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Maass operators and van der Pol-type identities
for Ramanujan’s tau function

by

DowmiINIC LANPHIER (Manhattan, KS)

1. Introduction. For z in the upper half plane H let e(z) = ™.

Ramanujan’s tau function 7(n) is then defined by the expansion

(1) A(z) =e(z) H(l —e(nz))* = ZT(H)@(TLZ),
n=1 n=1

where A(z) is the cuspform of weight 12 and level 1. Using differential
equations satisfied by A(z), Eisenstein series, and certain other functions
van der Pol [9] (and Resnikoff in [10]) established identities relating 7(n) to
sum-of-divisors functions. For example, van der Pol showed

(2) 7(n) = no7(n) — 540 Z m(n —m)oz(m)os(n —m)

where o;(n) =>4, d”.
In this paper we use Maass operators (see [7])

so— L (9
Toomi\ 2y Oz

to prove a number of similar identities relating Ramanujan’s tau function
to sum-of-divisors functions, and in particular we establish the van der Pol
identities in a natural way. Our method is analogous to the classical method
of establishing identities among Fourier coefficients of modular forms of low
weight. That is, for E.(z) the normalized Eisenstein series of weight x and
level 1, we have relations like

432000
691
and from (1) we can obtain identities for 7(n). Here we study the explicit

E4(Z)E8(Z) = E12(Z) + A(Z)

structure of the non-holomorphic modular form 59 Eq(z) - ,(f) E,(z) and
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obtain twelve identities for 7(n) (essentially) including van der Pol’s iden-
tities. These methods can of course be applied to the Fourier coefficients of
other modular forms, but for simplicity we restrict our interest to 7(n) and
holomorphic Eisenstein series. Some of these ideas were studied in [6] and
applied to special values of L-functions.

We classify the identities into four theorems, based on the appearance
of o1’s in the summations. Some identities in each theorem are equivalent
to each other, while some follow from the others in the theorem using ele-
mentary methods and classical identities of sum-of-divisors functions.

THEOREM 1.
(i) 7(n)=n’or(n) - 5407:2_117”(” —m)oz(m)os(n —m),
(i) r(n)= — Z n20(n) + Z n203(n) + 540 nz__:ll m2os(m)os(n — m),
(i) () = nor(n) - o m: m?(n = m)os(m)oa(n — m),
(iv) r(n) = — %n207( )+ gn%g(n) + ? Z_lmgag(m)ag(n —m).

Note that (i) and (ii) are equivalent and (iii) and (iv) are equivalent.
Identity (i) is equation (2), essentially proven in [9] but with an error, cor-
rected in [10].

Theorem 1 yields the congruences

7(n) = n?o7(n) (mod 540),
which is congruence (7.3) from [5], and
7(n) = n?o3(n) (mod 240),

which improves a congruence from [9].

THEOREM 2.
(i) 7(n)= —%nag( )+3—n05 +35OZ (n —m)os(m)os(n —m),
n—1
(ii) 7(n) = % nog(n) + % nos(n) — 350 Z mos(m)os(n —m),
m=1
n—1
(iii) 7(n) = énag(n) + %TLUg(TL) — % Z m2o3(m)os(n —m),
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n—1

(iv) 7(n) = noo(n) — % S m(n — m)os(m)os(n —m),
m=1
n—1
(v) 7(n)= - inag(n) + Znag)(n) + % Z(n —m)?o3(m)os(n —m).
m=1

It is easy to see that (i) and (ii) are equivalent and (iii), (iv), and (v) are
equivalent.
From Theorem 2 we get the congruences

7(n) = nog(n) (mod2100) for 2,3,5,71n,
7(n) = nos(n) (mod 240) for 2,3,5,7tn,
7(n) = nog(n) (mod504)  for 2,3,5,7{n.
Combining these and a previous congruence gives
(n—1)og(n) =0 (mod24) for 2,3,5,7{n.

A catalog of similar congruences for o;’s and 7(n) is given in [4] and [5].

THEOREM 3.
65 691 2.691 2
7(n) = ﬁffn(n)-i-ﬁas,(n)— i mz::lmag,(m)og,(n—m).

For the last theorem we have o3 and o7 in the summations.

