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1. Introduction. The branch of analytic number theory which relates
the size of certain arithmetic functions to the number of lattice points in
certain domains has a long and very prolific history. Enlightening expositions
can be found in the monographs by F. Fricker [1], E. Krätzel [11], [12], and
M. N. Huxley [7]. The most classical topics of this theory are the Dirichlet
divisor problem and the Gaussian circle problem: they are concerned with
the error terms ∆(x) and P (x) in the identities

∑

1≤n≤x
d(n) = x log x+ (2γ − 1)x+∆(x),

∑

1≤n≤x
r(n) = πx+ P (x),(1)

where d(n) counts the number of divisors of n ∈ N and r(n) the number
of ways to write n as a sum of two squares. The sharpest upper bounds to
date are due to M. N. Huxley [6], [8], the present “records” reading

∆(x)� x131/416(log x)26957/8320, P (x)� x131/416(log x)18637/8320,

where 131
416 = 0.3149 . . . .

Concerning lower bounds, J. L. Hafner [2], [3] in 1981 improved upon
G. H. Hardy’s classical results [5], showing that (1)

∆(x) = Ω+(x1/4(log x)1/4(log2 x)(3+2 log 2)/4 exp(−c1(log3 x)1/2)),

P (x) = Ω−(x1/4(log x)1/4(log2 x)(log 2)/4 exp(−c2(log3 x)1/2)),

with certain c1, c2 > 0. Very recently, K. Soundararajan [19] developed an
ingenious new method by which he sharpened these bounds (up to the am-
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biguity of the sign) to

∆(x) = Ω(x1/4(log x)1/4(log2 x)(3/4)(24/3−1)(log3 x)−5/8),

P (x) = Ω(x1/4(log x)1/4(log2 x)(3/4)(21/3−1)(log3 x)−5/8).
(2)

To visualize the refinement in the exponent of the log2 x-factor, note that
1
4(3+2 log 2) = 1.0965 . . . , 1

4 log 2 = 0.1732 . . . , while 3
4(24/3−1) = 1.1398 . . . ,

3
4(21/3 − 1) = 0.1949 . . . .

The objective of the present article is to extend Soundararajan’s ap-
proach to a much more general situation which includes the two classical
problems as special cases. Let K be an arbitrary algebraic number field of
degree k, and denote by oK its ring of algebraic integers. For a positive in-
teger m we consider the arithmetic function dK,m(n) defined by the relation

ζmK (s) =
∞∑

n=1

dK,m(n)n−s (Re(s) > 1),

where ζK is the Dedekind zeta-function of K. In other words, dK,m(n) counts
the number of m-tuples (n1, . . . , nm) of oK-ideals with NK(n1 · · · nm) = n.
Here NK(n) denotes the absolute norm of n. In analogy to (1), we are inter-
ested in the behavior of the error term in the identity

∑

1≤n≤x
dK,m(n) = res

s=1

(
ζmK (s)

xs

s

)
+∆K,m(x)(3)

as x→∞. The investigation of ∆Q,m is known as the Piltz divisor problem.
Concerning upper bounds for ∆K,m(x), see A. Ivić [9] (where the rational
case is discussed in detail), W. G. Nowak [16], and also the references in
W. Narkiewicz [15, Ch. 7].

In this article we apply Soundararajan’s method to establish a sharp
lower estimate for ∆K,m(x). To describe the result we have to introduce
some notations. For 0 ≤ ν ≤ k let Pν denote the set of all rational primes
which are unramified in K, and which are divisible by exactly ν oK-prime
ideals of degree 1. The Pν are disjoint and together with the finitely many
ramified primes exhaust the rational primes. Our result depends on the
Dirichlet densities δν of the sets Pν . These densities can be calculated as
follows. Let L be the minimal normal extension of K, G = Gal(L/Q) its
Galois group, and H = Gal(L/K) the subgroup of G corresponding to K
via Galois theory. Then

δν = |G|−1
∣∣{τ ∈ G : |{σ ∈ G : τ ∈ σHσ−1}| = ν|H|}

∣∣.(4)

The constants δν satisfy
∑k

ν=1 νδν = 1. If K is normal, then Pν is empty
for 1 ≤ ν < k. Hence δν = 0 for 1 ≤ ν < k and δk = 1/k in this case.
Additionally, denote by R the number of 1 ≤ ν ≤ k with δν > 0.
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Theorem 1. Let km > 1. Then for x→∞ the error term ∆K,m in (3)
satisfies

∆K,m(x) = Ω((x log x)
km−1
2km (log2 x)κ(log3 x)−λ),(5)

where

κ =
km+ 1

2km

( k∑

ν=1

δν(νm)
2km
km+1 − 1

)
, λ =

km+ 1
4km

R+
km− 1

2km
.

Furthermore, let r1 denote the number of real conjugates of K. If mr1 ≡ 3
(mod 8) then (5) remains true if Ω is replaced by Ω+. If mr1 ≡ 7 (mod 8)
then (5) remains true if Ω is replaced by Ω−.

This theorem contains (2) as special cases. The Dirichlet divisor problem
corresponds to K = Q and m = 2, and the circle problem corresponds to
K = Q(i) and m = 1. In Section 4 we discuss further special examples.
Theorem 1 should be compared with the classical estimate

∆K,m(x) = Ω∗((x log x)
km−1
2km (log2 x)m−1)

due to P. Szegő and A. Walfisz [20], [21], and with Hafner’s [4] refinement

∆K,m(x) = Ω∗((x logx)
km−1
2km (log2 x)κ

′
exp(−c3(log3 x)1/2)).

