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Introduction. If z is a strictly positive real number let H(z) denote
the number of pairs (a,b), a,b € Z, such that |a|] < z, |b| < x and such
that the ternary quadratic form X2 + aY? + bZ? represents 0 over the field
Q of rational numbers. Similarly, let N(x) denote the number of 3-tuples
(a,b,c) € Z3 such that |a| < z, |b] < z, |¢| < x, and such that the ternary
quadratic form aX? + bY? + c¢Z? represents 0 over the field Q. In [6] Serre
proved that

2 23
H d N —_—
(@) < log x an (z) < (log 2)3/2’
and asked if
2 23
H d N _
(x) > g an () > (log.2)72

Using Burgess’s estimate for character sums and sieve methods, C. Hooley [4]
proved that

3
(log )72

Guo [1] improved Hooley’s result, giving an asymptotic estimate for the
number Np(z) of ternary quadratic forms aX? + bY 2 + ¢Z? which represent
zero over Q and whose coefficients a, b, ¢ are square-free rational integers,
pairwise coprime and such that |a| < z, [b] < z, |¢| < x, and mentioned that
the expected lower bound for H(z) is an immediate corollary. He proved
that for z tending to oo,

i) = e I (1- %>/ (1+3)] <logx:j>3/2 ! O<<1oi>2> |

p

N(z) >

the product being over the rational primes.
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In what follows, we prove analogous results, with Z replaced by the
ring F, [T], where F, is a finite field with ¢ elements and odd characteristic.
J.-P. Serre suggested this problem to the author who wants to thank him for
that and for all his useful remarks. For the precise statement of the results,
see Section 1. For example, a simple one is the following.

THEOREM. For n > 0, let Q(n) denote the number of pairs (A, B) of
polynomials A € Fy[T)|, B € F,[T] such that deg A = deg B = n and such
that the ternary quadratic form X2 — AY? — BZ? represents 0 over the field
F,(T'). Then, for any even integer n > 0,

_ Qq(q _ 1) q2n an
Q(n) - T C(Q) n + O n2 9
and for any odd integer n > 0,
_alg—1) " "
with

1
cw=11 <1 T ogier P (gl P 1 1)>’

P

the product being over the monic irreducible polynomials, with the constants
mwolved in the O symbol depending only on q.

Thus, g™ acts as x in the rational case, and n acts as log x in the rational
case.

1. Notations and statement of the results. Let us fix some nota-
tion. Let ¢ be a power of an odd prime number and let IF, denote the finite
field with ¢ elements. Let A = F,[T], resp. K = F(T'). Let M, resp. I de-
note the set of monic polynomials of A, resp. the set of monic irreducible
polynomials of A.

For any non-zero H € A, let deg H denote the degree of H, let w(H)
denote the number of distinct monic irreducible divisors of H and let |H| =
qi°8H  As usual, if Ay,..., A, are non-zero polynomials, (Ay,...,A,) de-
notes their greatest monic common divisor and for a real number z, [z]
denotes the integral part of x.

Let («, 3,7) be a triple of non-zero elements of the field K = [F,(T") and
let L be any field containing K. If the equation ax? + By? +v22 = 0 admits a
non-trivial solution (z,y, z) € L3, then the quadratic form aX?+ Y2+~ 22
is said to represent zero over the field .. We say that a quadratic form
represents zero if it represents zero over the field K.

For positive integers m and n, let Hy(m,n) denote the number of pairs
(A, B) of square-free, coprime polynomials such that deg A = m, deg B =n



Quadratic forms with polynomial coefficients 133

and such that the quadratic form
(f) X? - AY? - BZ*

represents zero. We first give an asymptotic estimate for the numbers
Hy(m,n) when max(m,n)log2/logq < min(m,n).

THEOREM A. Let 6 be a real number such that log2/logq < 0 < 1. For
strictly positive integers m and n satisfying 0 max(m,n) < min(m,n), we

have A .
2 m-+n— m-+n
H1<m,n>:;(q—1)3q7+0<q )

ml/2pl/2 mn
if m and n are even, and in all other cases,

1 3 qm+n71 qurn
Hi(m,n) = ;(q—l) W+O — )

with the O-constants depending only on q and 0. In particular, for even
strictly positive integer n,

2 3 q2n— 2n
Hy(n,n) = = (a-1)* T—+ 0 L;

and for odd strictly positive integer n,
1 3 q2n7 2n
Hinn) = 2 a- 100 T — +0( L),
with the O-constants depending only on q.

The proof of Theorem A contains all the tools for proving the following
theorem which is the polynomial analogous of Guo’s theorem.

