Maass operators and van der Pol-type identities for Ramanujan's tau function by Dominic Lanphier (Manhattan, KS) 1. Introduction. For z in the upper half plane \mathcal{H} let $e(z) = e^{2\pi i z}$. Ramanujan's tau function $\tau(n)$ is then defined by the expansion (1) $$\Delta(z) = e(z) \prod_{n=1}^{\infty} (1 - e(nz))^{24} = \sum_{n=1}^{\infty} \tau(n)e(nz),$$ where $\Delta(z)$ is the cuspform of weight 12 and level 1. Using differential equations satisfied by $\Delta(z)$, Eisenstein series, and certain other functions van der Pol [9] (and Resnikoff in [10]) established identities relating $\tau(n)$ to sum-of-divisors functions. For example, van der Pol showed (2) $$\tau(n) = n^2 \sigma_7(n) - 540 \sum_{m=1}^{n-1} m(n-m)\sigma_3(m)\sigma_3(n-m)$$ where $\sigma_k(n) = \sum_{d|n} d^k$. In this paper we use Maass operators (see [7]) $$\delta_{\kappa} = \frac{1}{2\pi i} \left(\frac{\kappa}{2iy} + \frac{\partial}{\partial z} \right)$$ to prove a number of similar identities relating Ramanujan's tau function to sum-of-divisors functions, and in particular we establish the van der Pol identities in a natural way. Our method is analogous to the classical method of establishing identities among Fourier coefficients of modular forms of low weight. That is, for $E_{\kappa}(z)$ the normalized Eisenstein series of weight κ and level 1, we have relations like $$E_4(z)E_8(z) = E_{12}(z) + \frac{432000}{691} \Delta(z)$$ and from (1) we can obtain identities for $\tau(n)$. Here we study the explicit structure of the non-holomorphic modular form $\delta_{\kappa}^{(q)} E_{\kappa}(z) \cdot \delta_{\mu}^{(r)} E_{\mu}(z)$ and ²⁰⁰⁰ Mathematics Subject Classification: Primary 11F30; Secondary 11F25. obtain twelve identities for $\tau(n)$ (essentially) including van der Pol's identities. These methods can of course be applied to the Fourier coefficients of other modular forms, but for simplicity we restrict our interest to $\tau(n)$ and holomorphic Eisenstein series. Some of these ideas were studied in [6] and applied to special values of L-functions. We classify the identities into four theorems, based on the appearance of σ_k 's in the summations. Some identities in each theorem are equivalent to each other, while some follow from the others in the theorem using elementary methods and classical identities of sum-of-divisors functions. Theorem 1. (i) $$\tau(n) = n^2 \sigma_7(n) - 540 \sum_{m=1}^{n-1} m(n-m)\sigma_3(m)\sigma_3(n-m),$$ (ii) $$\tau(n) = -\frac{5}{4}n^2\sigma_7(n) + \frac{9}{4}n^2\sigma_3(n) + 540\sum_{m=1}^{n-1}m^2\sigma_3(m)\sigma_3(n-m),$$ (iii) $$\tau(n) = n^2 \sigma_7(n) - \frac{1080}{n} \sum_{m=1}^{n-1} m^2(n-m) \sigma_3(m) \sigma_3(n-m),$$ (iv) $$\tau(n) = -\frac{1}{2}n^2\sigma_7(n) + \frac{3}{2}n^2\sigma_3(n) + \frac{360}{n}\sum_{m=1}^{n-1}m^3\sigma_3(m)\sigma_3(n-m).$$ Note that (i) and (ii) are equivalent and (iii) and (iv) are equivalent. Identity (i) is equation (2), essentially proven in [9] but with an error, corrected in [10]. Theorem 1 yields the congruences $$\tau(n) \equiv n^2 \sigma_7(n) \pmod{540},$$ which is congruence (7.3) from [5], and $$\tau(n) \equiv n^2 \sigma_3(n) \pmod{240},$$ which improves a congruence from [9]. Theorem 2. (i) $$\tau(n) = -\frac{11}{24}n\sigma_9(n) + \frac{35}{24}n\sigma_5(n) + 350\sum_{m=1}^{n-1}(n-m)\sigma_3(m)\sigma_5(n-m),$$ (ii) $$\tau(n) = \frac{11}{36} n\sigma_9(n) + \frac{25}{36} n\sigma_3(n) - 350 \sum_{m=1}^{n-1} m\sigma_3(m)\sigma_5(n-m),$$ (iii) $$\tau(n) = \frac{1}{6} n \sigma_9(n) + \frac{5}{6} n \sigma_3(n) - \frac{420}{n} \sum_{m=1}^{n-1} m^2 \sigma_3(m) \sigma_5(n-m),$$ (iv) $$\tau(n) = n\sigma_9(n) - \frac{2100}{n} \sum_{m=1}^{n-1} m(n-m)\sigma_3(m)\sigma_5(n-m),$$ (v) $$\tau(n) = -\frac{1}{4}n\sigma_9(n) + \frac{5}{4}n\sigma_5(n) + \frac{300}{n}\sum_{m=1}^{n-1}(n-m)^2\sigma_3(m)\sigma_5(n-m).