Here c3 > 0 is a constant (depending on K and m) and

κ′ =
km− 1

2km

(
m logm+

( k∑

ν=1

δνν log ν
)
m−m+ 1

)
+m− 1.

In both of these last Ω-statements,

Ω∗ =





Ω± if km ≥ 4 or K is cubic and not totally real,

Ω− if m = 1 and K is quadratic imaginary,

Ω+ if m = 2, 3 and K = Q,

or m = 1, k = 2, 3 and K is totally real.
Soundararajan’s method in most cases fails to control the sign of the large
values exhibited. But note that always κ > κ′. For k fixed and m→∞, we
see that κ roughly grows like cm2 with c = 1

2

∑k
ν=1 ν

2δν , while Hafner’s κ′

only behaves like 1
2m logm.

Soundararajan gives a heuristic reason why the exponent of log2 x in
(2) may be best possible. His argument carries over to our more general
situation. Arrange the sequence dK,m(n)n−

km−1
2km in descending order, and

let S(M) denote the sum of the first M largest values. Then an optimal
Omega result is expected to be of the form ∆K,m(n) = Ω(x

km−1
2km S(log x)).

It can be proved that S(M) = M
km−1
2km (logM)κ+o(1); thus Theorem 1 yields

the expected maximal order of ∆K,m(x) up to a factor (log2 x)o(1).
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The proof of Theorem 1 runs along the same lines as in Soundararajan’s
paper [19]. We start with the known asymptotic expansion of a Borel mean
value of ∆K,m. To this we apply Soundararajan’s key lemma (Lemma 1
below) to deduce the Omega result. In order to do this we have to count the
natural numbers n ≤ x which have exactly rν distinct prime divisors in the
set Pν for 1 ≤ ν ≤ k and no prime divisors which ramify in K. Moreover, we
need a result which is uniform in r = r1 + · · ·+ rk ≤ B log2 x. Here B ≥ 1
is a given constant. What we need is a special case of the following theorem
(it may be viewed as a generalization of the Chebotarev density theorem).
Note that for a prime p, which is unramified in K, the type of the prime
ideal decomposition of poK in K is determined by H = Gal(L/K) and the
Frobenius conjugacy class of p in L/Q (see Section 2).

Let Q be an algebraic number field, K an algebraic extension of Q, and
L an algebraic extension of K which is normal over Q. Set G = Gal(L/Q)
and H = Gal(L/K). For every prime ideal p in oQ denote by (p, L/Q) the
Frobenius conjugacy class of p in L/Q (see Section 3).

Theorem 2. Let G =
⋃d
ν=1Aν be a partition of G into d sets Aν 6= ∅

which are unions of conjugacy classes of G. For rν ≥ 0, 1 ≤ ν ≤ d, denote
by πK/Q(x, r1, . . . , rd) the number of oQ-ideals n with NQ(n) ≤ x, such that n
has no prime divisor which is ramified in L/Q, and rν distinct prime divisors
p with (p, L/Q) ⊆ Aν for 1 ≤ ν ≤ d. For given B ≥ 1 and r =

∑d
ν=1 rν , we

have, uniformly in 1 ≤ r ≤ B log2 x and x ≥ 3,

πK/Q(x, r1, . . . , rd)

=
( d∏

ν=1

δrνν
rν !

)
rx

log x
(log2 x)r−1

(
µ(x, r1, . . . , rd) +O

(
r

(log2 x)2

))
.

Here δν = |Aν |/|G| denotes the density of Aν , and

µ(x, r1, . . . , rd) = H

(
(r − 1)r1

rδ1 log2 x
, . . . ,

(r − 1)rd
rδd log2 x

)
,

where H is the function defined in (24). Furthermore, uniformly for 1 ≤ r ≤
B log2 x and x ≥ 3,

µ(x, r1, . . . , rd) = 1 +O

(
r

log2 x

)
, µ(x, r1, . . . , rd) � 1.

Corollary. Let q ≥ 1, and let a1, . . . , ad be d integers which are in-
congruent modulo q and relatively prime to q. Denote by π(x, r1, . . . , rd) the
number of integers n ≤ x which have rν distinct prime divisors p ≡ aν
(mod q) for 1 ≤ ν ≤ d, and no other ones. For given B ≥ 1, and r =∑d

ν=1 rν , we have, uniformly in 1 ≤ r ≤ B log2 x and x ≥ 3,
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π(x, r1, . . . , rd) =
r

r1! . . . rd!ϕ(q)r
x

log x
(log2 x)r−1

(
1 +O

(
r

log2 x

))
,

π(x, r1, . . . , rd) �
r

r1! . . . rd!ϕ(q)r
x

log x
(log2 x)r−1.

Proof. The Corollary is a special case of Theorem 2. Set Q = Q and
let K be the cyclotomic field Q(ζq). Here ζq denotes a primitive root of
unity of order q. K/Q is normal and |Gal(K/Q)| = ϕ(q). A prime p is
ramified in K/Q if and only if p | q. For an integer a with (a, q) = 1, let
σa ∈ Gal(K/Q) be uniquely defined by σa(ζq) = ζaq . For p - q it is well
known that (p,K/Q) = {σa} if and only if p ≡ a (mod q) (cf. G. J. Janusz
[10, p. 104]). This proves the Corollary.