THEOREM B. Let Ni(n), resp. Mi(n), denote the number of quadratic
forms AX%2+BY?+CZ? that represent zero and whose coefficients A, B, C
are square-free and pairwise coprime polynomials of A such that deg A < n,
deg B < n, degC < n, ABC # 0, resp. whose coefficients A, B, C are
monic, square-free and pairwise coprime polynomials such that deg A = n,
deg B = n, deg C' = n. Then, for any integer n > 0,

o 3 1 3/2 q3n 0 q3n
-9 1+ -2 )(1- — S
1) {,H< o) (- m) st 0 ()

v = (L2 NI (o 5) (- )

Pel
3n
q
+0< 5/2>

with the O-constants depending only on q.
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In this case, there are three poles in the sense of [6] and the term

2n n

q q

n

—_ = . q
n nl/2  pl/2

occurring in Theorem A is replaced by the term

3n n

" ¢" q" g
n3/2  pl/2  pl/2  op1/2c

Thanks to Weil’s theorem on L-functions, the error term in Theorem B
is better than that in Guo’s theorem. Crucial to the proof is the formula
(2.9) below. In order to avoid useless complications, we detail only the proof
of Theorem A.

Let D be a square-free monic polynomial. Let Hp(m,n) denote the num-
ber of pairs (4, B) € A? with A and B square-free, (A, B) = (A4,D) =
(B,D) =1, deg A = m, deg B = n and such that the quadratic form

(fp) X? - ADY? - BDZ?

represents zero. Section 3 is devoted to the computation of Hp(m,n). An es-
timate for this number is given in Theorem 3.9 below. From this estimate, we
deduce an estimate for the number H'(m, n) of pairs (A, B) € A? with A and
B square-free, deg A = m, deg B = n and such that the quadratic form (f)
represents zero. Finally, we get an estimate for the number H (m,n) of pairs
(A, B) € A% with deg A = m, deg B = n and such that the quadratic form (f)
represents zero. Note that the polynomials A and B counted in H'(m,n)
are not supposed to be relatively prime and that there is no restriction for
the pairs counted in H(m,n).

n n

Precise results are given in Theorems C and D below.

THEOREM C. Let 0 be a real number such thatlog2/logq < 6 < 1. Then,
for strictly positive integers m and n satisfying @ max(m,n) < min(m,n),
we have:

(i) if m and n are both even,

2

H'(m,n) = = (¢ — 1)3C(q) Tt +0 U
’ T ml/2nt/2 mn )’

1 3 qurnfl qurn
(q - 1) C(Q) m1/2n1/2 + @ y

(ii) otherwise,

H' ==
() =

with
1
cw=T1(1+ gmes)
LI 57pip
where the O-constants depend only on q and 6.



Quadratic forms with polynomial coefficients 135

THEOREM D. Let ¢ be a real number such that 3log2/2logq < o < 1.
Let m and n be strictly positive integers such that pmax(m,n) < min(m,n).
Then:

(i) if m and n are both even,

2q(q _ 1) qm+n qm+n
H(m') TL) - o C(Q) ml/2pl/2 +0 mn )’

(ii) otherwise,

q(g —1 g g
Him,n) = 4 - ) c(g) e +o< — )

with the O-constants depending only on q and o.

In the second section we study the distribution of the values of some
multiplicative functions defined on the set M of monic polynomials of F,[T7].
Our proofs make use of Weil’s theorem on L-functions. In the third section,
making use of Hooley’s idea, we prove an asymptotic estimate for the num-
bers Hp(m,n), from which we deduce Theorem A. Theorem C is proved in
the fourth section, and Theorem D in the fifth section.

Although we do not give explicit values of all constants occurring in
this work, these constants are actually computable. Moreover, in general,
they depend on ¢ and other parameters. We agree that a constant denoted
a(zy,...,x) depends only on ¢, z1,...,xy, or possibly only on z1, ..., xg,
and that a constant denoted by (§ depends only on ¢, or possibly is an
absolute constant.

In order to simplify notation, in the following, we agree that unless oth-
erwise stated, the polynomials occurring in the sums are monic and square-
free.

2. Multiplicative functions on M. We denote by D, the open disk
formed by the complex numbers z such that |z| < 7 and we denote by z'/2
the determination of the complex function z — 2z/2 for which 11/2 = 1. We
note that the function z — (1 — 2)~'/? is holomorphic on Dj.

LEMMA 2.1. Let z — h(z) be a holomorphic complex-valued function
defined over the open disk Dr with R > 1. For z € Dy, let the sequence (ay,)
be defined by

(2.1) h(z)(1—2)"12 = Z (2

Let r € )0, R[. Then there exists a constant oy (r) such that for any integer
n>1,

(2.2) lan — h(D)a ™20~ Y2 < aqy (r)M (b, r)n~%/2,
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with
(2.3) M(h,r) = max{|h(z)|;|z| = r}.
Proof. Apply the Cauchy and Stirling formulae.

Let H be a monic polynomial of positive degree and let x be a character
of the group Gy formed by the invertible elements of the quotient ring
A/AH. The character modulo H associated with x is the multiplicative map

1, defined on the ring A by
x(s(R)) if (R, H) =1

Ux(R) = {0 if (R, H) # 1,

s denoting the canonical morphism A — A/AH. In the following, we shall
denote by the same symbol x the character x of the group Gy and the map
Y, associated with it. The arithmetic L-function associated with x is the
series

(2.4) Lix,2) = 3 x(¥)z0

YeM
Obviously, this series has radius of convergence 1/q. By [3] we know that if
x is different from the unit character, then L(y, z) is a polynomial of degree
< deg H. We need the results provided by the second part of the following
proposition only in the case where x is quadratic. Since the general case
poses no more difficulty, we prove the proposition in the general setting.