THEOREM 4.
, 91 691 4.691 =2
(@) )= - cgon(m) + goposln) + —— mzzzlmag(m)aﬂn —m),
91 691
(ii) T(n) = — 800 o11(n) + 800 o7(n)
2.691
= Z (n —m)os(m)oz(n —m).
m=1

It is easy to see that (i) and (ii) here are equivalent.
As a consequence of these identities we get some other relations among
the sum-of-divisors functions, such as
n—1
Z m(n —m)(n —2m)os(m)os(n —m) = 0.

m=1

2. Eisenstein series and Maass operators. In this section we intro-
duce our Eisenstein series, Maass operators, and prove the key proposition.

For
1 n
roo_{<0 1) neZ}
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denote the Eisenstein series of weight x and level 1 by

2 oo
E.(z) = Z (cz+d) ™" =1+ ) Z ox—1(n)e(nz
(25)erm\SLa(2) n=1
where ((s) is the Riemann zeta function.

Let M, denote the space of modular forms of weight x and level 1 and
let C,, denote the subspace of cuspforms. Consider the differential operator

- (L) (s, 2 (et 0y (e )
2mi 24y 0z 24y 0z 2ty 0z

where 5,20) is just the identity operator and z = z + iy. Note that from
Maass [7] the operator 5 preserves automorphy of g.(z) € M, but not
holomorphy. Further, note that if g.(z) € M, then 5 gr(2) is a non-
holomorphic modular form of weight x + 2r (see [2] and [3]).

We now study the structure of 59 Ei(z) - 5,8 ") E,(z).

From [1] and [8] the action of 55 on gx(z) = D07 jane(nz) is given
explicitly by

(3) o) g, Z an ( Z P; T) (—4my) jn”_j) e(nz)

n=0
where P(T) B <’I“> F(Ii—l-T‘)
5 = \j) Tk +r—3)

and I'(s) is the usual gamma function.
The following is a lemma in [11], and see [12] for a more general discussion
of nearly holomorphic modular forms and differential operators.

LEMMA 1 (Shimura). Let G(z) be a function on H so that for v =
(¢ 2) € SLa(Z) we have

G(y(z)) = (cz+ d)*G(z) and G(z Za]y Gr—2j(2

where g.—2j(z) is holomorphic on H and has a Faumer expansion. Then

2) =065 Gr2i(2)
j=0
where Gy—2j(2) € My_a;j.

As a consequence of Lemma 1, for g.(2) € M, and g,(z2) € M, we have
the decomposition

q+r
0 ge(2) - 65 gu(z) = 5,gl-)|—u+2q+2r—21(alEn+u+2q+2r—2l(z) + BiF' (1, 2))
1=0

where F(l, 2) € Cuqpr2g+2r—21 and ag, 3 € C.



Maass operators 161

ProprosIiTION 1. For g <,

I'(k+ ) l(p+r)I(k+ p) (a+7) g (2)

P(R) D) (s + o+ g +r) Ontm 7tk
q+r

!
+ Zﬂl 5/2-)I—M+2q+27‘—2l F(l,2)

=0

89 En(2) - 60 Bu(z) =

where the F(l,z) € Cryptortor—a are normalized so their first non-zero
Fourier coefficients are 1 and the §; € C consist of integer values of I'-
functions and ((s).

Proof. For simplicity write Ey(z) = Y > ¢x(m)e(mz); then from equa-
tion (3) we get

59 E Z ck(m (Z ’q —4my) k‘mq*k>e(mz).
=0
For E,(xz) =2, cu(n)e(nz) we then have
(4) o7 Bx(2) - 5<’”> Eu(2)

x(i (ZP@ —4my) jn’"_j)e(nz)>
=3 (S (X entmiumBm P ) (~amy) ) e(e2)

t=0 s=0 min=t jt+k=s

For simplicity again, put

[e.e] [e.e]
En—i—u—i—?q—i—?r 2l Z c(! F(la Z) = Z d(la ’I’L)@(TLZ)
n=0 =
where we normalize F'(I, z) so its first non-zero Fourier coefficient is 1. Then
oo l
! L
5,($J)ru+2q+27«_gl Bt praqrar—a(z Z c(l t)(Zpé- (t)y J)e(tz)
t=0 j=0
l s s
where pé(t) = Pj(,f2+,u+2q+2r72l(_47r) Jt=J and

00 l
O sagiar o L 2) = 30 d0) (3 o0y~ )e(t2).
t=1 §=0
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Taking the Fourier expansions and switching the order of summations yields
q+r

!
> 5,giu+2q+2r_gl(azEn+u+2q+2r—2z(z) + BiF(l, 2))