2. Proof of Theorem 1. We start with the asymptotic expansion for
the Borel mean value of the error term ∆K,m(t). For real parameters T ≥ 40
and t ∈ [T/2, T 2], and arbitrary ε > 0,

B(t) :=
1

Γ (h+ 1)

∞�

0

e−uuh∆K,m(Xukm/2) du(6)

= c0t
(km−1)/2S(t) +O(tkm/2−3/4+ε)

where

S(t) =
∑

n≤T ε0
dK,m(n)nθ−1 exp(−c2(nX)2/(km)) cos(2πc1n

1/(km)t+ β0)

with

X := (log T )−2, h = h(t) := (tX−1/(km))2,

θ =
km− 1

2km
, β0 = −3π

4
+
π

4
mr1.

Here ε0 > 0 is a sufficiently small constant, cj are positive constants which
depend only on the field K and on m. This asymptotic expansion goes back
to G. Szegő and A. Walfisz [20], [21]. For a more recent treatment in the
context of asymmetric divisor problems, see W. G. Nowak [17, p. 269].

The following lemma is due to K. Soundararajan [19]. It gives a gen-
eral lower bound for trigonometric series. Let (f(n))n≥1 be a sequence of
non-negative real numbers and (λn)n≥1 be a non-decreasing sequence of
non-negative real numbers. Suppose that

∑
n≥1 f(n) <∞ and consider the

trigonometric series

F (t) :=
∑

n≥1

f(n) cos(2πλnt+ β),

where β ∈ R.
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Lemma 1. Let L ≥ 2 and N ≥ 1 be integers. Let M be a set of integers
such that λm ∈ [λN/2, 3λN/2] for each m ∈ M. For any T ≥ 2 there exists
a point t ∈ [T/2, (6L)|M|+1T ] such that

|F (t)| ≥ 1
8

∑

m∈M
f(m)− 1

L− 1

∑

n
λn≤2λN

f(n)− 4
π2XλN

∑

n≥1

f(n).(7)

If β ≡ 0 (mod 2π) then the conclusion (7) holds with F (t) in place of |F (t)|.
If β ≡ π (mod 2π) then the conclusion (7) holds with −F (t) in place of |F (t)|.

To prove Theorem 1 we apply Lemma 1 with

f(n) = dK,m(n)nθ−1 exp(−c2(nX)2/(km))(8)

if n ≤ T ε0 and f(n) = 0 else, λn = c1n
1/(km) and β = β0. For 0 ≤ ν ≤ k let

Pν be the set of all rational primes which are unramified in K and which
are divisible by exactly ν oK-prime ideals of degree 1. Let I = {1 ≤ ν ≤ k :
δν > 0}, where δν denotes the Dirichlet density of Pν as in the introduction.
Then R = |I|.

We choose M to be the set of all n ∈ [2−kmN, (3/2)kmN ] such that
n has rν distinct prime factors from Pν for all ν ∈ I and no others. Here
rν = [λν log2N ] with some parameters λν > 0 (the optimal choice turns out
to be λν = δν(νm)2km/(km+1)).

For n ∈ M the value of dK,m(n) is large. Indeed, if p ∈ Pν is prime then
the factorization of poK contains exactly ν prime ideals p with NK(p) = p.
Hence dK,1(p) = ν. Since for every prime ideal p there are m tuples
(n1, . . . , nm) with NK(n1 · · · nm) = p (take one of the ni equal to p, all
others equal to oK) we find dK,m(p) = νm. The same argument proves
dK,m(pe) ≥ νm for e ≥ 1 and p ∈ Pν . Hence

dK,m(n) ≥
∏

ν∈I
(νm)rν (n ∈ M).(9)

Next we use Theorem 2 to estimate the cardinality of M. Let L denote
the minimal normal extension ofK. A rational prime p is ramified inK if and
only if p is ramified in L (cf. W. Narkiewicz [15, Cor. 2 to Prop. 4.12]). For
an unramified p let (p, L/Q) be the Frobenius symbol of p in L/Q. This is a
class of conjugate elements of G = Gal(L/Q). Together with H = Gal(L/K)
it determines the type of factorization of p (unramified) in the following way
(cf. G. J. Janusz [10, Prop. 2.8]). Take any ϕ ∈ (p, L/Q). If the set of right
cosets of H in G is partitioned into sets

{Hσ1,Hσ1ϕ, . . . ,Hσ1ϕ
f1−1}, . . . , {Hσj,Hσjϕ, . . . ,Hσjϕfj−1}

with σi ∈ G and fi ≥ 1, then poK = p1 · · · pj . Here pi are prime ideals in
oK with initial degree f(pi|Q) = fi, thus NK(pi) = pfi . Hence p ∈ Pν if and
only if p is unramified in K, and there are exactly ν right cosets Hσ with
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Hσϕ = Hσ. In other words

Pν = {p unramified in K : |{σ ∈ G : ϕ ∈ σ−1Hσ}| = ν|H|}.
The set on the right hand side is independent of the choice of ϕ ∈ (p, L/Q).
Let

Aν = {τ ∈ G : |{σ ∈ G : τ ∈ σ−1Hσ}| = ν|H|}.
Then p ∈ Pν if and only if (p, L/Q) ⊆ Aν . The density of Aν is δν = |Aν |/|G|.
This explains (4). If we write c1 = (1/2)km, c2 = (3/2)km for the moment,
Theorem 2 implies (with the choice of the numbers rν made earlier)

|M| � r
(∏

ν∈I

δrνν
rν !