PROPOSITION 2.2. (i) Let o € ]0,1/2[. Then there exists a constant aa(p)
such that for any polynomial K and for any integer n > 0,

(25) | D0 2700~ Ar 1 2O(K)g"n 2| < asl0)Ag(K)a"n 2,
degY=n
(Y,K)=1
where
1 1/2
(2.6 A= (1 + —> (1 — —> ,
) {5 ) (1 1
1 —1
Pel
P|K
plet\ !
(2.8) M(K) = 1] (1-' 5 ) .
Pel
P|K

(ii) There exists a constant ag such that for any monic, non-constant
polynomial H, any non-unit character x of the group Gy, any polynomial
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K coprime with H and any integer n > 0,

(2.9) ’ Z 27W(Y)X<Y) < g20 ) 112 gn/29deg(H) /2
(V,K)=1
degY=n
Proof. Let H be a monic polynomial, and let x be a character of G .
If H = 1, the character modulo H associated with x is assumed to be the
constant map equal to 1. Let

(1) an =Y 27¢0Dx(M).
(M,K)=1
deg M=n
The series
o0 Z n
) 1= <5>
n=0

is absolutely convergent in the open disk Dy. If z € Dy, f(z) may be ex-
panded as an eulerian product:

= 3 renxan(D S 1 (e (2) ),

i v
Hence,
o (53) L) () )
with
(@) U(z) = ;% <1 + %X(p)G)degP) .

(i) Assume that H =1 and x = 1. Then, for z € Dy,

o -G -2 -

Pel YeM

the product on the left-hand side of (5) being absolutely convergent in D;.
Hence, by (3), for z € Dy,

(6) F(2) =U()G(2) /21 = 2)71/2,

where

- Gl H <1 ) Z<§>2degp B i<§>3degp>.
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Let o € ]0,1/2[. According to Lemma 2.1, since U is holomorphic on D, and
G'/2 is holomorphic on D./q,

ang~ U1y S e

< B(o) max{|U(2)| |G(2)|"/% |2] = ¢°}n~>/2,

with ((g) a constant.
For |z = ¢,

UM < ] <1— %)

Pel
P|K
G(2)| < H(l + |P[?e7?),
Pel
and by (5),
1 — gte—3 1
G(z)] < —2

The first part of the proposition is then given by (8).
(ii) Assume that H # 1 and that x is different from the unit character.

By (2.4), o
(o) =T (G) )
and

) 12 =P (% )ee)

where

w66 =TI(1- §x<P>2(f)2degP - ixua):%(i)gdegp).

Pel

Then G'/2 is holomorphic on D./q.

According to [5, Chapter 2], we associate with x a non-principal quasi-
character 6 of the idele group J(K) of the field K = F,(T). Let Ly denote the
L-function associated with the quasi-character 8. Let S be the union of the
infinite place and the places associated with the irreducible divisors of H.

According to [5, Theorem 3|, for any v € S, there exists a complex number
e(v), with |e(v)| € {0, 1}, such that

(11) L(x,z) = Lo(2) [ [(1 - e(v)z?5").

vES
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According to Weil’s theorem, Ly is a polynomial and if Ly is not equal

to 1, its roots are algebraic integers of modulus ¢~*/2 (cf. [7, Appendix 5]).
By (11),

(12) L(X, 2) = ﬁu — a2),

i=1
with
(13) il € {g~ 1 a7 %},
(14) d < degH.

Let 0 € ]1/2,1]. Let z be a complex number such that |z| = ¢'~°. Then, by
(9), (4), (10), (12) and (13),

(15) |f(2)] <m(3),

with

o meraev (e )L (- 5i) )
Now, by (5), o

1 1— 1-4%
(1 ) - 20
|P|25 1— q1725

Pel

hence,
m<5)2 < 2d+2w(K)(1 _ q1725)71.

By (2), (15) and the Cauchy formula, we get
(17) |an| < 24/229(K) (1 — gL=20)=1/246m

for any 6 € ]1/2,1].
Now, we suppose that n > 3 and we choose § =1/2+ 1/n. By (17),
(18) lan| < q 2d/22w(K)n1/2qn/2_
a7
We remark that (18) remains true for n = 1 or 2, proving the second part
of the proposition.

PROPOSITION 2.3. Let ¢ € |0,1/2[. Then there exists a constant au(p)
such that for any polynomial K and any positive integer n,

n

_ B q q
w(Y

E : 9—w( )@(Y) s U(K) —YE < ag(0)Xo(K) mEYER
degY=n

(Y,K)=1

n

(2.10)
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with
210 o= T1 (0 g7 (1 )
(2.12) ¥(K) = ]}% (1 + 2|P|1ﬁ> .

