Y 1+10ε.

We note that (for Y ≥ 100ele
l
),

(δ((2Y )1/l))(1/10)(1−lβk−lε/2) ≤ exp(−C(log Y )3/5(log log Y )−1/5),(4.7)
provided 1− lβk − lε/2 > 0.

Therefore, from (4.6) and the Minkowski inequality (see item 200 of [6]),
we get (using the inequality (a+ b)1/2 ≤ a1/2 + b1/2 for a ≥ 0 and b ≥ 0 and
the definition (1.11))

(4.8) I
1/2
1 �

∑

n≤f(2Y )

{2Y�

Y

(
∆k

(
x

nl

))2

dx

}1/2

+ Y 1/2+5ε

�
∑

n≤f(2Y )

nl/2
(
Y

nl

)(1/2)(1+2βk+ε)

+ Y 1/2+5ε

� Y 1/2+βk+ε/2
∑

n≤f(2Y )

n−lβk−lε/2 + Y 1/2+5ε

�
{
Y 1/2+βk+ε + Y 1/2+5ε if lβk ≥ 1− lε/2,

Y 1/2+βk+ε/2(f(2Y ))1−lβk−lε/2 + Y 1/2+5ε if lβk < 1− lε/2

�
{
Y 1/2+βk+ε if lβk ≥ 1− lε/2,

Y 1/2+1/l exp(−C(log Y )3/5(log log Y )−1/5) if lβk < 1− lε/2.
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Hence, we obtain

I1

Y
�
{
Y 2βk+2ε if lβk ≥ 1− lε/2,

Y 2/l exp(−C(log Y )3/5(log log Y )−1/5) if lβk < 1− lε/2.
(4.9)

This proves Theorem 2.

Remark. From the work of Heath-Brown (see [7] and [8]), we know
that β4 = 3/8. If we fix k = 4 and l = 2 in Theorem 2, then we find that
lβ4 = 3/4 < 1, and hence the inequality (1.7) follows from Theorem 2.
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