)(
H

(
(r − 1)r1

rδ1 log2(c2N)
, . . . ,

(r − 1)rd
rδd log2(c2N)

)

× c2N

log(c2N)
(log2(c2N))r−1

−H
(

(r − 1)r1

rδ1 log2(c1N)
, . . . ,

(r − 1)rd
rδd log2(c1N)

)
c1N

log(c1N)
(log2(c1N))r−1

)
.

For N large, the arguments of H here differ only by o(1) in each compo-
nent, hence the same is true for the two values of H involved. Observe that
they are also � 1. However,

c2N

log(c2N)
(log2(c2N))r−1 − c1N

log(c1N)
(log2(c1N))r−1 � N

logN
(log2N)r−1.

Therefore,

|M| � r
(∏

ν∈I

δrνν
rν !

)
N

logN
(log2N)r−1 � N

logN

∏

ν∈I

(δν log2N)rν

rν !
.

Using n! ∼
√

2π nn+1/2e−n we find

|M| � N(logN)α(log2N)β,(10)

where α = −1 +
∑

ν∈I λν(1 + log δν − log λν) and β = −R/2.
To complete the proof of Theorem 1, let T ≥ 40 be a real parameter,

and choose L = d(log2 T )me and

N = dc log T (log2 T )−α(log3 T )−1−βe.
Here c denotes a positive constant, which we choose sufficiently small to
ensure

(6L)|M|+1 ≤ T.(11)

Moreover, this choice implies nX � 1 for n � N and t ∈
[1

2T, T
2
]
. By

(8)–(10) we find
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∑

n∈M
f(n)� N θ−1|M|

∏

ν∈I
(νm)rν � N θ(logN)α+

∑
ν∈I λν log(νm)(log2N)β

� (log T )θ(log2 T )(1−θ)α+
∑
ν∈I λν log(νm)(log3 T )(1−θ)β−θ.

The choice λν = δν(νm)2km/(km+1), ν ∈ I, maximizes the exponent of log2 T .
This yields

∑

m∈M
f(n)� (log T )θ(log2 T )κ(log3 T )−λ,(12)

with κ and λ as in Theorem 1.
It remains to show that the other two terms on the right hand side

of (7) are small. The bound
∑

n≤x dK,m(n) � x(log x)m−1 together with
partial summation yields

∑
λn≤λN f(n)� N θ(logN)m−1. After division by

L − 1 this is small compared to the right hand side of (12). Similarly, for
t ∈
[1

2T, T
2
]
,

4
π2TλN

∞∑

n=1

f(n)� 1
TN

∑

1≤n≤T ε0
dK,m(n)nθ−1 � T 3ε0−1 .

This is again small compared with (12). Using (7) and (11) we conclude that
for arbitrary T ≥ 40, there exists a value t ∈

[1
2T, T

2
]

with

|B(t)| � t(km−1)/2(log t)θ(log2 t)
κ(log3 t)

−λ.(13)

Now let us assume that (5) is false. Then for every ε1 > 0 there is a
constant c such that, for all u > 0,

|∆K,m(u)| ≤ c+ ε1u
θL(u),(14)

where
L(u) := (log u)θ(log2 u)κ(log3 u)−λ

for u ≥ 20, and L(u) = L(20) else. By the definition (6) of B(t), this implies
that

|B(t)| ≤ c+
ε1

Γ (h+ 1)

∞�

0

e−uuh(Xukm/2)θL(Xukm/2) du

for all t > 0. Estimating this integral by Hafner’s Lemma 2.3.6 in [3], we
obtain

|B(t)| ≤ c+ c∗ε1(Xhkm/2)θL(Xhkm/2) = c+ c∗ε1t
(km−1)/2L(tkm/2).

Together with (13), this yields a positive lower bound for ε1. This proves (5).
If β0 is an integer multiple of π, Lemma 1 yields (13) with |B(t)| replaced
by B(t) or −B(t). Completing the argument as before, we obtain, for this
case, the more precise information stated in Theorem 1.
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3. Proof of Theorem 2. We use a variant of the method of Selberg–
Delange to prove Theorem 2. For a description of this method see G. Tenen-
baum [22]. Let d be the relative discriminant of L/Q. An oQ-prime ideal p
is ramified in L/Q if and only if p | d. For an oQ-ideal n denote by ων(n) the
number of distinct oQ-prime ideal divisors p of n which are unramified in
L/Q and which satisfy (p, L/Q) ⊆ Aν . For s ∈ C and z = (z1, . . . , zd) ∈ Cd
consider the Dirichlet series

F (s, z) =
∑

(n,d)=1

( d∏

ν=1

zων(n)
ν

)
NQ(n)−s (Re(s) > 1).

The sum runs over all oQ-ideals n relatively prime to d. It is absolutely

convergent in the half-plane Re(s) > 1. Since zων(n)
ν is multiplicative in n we

find

F (s, z) =
d∏

ν=1

∏

p-d
(p,L/Q)⊆Aν

(
1 +

zν
NQ(p)s − 1

)
.