Proof. As for the above proposition.

PROPOSITION 2.4. Let My denote the set of square-free monic polyno-
mials. Then

-2 q2 +q— 1
(2.13) y%;h(dng)‘Y‘ T @2q-1)
—w(Y) -2 _ ;
@) 3 HemrY PHH<1 * TP

Proof. Let a, denote the number of square-free monic polynomials of
degree n. Then agp = a; =1 and a,, = (1 — 1/q)q"™. Hence,

S (dea¥)|Y| 2——+Z (1-2)am =l na? e,
n=1

Y eM;
whence (2.13). Let P be a monic irreducible polynomial. In view of (2.7)
and (2.12),

1\ ! 1 -1 1
2 P72=(1 1+—— ) |P 2= — —
(BYEEIPF ( *2!P!> ( +2|P\+1) = e
and (2.14) follows.

PROPOSITION 2.5. Let g € |0,1/2[. Then there exists a constant as(p)
such that for any integer n > 0,

n

iy q
(2.15) > 2| < asle) -
degY=n

Proof. By a proof which mimics that of Proposition 2.2 one may get an
asymptotic estimate for the sum occurring on the left hand side of (2.15)
from which one may deduce the announced result.

3. Estimations for Hp(m,n) and Qp(m,n). Let us recall some facts
about the polynomial Jacobi symbol. Let P € 1. The Legendre quadratic
character modulo P is defined as follows. For A € A coprime with P, let
(A> { 1 if Ais a square mod P,

(3.1)

P —1 if A is not a square mod P.
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The Jacobi symbol is defined as follows. For any monic polynomial D and
A € A coprime with D, let

DR O

Pel
P|D

vp(D) denoting the P-adic valuation of D.

We extend the map (5) to all polynomials by setting (%) = 0 for
polynomials A such that (A, D) # 1. We shall make use of some properties
of this symbol collected in the following proposition.

PROPOSITION 3.1. (i) Let X,Y € M. Then
-1
(33) (Y) — €degX’
X Y
4 -~ — | — ~degXdegY
o4 (7) () =

with
(3.5) e=¢e(q) = (—1)l4"V/2,

(ii) Let a be a non-zero element in the field Fy. Let D be a monic, square-
free polynomial. Then (%) = —1 if and only if a is not a square in Fy and
deg D is odd.

Proof. The first part is proved in [2] for irreducible X and Y. The mul-
tiplicativity of the symbol gives (3.3) and (3.4) in the general case. Let a be
a non-zero element in . If a is a square in [F, then (%) =1 forany P €1,
and (%) = 1 for any monic square-free D. Suppose that a is not a square
in IF,. Let a be a root of T? — a in an algebraic closure of F,. Then

FqQ = ]Fq (a) .

Let P € I. Then the field F|p| = Fgacer is the splitting field of P. Hence,
a € FFp if and only if deg P is even. But o € F|p| if and only if a is a
square mod P. Hence, (%) = 1 if and only if deg P is even. Now, by (3.2),

(B) = —1 if and only if the number of irreducible divisors of odd degree

of D is odd.

Let D be a monic square-free polynomial. We observe that Hp(m,n) =
Hp(n,m). Using this symmetry, we may suppose m < n. Moreover, in the
following we shall suppose that

(3.6) 1<m<n,
and that

|
(3.7) m—l—dengnﬂ

log2’
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Let X = Xp(m,n), resp. Y = Yp(m,n), denote the set of (4, B) € M2,
resp. (A, B) € A2, such that

(1) A and B are square—free
(2) (A, D) =1, (AD, B) =
(3 )degA m, deg B = n.

Then Hp(m,n) is the number of (A4, B) € Y such that the equation
(fp) X? - ADY?-BDZ* =0

admits a non-trivial solution (x,y, 2) € K3.
Let = = Ep(m), resp. =/ = Z5(m), denote the set of A € M, resp.
A € A, such that

(1) A is square-free, coprime with D,

(2) deg A = m.
If A€ = resp. if A€ Z/) we denote by X4, resp. Y 4, the set of polynomials
B such that (A, B) € X, resp. (4,B) € Y.

We recall our convention. Unless otherwise stated, the polynomials oc-
curring in the sums below are monic and square-free.

PROPOSITION 3.2. We have

(3.8)  2*PIHp(m,n)

L) D s B

D'D''= (A,B)eY A'|AB'|B

Proof. Let A and B be square-free non-zero elements of the ring A such
that (4,B) = (A,D) = (B,D) = 1. For P € I, let Kp denote the P-adic
completion of the field K. By the Hasse principle, the quadratic form (fp)
represents zero over K if and only if it represents zero over Kp, for any
P el If P €1 does not divide ABD, then AD and BD are P-adic units
and (fp) represents zero over Kp. If P € I divides A, then (fp) represents
zero over Kp if and only if BD is a square modulo P. If P € 1 divides D,
then (fp) represents zero over Kp if and only if —AB is a square modulo
P. Hence, the quadratic form (fp) represents zero over K if and only if

UL ()L ()T (530))

P|A P|B P|D
— 2w(ABD)

It follows that

" y BD AD
2 Pipna) = Y 00 S (ZE) S (B2 5 (42).
(A,B)eY D'|D A|A B’|B
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We get (3.8) by interchanging the order of summation.