=0
S (S
=0 s=0

t=0

+mfjd(z,w(ipi(t)y-s)e(tz)}
t=1 s=0

atr  qtr
=y (Z ae(l, 0)p2(0)>y_5
s=0 I=s

0o q+r  q+r

# 303 (B tencttmdo) + k)~ et

t=1 s=0 =s

From Lemma 1 we can set the above result equal to (4). Then for t =0
we set the terms indexed by (—47y)~° equal and get the equation

q+r
(5) ST (POma P ), 0 = 3 aph (0
jtk=s =0 —jtk

Now, .
ek Tkt p+2q+2r—j—k)

0
I'(k+p+2q+2r —2j — 2k) 7
and pé- 4+£(0) =0 for I # j + k. Therefore equation (5) becomes
(BT 0PI )0 = a4 1.(0):
But (P{2ma%)|,u0 = 0 for k # ¢ and P\ = I'(k+q)/T'(x) # 0, and

(T)
g

PIEE(0) = (—4m)

similarly for (P;"’n"~7)|,—o. This implies oy = 0 for s < ¢ + r and also

(PEmI™)] jeg (P )] iy

a _ m=0 SH n=0 __ F(K+Q)F(M+T)F(H+M)
o pLir(0) TR (k+p+q+r)

For t = 1 we set the (—4wy) %e(z) terms equal. As ¢,(1) = 2/¢(1 — k)
and ¢, (1) = 2/((1 — ), we get the equation

© > T P,g?gmq*’“)|mzopj(j2+
Jjt+k=s

2

¢(1— k) PP )]

DK

q+tr

= Z alc(l7 1)p§+k(1) + ﬁld(lv 1)p§+k(1)
l=j+k
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In a similar way to what happened for (5), equation (6) gives us

q+r
> Bid(l, 1)pl(1) = — agyre(q+r, 1)pdH(1)
l=s
0, q > s,
2 @, gk (r)
m (Pkﬁm ) k:_%PS—(LM’ r>Ss 2 q,
2
=+ P(Q) q—k P(T)
=) o™ ] g Foma
2 @ (p), r—j
— P Py /n"J >
+C(1 _ /{) s—r,n( ],Mn ) jig’ S$ZT,
and evaluating these, we get
g+
> Bd(1, Dph(1) = — agyre(g + 7, )pdtr(1)
l=s
(0, q> s,
2 ( r ) I'k+q)l(p+r) Crss>a
CQ—w\s—q) ') (k+q+r—s)

ezl ) s L)

I'k+q)I'(p+r)
L FR)(k+q+r—s)
Substituting aq4, and the equation above into equation (6) we can solve for
the G;. »

In order to illustrate an application of this result note that from Propo-
sition 1 we have

s>

Fy(z) - 64 Ba() = % 55 Es(2).

Setting the Fourier coefficients of the (—47y) ~!e(nz) terms from both sides
of this equation equal we get
n—1
noz(n) = nosg(n) + 240 Z mos(m)og(n —m).
m=1

This is formula (7.5) from [4].

3. Proofs of the identities for Ramanujan’s tau function. We
give a proof for Theorem 1. The proofs for the other theorems are similar
and we give appropriate indications for those. From Proposition 1 we have
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(7) 0 Eu(2) - 8 Eu(2)
A+ LA+ 1)T(8) (gen)

F@PrB+q+rr) % D3G)
+ BoPst2g+2r(2) + ﬂ16é22q+27~¢6+2q+2r( )+ -4 Byrr—201 (gtr= 2)A(Z)-
LEMMA 2.
() 51 E(z) 01 Baz) = 2 o) Bu(2) — S5 A(2),
(if) Eu(2) - 85" Ea(2) = 15—8 o8 Es(z) + @ A=),
(i) 67 Bu(z) 61 Fa(2) = 5 65" Fi(z) - ? 512 A(2),
(iv) Bi(=) oY Bufz) = ¢ o Bu(2) + 16050 A(2).

Proof. From (7) we have
51 Ba(2) - 1 Ba(2) = 8 Bu(2) + foA(z),
Bu(z) 6 Ba(e) = - 6 Ba(2) + foA(2),
5512) Ey(z) - 64 E4(2) = é (55(;3) Eg(z) + 81612 A(2),

1
Ei(z) 05" Ea(z) = 2 08" By(2) + B1 12 Al2).

We only need to look at the holomorphic part of each equation in order to
solve for the 3;’s. As

o0

o1 Ey(2) = Z ca(n)(n + 4(—4ny) Ye(nz),

n=0

5512) Ey(z) = Z ca(n)(n? + 10(—4my) "tn + 20(—47wy) " 2)e(nz),

54(13) Ey(2) = 204 (n® + 18(—4my) ~n?