The plan of the proof is as follows. After the analytic continuation of F ,
standard methods give the asymptotic behavior of

S(x, z) =
∑

NQ(n)≤x
(n,d)=1

d∏

ν=1

zων(n)
ν .(15)

Then Theorem 2 follows by a d-fold application of Cauchy’s theorem.
To study the analytic properties of F we use Artin L-series (see E. de

Shalit [18] for a recent survey of Artin L-series). They are defined as follows.
Let L/Q be a finite normal extension of Q with Galois group G. For a prime
ideal P of oL lying over the prime ideal p of oQ, one defines the decomposition
group of P by

DP = {τ ∈ G : τ(P) = P}
and the inertia subgroup by

IP = {τ ∈ G : τ(x) ≡ x (modP) for all x ∈ oL}.
The map DP → Gal(LP/Qp), induced by the restriction of τ ∈ DP to oL,
is surjective with kernel IP. Here LP and Qp denote the residue class fields.
The Galois group Gal(LP/Qp) is cyclic with generator x 7→ xNQ(p). Every
element σP ∈ DP which maps to this generator is called a Frobenius element
of P in L/Q. It is only unique modulo IP. The ideal p is unramified if and
only if IP = 1. In this case the Frobenius element is unique. For unramified
p the Frobenius elements σP of all P | p are conjugate. This conjugacy class
is called the Frobenius conjugacy class of p in L/Q and denoted by (p, L/Q).
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Let V be a finite-dimensional C-vector space and % : G → GL(V )
a representation of G with character χ. Furthermore, denote by VP =
{x ∈ V : %(σ)(x) = x for all σ ∈ IP} the vector space of all IP-fixed points.
Note that VP = V if p is unramified in L/Q. The Artin L-series is defined
as

L(s, χ) =
∏

p

det((IdV − %(σP)NQ(p)−s)|VP
)−1 (Re(s) > 1).

The product runs over all prime ideals p in oQ. It is absolutely and uniformly
convergent in every compact subset of the half-plane Re(s) > 1. Hence
L(s, χ) is holomorphic in this domain. Moreover,

logL(s, χ) =
∑

p

∑

k≥1

χ̃(σkP)

kNQ(p)s
(Re(s) > 1),(16)

where

χ̃(σkP) :=
1
|IP|

∑

α∈IP

χ(σkPα).

Here and in the following, log always denotes that branch of the logarithm
which is real on the positive real axis. If p is unramified, e.g. p - d, then
χ̃(σkP) = χ(σkP). The Artin L-series can be continued meromorphically to
the entire complex plane. There is a real constant c = c(L) > 0 such that,
for all irreducible characters χ,

L(s, χ) 6= 0 for s ∈ D := {σ + it : σ ≥ ψ(t)},(17)

where ψ(t) := 1− c/log(|t|+ 3). Moreover, L(s, χ) is holomorphic in D (up
to a simple pole at s = 1 if χ is the trivial character) and, for s ∈ D with
|t| ≥ δ > 0,

logL(s, χ)� log2(|t|+ 3).(18)

This is well known for Hecke L-series: For a proof of (17) see J. C. Lagarias
and A. M. Odlyzko [13, Chapter 8]. Using (5.9) of [13], the bound (18) is
readily verified on classical lines (cf. G. Tenenbaum [22, II, Theorem 16]). If
one knows (17) and (18) for Hecke L-series, both assertions follow for general
Artin L-series, since every Artin L-series can be expressed as a quotient of
products of Hecke L-series (this is a consequence of the Brauer induction
theorem). Note that we do not try to give results which are uniform in the
field L.

For Re(s) > 1, define

ZA(s) =
∏

p-d
(p,L/Q)⊆A

(1−NQ(p)−s)−1.
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Here A =
⋃
j∈J Cj is a non-empty disjoint union of conjugacy classes Cj

of G. From the representation theory of finite groups we use the following
facts. If G splits into h conjugacy classes C1, . . . , Ch, then there are exactly h
irreducible representations, whose characters we denote by χ1, . . . , χh. The
χi are constant on every conjugacy class. They satisfy the orthogonality
relations

|G|−1
∑

s∈G
χi(s)χj(s−1) =

{ 1 if i = j,
0 else.

This implies that the indicator function IA of A can be written as IA =∑h
i=1 αi(A)χi, where αi(A) = |G|−1∑

j∈J χi(C
−1
j )|Cj |. Together with (16)

this gives
h∑

i=1

αi(A) logL(s, χi)

=
∑

p-d
(p,L/Q)⊆A

NQ(p)−s +
h∑

i=1

αi(A)
{∑

p|d

χ̃i(σP)
NQ(p)s

+
∑

p

∑

k≥2

χ̃i(σkP)

kNQ(p)ks

}
.

On the other hand, for Re(s) > 1,

logZA(s) =
∑

p-d
(p,L/Q)⊆A

NQ(p)−s +
∑

p-d
(p,L/Q)⊆A

∑

k≥2

1
kNQ(p)ks

.

If χ1 denotes the trivial character, then α1(A) = |A|/|G| = δ(A). Altogether,
we find

logZA(s) = δ(A) log ζL(s) + ξA(s) + ηA(s),

where

ξA(s) =
h∑

i=2

αi(A) logL(s, χi)

and ηA denotes a function which is holomorphic and bounded in every half-
plane Re(s) ≥ 1

2 + ε, ε > 0. Note that (s − 1)ζL(s) and L(s, χi), i > 1, are
holomorphic and non-zero in D. Thus, for v ∈ C,

ZvA(s) := exp(−δ(A)v log(s− 1)(19)

+ δ(A)v log((s− 1)ζL(s)) + vξA(s) + vηA(s))

gives the analytic continuation of ZvA(s) to D := D \ [ψ(0), 1]. From (18) it
follows that logZA(s) � log2(|t| + 3) for s ∈ D, |t| ≥ δ. Hence, there is a
constant c(B) such that

ZvA(s)� (log |t|)c(B)(20)

uniformly for |v| ≤ B, s ∈ D, |t| ≥ δ.
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For Re(s) > 1 and z = (z1, . . . , zd) ∈ Cd we write

F (s, z) = G(s, z)
d∏

ν=1

ZzνAν (s),(21)

where

G(s, z) =
d∏

ν=1

∏

p-d
(p,L/Q)⊆Aν

(
1 +

zν
NQ(p)s − 1

)(
1− 1

NQ(p)s

)zν
.