Following Hooley’s idea, we split the sum Hp(m,n) into subsums corre-
sponding to different types of divisors. We need a new notation. For non-zero
polynomials U, V and W we set

(3'9) 5(U, V, W) _ Edeg U+degU deg V+deg V deg W+deg W deg U )

PRroPOSITION 3.3. We have

(3.10) Hp(m,n) = Si(m,n)+ Sa(m,n) + S3(m,n),

where

(311)  2¢)Si(m,n) = K(m,n,deg D)(g — 1)* Y 2B,
(A,B)ex

with

2 ifm+degD and n+ deg D are even,
(3.12)  k(m,n,degD) = / , & &
1 otherwise,
(3.13) 29D Gy (m,n) = (¢—1)° Y 27*UPT(4,B),
(A,B)ex

(3.14) T(A, B)

AD
2 Z <B’ > if m+degD and n+ deg D are even,
B'|B
B'#1
deg B'=0 mod 2

AD
Z < > if m +deg D is odd,

B’
B'|B
B'#1
deg B’=0 mod 2

AD
Z (B’> if m+ deg D is even and n + deg D is odd,
B'|B
B'#1

(3.15) 29DV S5(m,n)

7 Al A D//
— Z Z 270.2(A A ) ( (D/ A/ A//)
D)\ A"
DII AII
l;éD ;éD A“eA
D' A’#1
deg(D" A"”)#£0

(3.16) (D', A’, A"

BII AIID//
—w(B
= > 2@ M 6(D’,A’,B’)<D/A/>< = )

BEY g1 41 B eA
B’'B"=B
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Proof. If X is a non-zero element of the ring A, we denote by X* the
monic polynomial such that X and X* generate the same ideal. We split
the right hand side of (3.8) into three subsums 2¢(P)S;(m,n) = 2v(P) s,
1 <4 < 3, corresponding to different 3-tuples (D’, A’, B’) of divisors. The
sum 2¢(P)S; which will be the main term contains only for each (A4, B) € Y
the triple (1,1, 1) and the triple (D, A*, B*), that is to say,

-1 AB\ (BD\ [ AD
w(D) _ —w(AB) _ =
(A,B)eY

Writing A and B as the product of a monic polynomial by a non-zero con-
stant, we get

2(:.)(D)S1 _ Z 27w(UV)
(U,V)ex

S EHEEEEEE)

Making use of (3.3) and (3.4), we get

9w(D) g, — Z 9—w(UV) Z Z{1+5(m+n+1)degD+mn}<DLV> <DLU)

(U,V)ex a€F} beF;:

Suppose that m + deg D and n + deg D are both even. Then
{1 + €(m+n+1) deg D+mn} -9

and making use of Proposition 3.1(ii) we get
gw(D)— g, = q—l Z 9—w(UV)
(UV)ex

Suppose that m +deg D is odd. Then, by Proposition 3.1(ii), for any U € =

and any b € 7,
b B 1 if b is a square,
DU ) | -1 ifbisnot a square.

Hence, for any U € =,

and
2<;.)(D)S1 — (q _ 1)2 Z 2—w(UV)‘
(U,v)ex

The case where n 4+ deg D is odd is similar.
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The sum 2¢(P) S, contains for each (A, B) € Y the triples (1,1, B') with
B’ # 1 and the triples (D, A*, B") with B’ # B*. Then, writing A, resp. B,
as the product of a monic polynomial by a non-zero constant, we get

pan v 2 ()2 ()

(U,V)ex VIV =V acF; beF;,

V/#1
—1 uv VD UD
“(3) = (5) D))
V/vII:V
V”;él

22 (5))@)

(7)=(F)(F) = (P)(F)

Since

and similarly,

we obtain

22 (5))6) (@

Making use of (3.3) and (3.4), we get

24P Gy = Y omeV) N (Z}?)

(U,V)ex V'v'=v
V'#1

E B ) )

aE]F:; bEIF;

Assume that m + deg D and n + deg D are both even. Then, as above,

s, Y ey (V) 3y ()

(U,v)ex v'v'=v a€F}; bEF;;
V'#1
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and

UD
w(D)—1 w(UV
R D VIS M €3
(U,V)ex VIV
V'#£1
deg V'=0mod 2

Assume that m + deg D is odd. Then, as above,

w a
sy 2o 5 (92) 5 (1)
(U,V)ex V\V a€Fy

V/£1
and
UD
w(D w(UV
05— -1t 3o S ()
(U,V)ex 17d1%
V/#1

deg V'=0mod 2

Assume that n 4+ deg D is odd and that m 4 deg D is even. Then, as above,

Pos-u = e 5 ()5 [(2)+ (i)}

(U,V)ex Vv
V'#1
(D)5, = (g~ 1) T 2V ¥ ( )
(U,V)eX d\%

V'#£1

This completes the proof of (3.13).