+ 90(—47ry) n + 120(—4my) )e(nz),

057 Bu(2) = > es(n)(n® + 18(—dmy) 'n + 72(—4my) )e(nz),
n=0

65(;3) ES(Z) = iCS(n)(’I’L3 + 30(_47_‘_y)_1n2
n=0

+ 270(—47y) "*n + 720(—47my) 3)e(nz)
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we can find explicitly the holomorphic part of (L(Lq) Ey(z) - Z(lr) E4(z). The

e(tz) term of the holomorphic part of §4 Fy4(2) - 64 E4(2) is

Z meq(m)neca(n)

m-+n=t

and for ¢ = 1 this is 0. The e(¢z) term for the holomorphic part of 2 5§2) Es(z)
+ BoA(z) is %t268(t) + [o7(n). Setting t = 1 we get

This gives (i).
The e(tz) term for the holomorphic part of E4(z) - 54(12) Ey(z) is

Z ca(m)n2eq(n).

m-+n=t

The e(tz) term for the holomorphic part of 1% 5§2) Eg(2)+6oA(z) is %tQCS(t)
+ BoA(z). Setting t = 1 we get
) 2 5 2 320

Bo = ca(1) — 18 cs(1) = (=3 18c-n - 3"

which gives (ii).
The e(tz) term for the holomorphic part of 51(12)E4(z) <04 Ey(2) is

Z m2eq(m)ney(n).

m-+n=t
This is 0 for ¢ = 1. The e(tz) term for the holomorphic part of & 52(33) Es(z)+
Br 612 A(z) is §t3cs(t) + BotT(t). Setting t = 1 we get
1 2 160
=5~ 3
which gives (iii).
The e(tz) term for the holomorphic part of E4(z) - 54(13) Ey(2) is
Z ca(m)ndeq(n).
m-+n=t
The e(tz) term for the holomorphic part of %55(33) Eg(2) + (1612 A(2) is
%t308(t) + BitT(t). Setting t = 1 we get
1 2

Pr=rcal) = pes(l) = ¢(-3) é ¢(=7)

= 160,

which gives (iv). m
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Theorem 1 follows from Lemma 2 by uniqueness of Fourier coefficients.
Looking at the e(nz) term of the holomorphic part of (i) gives us

n;]m64(m)(n —m)eg(n —m) = g n2cg(n) — ? T(n)
3 2 2 “
T(n) = — = noq(n) — m(n —m)os(m)os(n —m)
3209 ¢((-7) T 320 ((=3)2 mzl 3(m)os
= no7(n —5402 m)os(n —m),

which is (i) of Theorem 1. In a similar way we get (ii).
Looking at the e(nz) term of the holomorphic part of (iii) gives us

Z m2cy(m)(n —m)eq(n —m) = %ng’cs( ) — % nt(n)

" 3 1 2
T(n) = 160 —C(— 7 n?o7(n)
160C Zm n —m)os(m)os(n —m)
= n?0q(n) — @ mQ(n —m)os(n)os(n —m),
m=1

which is (iii) from Theorem 1. In a similar way we get (iv).
In the same way we can establish the following lemmas.

LEMMA 3.
Q) 1 F1(2) - Bolz) = = 510 Fao(2) + = A:),
(i Fu(2) 6 Bolz) = £ 510 Fo(2) — —o= A(:),
(i1 52 By(2) - Eg(z) = 12_1 52 Eio(2) + 288 512 A(2),
(iv) 51 E4(2) - 96 Es(2) = ;g 5(2) Eio(z) + ? 512 A(2),
(v) Ey(z) - 5((5 )Eﬁ( ) = g; 5(2) Eio(z) — 20516 512 A(z).

LEMMA 4.

56 E6(2) - Eg(2) = % 012 B1a(z) — 386190124 012 A(2).
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LEMMA 5.
1 144
(i) 64 Ey(2) - Eg(z) = 3 012 Eia(2) + % 512 A(2),
(i) By(2) b Bs(2) = 5 812 Brae) + — o 812 A(2).
From these lemmas we get Theorems 2, 3, and 4 just as was done for
Theorem 1.
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