As a function of s, G is analytic in Re(s) > 1/2, and uniformly bounded in
Re(s) ≥ 1/2 + ε > 1/2, |zν | ≤ B, 1 ≤ ν ≤ d (cf. G. Tenenbaum [22, p. 201]
for a more detailed argument). Thus (21) gives the analytic continuation of
F to D.

Let x ≥ 4, a = 1 + 1/log x and set T = exp(
√

log x)− 3. Using Perron’s
formula and (20) we find, for an arbitrary ε > 0,

x�

0

S(u, z) du =
1

2πi

a+i∞�

a−i∞
F (s, z)xs+1 ds

s(s+ 1)

=
1

2πi

a+iT�

a−iT
F (s, z)xs+1 ds

s(s+ 1)
+O(x2T−1+ε).

Here and in the following, all estimates are uniform in |z1| ≤ B, . . . , |zd| ≤ B.
The constants implied in the O- and �-notation may depend on B and the
field L.

Next, Cauchy’s theorem is used to replace the path of integration by
a path on the boundary of D. The new integration path is G1 ∪ G2 ∪ H ∪
G3 ∪ G4, where G1 is the line connecting a − iT with ψ(T ) − iT , G2 is the
curve ψ(t) − it, t running from −T to 0, G3 = −G2, G4 = −G1 and H
is the Hankel type integration path connecting ψ(0) with 1 − % (on this
part of the path arg(s) = −π), turning around s = 1 at a circle with
radius % := (2 log x)−1 and connecting 1 − % with ψ(0) (here arg(s) = π).
Using (20) we find that the contribution of the integral over G1 and G4 is
O(x2T−2+ε). Similarly, the contribution of the integrals over G2 and G3 is
O(x1+σ(T )) = O(x2 exp(−c√log x)). Hence, by (15),

x�

0

S(u, z) du = Φ(x, z) +O(x2 exp(−c
√

log x)),(22)

where 0 < c < 1 and

Φ(x, z) =
1

2πi

�

H
F (s, z)xs+1 ds

s(s+ 1)
.
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Taylor series expansion in (19) yields

ZvA(s) = (s− 1)−δ(A)veβ(A)v(1 +O(|s− 1|)) (s ∈ H, v ∈ C, |v| ≤ B)

with β(A) = δ(A) ress=1 ζL(s) + ξA(1) + ηA(1). It follows that, for s ∈ H,

1
s
F (s, z) = H(z)Γ (w + 1)(s− 1)−w +O(|s− 1|1−Re(w)),(23)

where w =
∑d

ν=1 δνzν and

H(z) :=
1

Γ (w + 1)
G(1, z)

d∏

ν=1

eβ(Aν)zν .(24)

Note that H((0, . . . , 0)) = 1. Using (23) we find

∂2Φ

∂x2 (x, z) =
1

2πi

�

H
F (s, z)xs−1 ds(25)

�
�

H
|s− 1|−Re(w)|xs−1| |ds| � (log x)Re(w)

and

∂Φ

∂x
(x, z) =

1
2πi

�

H
F (s, z)xs

ds

s

= H(z)wΓ (w)
1

2πi

�

H
(s− 1)−wxs ds+O(R(x)).

Here

R(x) =
�

H
|s− 1|1−Re(w)|xs| |ds| �

1−%�

ψ(0)

(1− σ)1−Re(w)xσ dσ + x1+%%2−Re(w)

� x(logx)Re(w)−2
( ∞�

1/2

u1−Re(w)e−u du+ 1
)
� x(logx)Re(w)−2.

By G. Tenenbaum [22, II.5, Corollary 2.1],

1
2πi

�

H
(s− 1)−wxs ds = x(logx)w−1(Γ (w)−1 +O(x−ψ(0)/2))

uniformly for |w| ≤ B′, B′ > 0. Hence

∂Φ

∂x
(x, z) = wH(z)x(logx)w−1 +O(x(logx)Re(w)−2).(26)
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Using (22) and (25) we infer, with h := exp(−(c/2)
√

log x),

h−1
x+h�

x

S(u, z) du = h−1(Φ(x+ h, z)− Φ(x, z)) +O(x2h)

=
∂Φ

∂x
(x, z) + h

1�

0

(1− t) ∂
2Φ

∂x2 (x+ th, z) dt+O(x2h)

=
∂Φ

∂x
(x, z) +O(x2h).

Together with (26) this implies

h−1
x+h�

x

S(u, z) du = wH(z)x(logx)w−1 +O(x(logx)Re(w)−2).(27)

Furthermore,

S(x, z) = h−1
x+h�

x

S(u, z) du+O(D(x)),(28)

where, with B := (B, . . . , B) ∈ Rs+,

D(x) = h−1
x+h�

x

|S(u, z)− S(x, z)| du(29)

≤ h−1
x+h�

x

(S(u,B)− S(x,B)) du

≤ h−1
x+h�

x

S(u,B) du− h−1
x�

x−h
S(u,B) du.