The sum 2¢(P) S5 contains the remaining terms, that is to say, all the
3-tuples (D’, A’, B’) of monic divisors such that D’A" # 1, D’A" # DA*.
Then, writing D = D'D”, A = A’A”, B = B’B”, and making use once more
of (3.3) and (3.4), we get

Qw(D)SS — Z Z 2—w(AB) Z (A”) <Z,,/>

D'D"=D (A,B)eY A'A"=A
1#£D'#D A" eA
D'A’#1
D'A’#DA*
B// A//D//
/ / /
x Y §D,A.B )<A,D,> <7>
B'B"=B
B”GA

proving (3.15).
PROPOSITION 3.4. There exists a constant (31 such that
(3.17) 1S5 (m,n)| < Bym!/2qntm/2on/2,
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Proof. In view of (3.13) and (3.14), we have
2¢0)71 Sy (m, )|

< (q_1)2 Z wa(W) Z wa(Y)

s ()

deg W<n degY=n—deg W deg A=m
W#£T (WD,Y)=1 (A,WYD)=1
(W,D)=1

By (2.9), if W # 1,

A
‘ Z 2—w(A) (W)‘ < Oé32u.J(YD)Tnl/2qrn/22deg(W)/27

deg A=m
(A,WY D)=1
hence
91/2
|Sg(m, ’I’L)‘ < 2((] o 1)2a3 ST ml/Qqn+m/22n/2’
whence (3.17) follows with
23/2

— 2
ﬂ1—a3m(q—1)-

PROPOSITION 3.5. There exists a constant 32 such that for monic D' | D,
A € E, a € F, and monic A"| A such that deg(D'A’) # 0, deg(D'A’) #
deg(DA), we have

(318) ’T(D,,A/,GA/A,” < ﬂin/2q3n/42w(AD)+deg(AD)/4?
moreover, if deg(D'A’) is odd, then (D', A’,aA/A") = 0.

Proof. We set D = D'D", A = A’A”. We note that D’ and D" are
square-free and coprime polynomials of positive degree. By (3.16),

(D', A’ aA")

w B// aA//D/I b
=) 2@l B 5<D/’A,’B,)<D’A’>< = > > (D’A')'
B beF;

BeXa B'B'" =

In view of Proposition 3.1(ii), if deg(D’A’) is odd, then the last sum is 0
and 7(D’, A’,aA”) = 0. We suppose deg(D’A’) even. Then

T7(D', A" aA")

w B// aA//D/I
:(q_l)ZQ ) Z 5<D/’A,’B/)<D1A/>< B >

BeXa B'B"=B

Let h be a non-negative integer such that

(1) h <n.
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We divide 7(D’, A’, aA”) into two parts according as deg B’ <h or deg B’ > h.
Making use of (3.4), we get

(2) 7(D' A" aA") = (q —1)(n (D', A", A") + 7o(D', A a, AT)),

with

(3) (D, A,

= 3§D, A, B2 (%) oo 2D (%)

deg B'<h deg B"' =n—deg B’
(B',AD)=1 (B"”,DAB")=1

(4) gdeeD'(tdeg A)tn(mtdea D)) (D A/ g A”)
= Y 9B (medes D) deg(B) b
= D/A/

deg B""<n—h
(B"AD)=1

—w(B’ a B,
X Z 2 (B)(§)<D//A//>'

deg B'=n—deg B"
(B',DAB")=1

(I) Let W € M be such that deg W < h. In view of (2.9),
e <L>
D' A’
degY=n—deg W
(Y, DAW)=1
hence, by (3) and (3.9),

< a3n1/2qn/22w(D”A"W)+deg(D/A’)/2’W’71/2;

1/2
q n w eg(D’ A’
(5) ‘Tl(D,,A/,AH” < as q1/2 — n1/2q /2+h/22 (AD)+deg(D’A )/2

(IT) Let W € M be such that degW < n — h. According to (2.9),

Z g-w(Y) ( Y >
A//D//

degY=n—deg W
(Y,DAW)=1

< agn/2 g2 (A'D W) +deg(A” D) 2y | =1/2,

Since the sign of (%) depends at most on the degree of B’, by (4) we have

n1/2qn7h/22w(AD)+deg(A”D”)/2.

1
(6) |m(D' A a, A" < as 71

Let 1 be defined by
(7) q" = qn/22(degA”D”fdegA/D')/2.
In view of (3.6) and (3.7), we have n < n and we may choose h = []. With
this choice, by (2), (5) and (6),
|T(D,,A,,CIAH)| < ﬂ2n1/2q3n/42w(AD)+deg(AD)/4
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with
q'/2

=92 —1 .
/82 a3(q )q1/2_1

This gives (3.18).
PROPOSITION 3.6. We have

(3.19)  [Ss(m,n)| < Balq — 1)(m + 1)2¢(D)+dea(D)/41/2 m+3n/dgm/4.
Proof. By (3.15) and the definition of the sets = and =/,

2¢(P) S5 (m, n)
. D"
— Z Z 29— w(AA)Z< >< > (D/ A/ A//).
D D” D A A”€~ a€Fy
1£D'#D D'A'#1
D”A”;ﬁ].

We conclude by applying (3.18).
Let
(3.20) Stmyn)y= > 27«
(X,Y)eX(m,n)

PROPOSITION 3.7. Let o € ]0,1/2[. Then there exists a constant [3(p)
such that

m+n

(3.21) ‘S(m,n) - (1 - 1) e Q(D)W(D)'

q
m—+n
q 1 1
< P3(0)Ae(D) 7575 (E + ﬁ)
with O(D), ¥(D) and \y(D) defined respectively by (2.7), (2.12) and (2.8).
Proof. In view of (3.20) and the definition of the set X(m,n),

S(m,n) = Z 2~ w(X) Z 9w,

deg X=m degY=n

(X,D)=1 (XD,Y)=1
Let o € ]0,1/2[. In view of (2.5), (2.10) and (2.15),
AB qurn
m-+n
q a4(0) 1 a(0)as(o)
— mlt/2pl/2 Ae(D) ( ml/2 A6(D) m + n ’

with A and B defined by (2.6) and (2.11), and © and ¥ defined by (2.7)
and (2.12). An easy computation leads to

1
AB=1--.
q
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In view of (2.7), we have 0 < ©(D) < 1, whence (3.21) follows with
Bs(0) = max(au(0)An /%, as(0)as (o).

We summarize what has been proved in this section in the following
theorem.

THEOREM 3.9. Let D be a square-free monic polynomial and let m and
n be integers such that 1 <m <n and

1
m-+degD <n qu.
log 2
Then, if m + degD and n + deg D are even,
m—+n—1
Hp(m,n) - (g — 1)°2' =7 “Les 6(D)#(D)
ami/2nl/2

< ﬁlml/Qanrm/QZn/Q + 2(q _ 1)ﬁ22w(D)+deg(D)/4mn1/2qm+3n/42m/4

261—w(D) 1 gt 1 1
+(¢g—1)"2 B3 1 )\1/4(D)W + =,

m n

otherwise,

Tml/2nl/2

< ﬂlml/Qqn+m/22n/2 + 2(q _ 1)B22w(D)+deg(D)/4mn1/2qm+3n/42m/4

e (1), )0 (L]
+(—1) Bs\ 7 |MaD) iz -+ )

For D =1, this theorem gives a more precise version of Theorem A.

Hp(m,n) — (q — P20 L @(D)W(D)\

4. Estimations for H’'(m,n). First, we recall that H'(m,n) is the
number of pairs (A, B) of square-free elements of the ring A = F,[T] such
that deg A = m, deg B = n and such that the quadratic form

(f) X? — AY? - BZ*
represents zero.

THEOREM 4.1. Let 0 be a real number with log2/logq < 0 < 1. Let m
and n be strictly positive integers such that @ max(m,n) < min(m,n). Then,
if m and n are both even,

, 2 3 qurnfl qm+n
H(m,n)—;(q—l)CW < B6(0) R
otherwise,
1 qm+n—1 qm+n
/ 3
— Z(qg— B
H'(m,n) - (¢g—1) Cm1/2n1/2 < Bs(0) poa
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with .
(e
LL* ppiipr+ 1
and [6(0) a constant.

Proof. Let m and n be strictly positive integers such that n < m < n.
Let (A, B) be a pair of square-free elements of the ring A and let D =
ged(A, B). Then (A, B) is counted in H'(m,n) if and only if (A/D, B/D) is
counted in Hp(m — deg D,n — deg D). Hence,

(1) H'(m,n) = Z Hp(m — deg D,n — deg D).
deg D<m
Let

log 2
(2) (4 = min m, n—m—2 .
2 log q
Obviously, for any monic D,

Hp(m —degD,n—degD) < (¢ — 1)2qm+”_2degD,
and by (1),

(3) 0 < H'(m,n) — H(m,n) < (¢ - 1)g™ """,
where
(4) H(m,n) = Z Hp(m — deg D,n — deg D).
deg D<p
If deg D < p, then m < (n — deg D) iggg and we may apply Theorem 3.9 to
Hp(m — deg D,n — deg D). Taking (2) into account we get
®  [Fonn) -2 - 0 )| < Am ),
v
where
2 if m and n are both even,
(6) X = x(m,n) = .
1 if not,
2=«(P)|D|~20(D)¥(D)
(7) H*(m,n) = Z 1/2 /2’
Wi Den (m — deg D)Y/2(n — deg D)/
(8) A(m, ’I’L) — ﬁlml/an+m/22n/2 Z |D|73/227 deg(D)/2
deg D<p
+ ﬁ4n3/2qm+3n/42m/4 Z 2w(D)‘D’77/4
deg D<p

m+n
q 1 1 —w(D -2
+ 55 1212 <E + ﬁ) Z A1/a(D)2 )| D|2,

deg D<p
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with
Ba=2(q—1)B2, Bs=28(q—1)*Bs(1/4).
We have