Here we used the fact that S(u,B) ≥ 0 is non-decreasing in u. Applying
(27) in (28) and (29) three times, we obtain

S(x, z) = wH(z)x(logx)w−1 +O(x(logx)Re(w)−2)(30)

uniformly for |z1| ≤ B, . . . , |zd| ≤ B. Remember that w =
∑d

ν=1 δνzν .
Now a d-fold application of Cauchy’s theorem yields

π(x) = πK/Q(x, r1, . . . , rd)

=
1

(2πi)d
�

C(%1)

. . .
�

C(%d)

S(x, z)
( d∏

ν=1

z−rν−1
ν

)
dz1 . . . dzd.

Here C(%ν) denotes the positively oriented circle with radius %ν :=
max(1, rν)/Xν , Xν := δν log2 x, and center in the origin. Using (30) we
find
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π(x) =
x

log x
1

(2πi)d

×
�

C(%1)

. . .
�

C(%d)

d∑

µ=1

δµzµH(z)
d∏

ν=1

eXνzνz−rν−1
ν dzν +O(R1(x))

with

R1(x)� x

(log x)2

d∏

ν=1

(
%−rνν

2π�

0

emax(1,rν) cosϕ dϕ
)
.

The first of the two elementary bounds (cf. Tenenbaum [22, p. 204])

2π�

0

ex cosϕ dϕ� x−1/2ex,

2π�

0

ex cosϕ(1− cosϕ) dϕ� x−3/2ex
(x > 0)(31)

and n! ∼
√

2π nn+1/2e−n yield (recall r =
∑d

ν=1 rν)

R1(x)� x

(log x)2 (log2 x)r
d∏

ν=1

(δrνν max(1, rν)−rν−1/2erν )

� x

(log x)2 (log2 x)r
d∏

ν=1

δrνν
rν !

.

To analyze the main term we remark that Taylor series expansion of H at
z = 0 is sufficient to prove an asymptotic expansion of π(x) with an error
term of order O(r(log2 x)−1). This is too weak to deduce a lower bound
for π(x) if r � log2 x. Alternatively, we expand H at a = (a1, . . . , ad) and
choose a in such a way that the contribution of the linear terms vanishes.
Applying F (1) = F (0) +F ′(0) + � 1

0(1− t)F ′′(t) dt to F (t) = H(a+ t(z− a))
we find

H(z) = H(a) +
d∑

κ=1

∂H

∂zκ
(a)(zκ − aκ) +

d∑

κ,ι=1

(zκ − aκ)(zι − aι)Hκ,ι(z)

with

Hκ,ι(z) =
1�

0

(1− t) ∂2H

∂zκ∂zι
(a+ t(z − a)) dt� 1.

The contribution of the linear terms to π(x) vanishes if we choose aν :=
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(1− 1/r)rν/Xν . Indeed,

1
(2πi)d

�

C(%1)

. . .
�

C(%d)

d∑

µ=1

δµzµ(zκ − aκ)
d∏

ν=1

eXνzνz−rν−1
ν dzν

=
( d∏

ν=1

Xrν
ν

rν !

)(∑

µ6=κ
δµ

rµ
Xµ

(
rκ
Xκ
− aκ

)
+ δκ

rκ
Xκ

(
rκ − 1
Xκ

− aκ
))

= (log2 x)r−1
( d∏

ν=1

δrνν
rν !

)(
(r − 1)

rκ
Xκ
− raκ

)
= 0.

The contribution of the second derivatives of H to π(x) is

R2(x) :=
x

log x

d∑

µ,κ,ι=1

Iµ,κ,ι,

where

Iµ,κ,ι =
1

(2πi)d

×
�

C(%1)

. . .
�

C(%d)

δµzµ(zκ − aκ)(zι − aι)Hκ,ι(z)
d∏

ν=1

eXνzνz−rν−1
ν dzν .

If aν > 0 the integration path C(%ν) can be replaced by C(aν). Set bν = aν
if aν > 0 and bν = %ν else. Since Hκ,ι � 1 it follows that

Iµ,κ,ι �
( d∏

ν=1

b−rνν

)
bµbκbι

×
2π�

0

. . .

2π�

0

|1− I{aκ>0}e
iϕκ | |1− I{aι>0}e

iϕι |
d∏

ν=1

eXνbν cosϕν dϕν .

Using Cauchy’s inequality and the bounds (31) we find

Iµ,κ,ι �
( d∏

ν=1

b−rνν

)
bµbκbι(Xκbκ)−1/2(Xιbι)−1/2

d∏

ν=1

(Xνbν)−1/2eXνbν .

Note that Xκbκ = 1 if aκ = 0. It follows that

R2(x)� x

log x

( d∏

ν=1

b−rν−1/2
ν X−1/2

ν eXνbν
) d∑

µ=1

bµ

( d∑

κ=1

b1/2κ X−1/2
κ

)2
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� x

log x
(log2 x)r−3

( d∏

ν=1

δrνν (Xνbν)−rν−1/2eXνbν
)

×
d∑

µ=1

max(1, rµ)
( d∑

κ=1

max(1, rκ)1/2
)2

� x

log x
(log2 x)r−3

( d∏

ν=1

δrνν
rν !

)
r2.

Finally, the contribution of the term H(a) to π(x) is

rx

log x
(log2 x)r−1

( d∏

ν=1

δrνν
rν !

)
µ(x, r1, . . . , rd),

where

µ(x, r1, . . . , rd) := H

(
(r − 1)r1

rδ1 log2 x
, . . . ,

(r − 1)rd
rδd log2 x

)
.

Altogether, we have proved

π(x) =
( d∏

ν=1

δrνν
rν !

)
rx

log x
(log2 x)r−1

(
µ(x, r1, . . . , rd) +O

(
r

(log2 x)2

))
.

Since H(z) = 1 +O(|z1|) + · · ·+O(|zd|) and H(z) > 0 for real z1 ≥ 0, . . . , zd
≥ 0, we find µ(x, r1, . . . , rd) = 1 + O(r(log2 x)−1) and µ(x, r1, . . . , rd) � 1.
This completes the proof of Theorem 2.

4. Some special examples

4.1. For K = Q and m ≥ 2 arbitrary, Theorem 1 contains Soundarara-
jan’s result on the Piltz divisor problem established already in [19]:

∆Q,m(x)

= Ω((x log x)1/2−1/2m(log2 x)(1/2+1/2m)(m2m/(m+1)−1)(log3 x)−3/4+1/4m),

where Ω can be replaced by Ω+ if m ≡ 3 (mod 8), and by Ω− if m ≡ 7
(mod 8).

4.2. If K is a normal extension of Q of degree k ≥ 2, then δν = 0 for
1 ≤ ν < k and δk = 1

k (cf. W. Narkiewicz [15, p. 357, Cor. 4]). For arbitrary
m ≥ 1, Theorem 1 applies with

κ =
1
2
m(km+ 1)(km)−2/(km+1) − 1

2
− 1

2m
.

The last exponent should be compared with Hafner’s (see [4])

κ′ =
km− 1

2k
log(km) +

1
2

(m− 1)
(

1 +
1
km

)
.
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Note that, for km large, κ ∼ 1
2km

2, while κ′ ∼ 1
2m log(km). This case clearly

contains that of a quadratic field K: the result then reads

∆K,m(x) = Ω((x log x)1/2−1/4m(log2 x)
1
2m(2m+1)(2m)−2/(2m+1)−1/2−1/4m

× (log3 x)−3/4+1/8m).

Since P (x) = 4∆Q(i),1(x), this in turn contains the second line of (2).

4.3. As the simplest example of a field K which is not a normal ex-
tension of the rationals, let us consider a cubic field whose discriminant D
is not a perfect square (if the discriminant is a full square, the field K is
normal). In this case L = K(

√
D) is the minimal normal extension. Its Ga-

lois group is isomorphic to S3, the symmetric group of three elements, and
H = Gal(L/K) is a cyclic subgroup of order 2. Using (4) we find δ1 = 1

2 ,
δ2 = 0 and δ3 = 1

6 . It follows that, for any m ≥ 1,

∆K,m(x) = Ω((x log x)1/2−1/6m(log2 x)κ(log3 x)−1),

with

κ =
1
12
m(3m−1)/(3m+1)(3m+ 1)(3(3m−1)/(3m+1) + 1)− 1

2
− 1

6m
.

For m = 1, this gives κ = 1
3(
√

3 − 1) ≈ 0.2440, while Hafner had only
κ′ = 1

6 log 3 ≈ 0.1831. Similarly, for m = 2, κ = 7
12(25/7 +65/7−1) ≈ 2.4714,

whereas κ′ = 5
12 log 12 + 7

12 ≈ 1.6187.

4.4. As a last, more intrinsic example, let us consider K = Q(α), where
α ∈ C is a zero of an (irreducible) polynomial f over Q of degree seven with
Galois group PSL(3, 2) (which is a simple group of order 168). In particular,
k = [K : Q] = 7. Infinitely many number fields K of this kind are known
(see B. H. Matzat [14]), two of them being given by f = X7 − 7X + 3 and
f = X7 − 7X3 + 14X2 − 7X + 1. There are exactly three non-empty sets
Pν belonging to K, namely P1, P3, and P7, with corresponding Dirichlet
densities δ1 = 7/12, δ3 = 1/8, and δ7 = 1/168. The set P7 consists of those
primes which split completely in K. The members of P3 split into prime
ideals whose degrees are given by the quintuple (1, 1, 1, 2, 2). Finally, P1

consists of two different types of primes whose decomposition is described
by (1, 2, 4) and (1, 3, 3). It follows that, for any m ≥ 1,

∆K,m(x) = Ω((x log x)1/2−1/14m(log2 x)κ(log3 x)−5/4−1/28m),

with

κ = m(7m−1)/(7m+1)(7m+ 1)
(

7−2/(7m+1)

48
+

314m/(7m+1)

112
+

1
24

)
− 1

2
− 1

14m
.

For m = 1, this gives κ = 1
42(311/4 + 73/4 − 10) ≈ 0.3528, while Hafner had



The Piltz divisor problem 205

only

κ′ =
1
56

(log 7 + 9 log 3) ≈ 0.2113.

Similarly, for m = 2,

κ =
1

112
(45 · 613/15 + 70 · 213/15 + 5 · 1413/15 − 60) ≈ 2.94196,

whereas Hafner’s κ′ equals

1
336

(13 log 7 + 117 log 3 + 312 log 2 + 180) ≈ 1.63719.
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