5 (i)

deg D<p Pel
A1/a(P)
—w(D)| -2 1/4 _
> M@ < T (14 200 ) =
deg D<p Pcl

these products being convergent since 1 < Ay ,4(P) < 2/(2 — ¢~*/4). Hence,

(2(])1/2 1/2

n+m/26n/2
g1 ’

9)  A(m,n) <f q

m—+n
+ Bapan® 2 g AN 4 Bopy — (E - —>-

n
Now,
* 1 —w -
‘H (m,n) = — s > 27P)p| QQ(D)W(D)‘
deg D<p
1/2

<2 Ly 2/ > deg D2 )| D|"?0(D)¥(D)
= 14 921/2 \ ;m3/2p1/2 ml/2n3/2 :

deg D<p

In view of (2.7) and (2.12), we bound ©(D) and ¥ (D) by 1. Hence, by (2.13)
and (2.14),

1 gV 212
<1

252> +q—1) m=3/2,-1/2
(1+21/2)¢*(q— 1) ’

=TI 1+ gperen)

Pel

with

We get the expected result with (3), (6) and (9).

5. Estimations for H(m,n). We recall that H(m,n) is the number
of pairs (A, B) of elements of the ring A = F,[T] such that degA = m,
deg B = n and such that the quadratic form

(f) X% AY? - BZ?

represents Zero.
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THEOREM 5.1. Let g be a real number such that 3log2/2logq < o < 1.
Let m and n be strictly positive integers such that pmax(m,n) < min(m,n).
Then, if m and n are both even,

2Cq(q — 1)g™™ gmtr
‘H(m,n) Yoy < B(o) RO

otherwise,
‘H(m,n) — | S fB7(0) R

with B7(0) a constant. In particular, for any even integer n > 0,

2Cq(q — 1)¢*" "
H - | < 1) —
(n7n) JE, = 57( ) n2’
and for any odd integer n > 0,
Cq(qg —1)g*" "
H - | < 1) —-.
(nm) - 2| < (1) L

Proof. Let m and n be integers such that on < m < n. Let (A, B)
be a pair of non-zero elements of A. Then A and B are uniquely written
as A = A'U? B = B'V? with A’ and B’ square-free, U and V monic.
Moreover, (A, B) is counted in H(m,n) if and only if (A’, B") is counted in
H'(m —2degU,n — 2deg V). Hence,

(1) H(m,n)= Y > H'(m—2degU,n—2degV).
2degU<m 2degV<n
Obviously, for any pair occurring in H(m,n),
H'(m —2degU,n — 2degV) < (q — 1)%¢gm+n-2degU-2degV,

Let & denote the set of pairs (U, V) of monic polynomials U and V such
that 2degU < m/3 and 2degV < n/3. We note that for (U, V) € &',
min(m — 2degU,n — 2deg V') > 0. Moreover,

(2) Z H,(m —2degU,n — 2deg V) < qm+n+2(qu/6 + qfn/G).
2degU<m
2degV<n
(U,v)ge'
Let 0 = %Q. We note that log2/logq < 6§ < 1. Let £ denote the set of pairs
(U,V) € & such that

(3)  min(m —2degU,n —2degV) > O max(m —2degU,n —2deg V).

If a pair (U, V) € M x M does not satisfy (3), then either 2degV > n—m+
2deg U and in this case 2degV > n—0m+260degU > n—0m, or 2degV <
n —m + 2degU and in this case 2degU > m — On + 20degV > m — On.
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Hence,
(4) Z H'(m —2degU,n—2degV)
(u,v)ee’
(UV)ge
< qm+n+2(q7(n79m)/2 + qf(mfan)/2).
Let
(5) H(m,n) = Z H'(m —2degU,n—2degV).

(U, vy)ee
Then, by (2) and (4),
(6) |H(m,n) — H(m,n)| < 4¢gm+n+2-en/6,
If (U,V) € €&, then
min(m — 2degU,n —2deg V') > § max(m — 2degU,n —2deg V') > 0
and we may apply Theorem 4.1 to H'(m — 2degU,n — 2deg V'), obtaining

— m,n)C(q—1)% . | . mtn
@) |Tom,m) - NG it e | < 1(0) T
with
®) H*(m,n)= > [U7?|V|2(m —2degU)""/*(n — 2deg V)~ '/?,

(U,v)ee

x(m,n) defined as in the proof of Theorem 4.1 and (’(p) a constant. By
easy computations we get

9  0<H*(myn)— > UV Pm 22 < g (o)n 2,
(U,V)GS

with 3”(0) a constant. Finally, as above we get

2
‘ Z |U|_2‘V’_2 — Z ’U‘—2’v|—2‘ < 2(%) q—(m—en)/2

(U,V)eMxM (U, V)e€

L}

We conclude by applying (6), (7) and (9).
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