$$ It is easy to see that (i) and (ii) are equivalent and (iii), (iv), and (v) are equivalent. From Theorem 2 we get the congruences $$\tau(n) \equiv n\sigma_9(n) \pmod{2100} \quad \text{for } 2, 3, 5, 7 \nmid n,$$ $$\tau(n) \equiv n\sigma_5(n) \pmod{240} \quad \text{for } 2, 3, 5, 7 \nmid n,$$ $$\tau(n) \equiv n\sigma_3(n) \pmod{504} \quad \text{for } 2, 3, 5, 7 \nmid n.$$ Combining these and a previous congruence gives $$(n-1)\sigma_3(n) \equiv 0 \pmod{24}$$ for $2, 3, 5, 7 \nmid n$. A catalog of similar congruences for σ_k 's and $\tau(n)$ is given in [4] and [5]. Theorem 3. $$\tau(n) = \frac{65}{756} \sigma_{11}(n) + \frac{691}{756} \sigma_5(n) - \frac{2 \cdot 691}{3n} \sum_{m=1}^{n-1} m \sigma_5(m) \sigma_5(n-m).$$ For the last theorem we have σ_3 and σ_7 in the summations. Theorem 4. (i) $$\tau(n) = -\frac{91}{600}\sigma_{11}(n) + \frac{691}{600}\sigma_3(n) + \frac{4\cdot 691}{5n}\sum_{m=1}^{n-1}m\sigma_3(m)\sigma_7(n-m),$$ (ii) $$\tau(n) = -\frac{91}{600}\sigma_{11}(n) + \frac{691}{600}\sigma_{7}(n) + \frac{2 \cdot 691}{5n} \sum_{m=1}^{n-1} (n-m)\sigma_{3}(m)\sigma_{7}(n-m).$$ It is easy to see that (i) and (ii) here are equivalent. As a consequence of these identities we get some other relations among the sum-of-divisors functions, such as $$\sum_{m=1}^{n-1} m(n-m)(n-2m)\sigma_3(m)\sigma_3(n-m) = 0.$$ 2. Eisenstein series and Maass operators. In this section we introduce our Eisenstein series, Maass operators, and prove the key proposition. For $$\Gamma_{\infty} = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \middle| n \in \mathbb{Z} \right\}$$ denote the Eisenstein series of weight κ and level 1 by $$E_{\kappa}(z) = \sum_{\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} (cz+d)^{-\kappa} = 1 + \frac{2}{\zeta(1-\kappa)} \sum_{n=1}^{\infty} \sigma_{\kappa-1}(n) e(nz)$$ where $\zeta(s)$ is the Riemann zeta function. Let \mathcal{M}_{κ} denote the space of modular forms of weight κ and level 1 and let \mathcal{C}_{κ} denote the subspace of cuspforms. Consider the differential operator $$\delta_{\kappa}^{(r)} = \left(\frac{1}{2\pi i}\right)^r \left(\frac{\kappa + 2r - 2}{2iy} + \frac{\partial}{\partial z}\right) \left(\frac{\kappa + 2r - 4}{2iy} + \frac{\partial}{\partial z}\right) \dots \left(\frac{\kappa}{2iy} + \frac{\partial}{\partial z}\right)$$ where $\delta_{\kappa}^{(0)}$ is just the identity operator and z = x + iy. Note that from Maass [7] the operator $\delta_{\kappa}^{(r)}$ preserves automorphy of $g_{\kappa}(z) \in \mathcal{M}_{\kappa}$ but not holomorphy. Further, note that if $g_{\kappa}(z) \in \mathcal{M}_{\kappa}$ then $\delta_{\kappa}^{(r)} g_{\kappa}(z)$ is a non-holomorphic modular form of weight $\kappa + 2r$ (see [2] and [3]). We now study the structure of $\delta_{\kappa}^{(q)} E_{\kappa}(z) \cdot \delta_{\mu}^{(r)} E_{\mu}(z)$. From [1] and [8] the action of $\delta_{\kappa}^{(r)}$ on $g_{\kappa}(z) = \sum_{n=0}^{\infty} a_n e(nz)$ is given explicitly by (3) $$\delta_{\kappa}^{(r)} g_{\kappa}(z) = \sum_{n=0}^{\infty} a_n \left(\sum_{j=0}^r P_{j,\kappa}^{(r)} (-4\pi y)^{-j} n^{r-j} \right) e(nz)$$ where $$P_{j,\kappa}^{(r)} = \binom{r}{i} \frac{\Gamma(\kappa + r)}{\Gamma(\kappa + r - i)}$$ and $\Gamma(s)$ is the usual gamma function. The following is a lemma in [11], and see [12] for a more general discussion of nearly holomorphic modular forms and differential operators. LEMMA 1 (Shimura). Let G(z) be a function on \mathcal{H} so that for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ we have $$G(\gamma(z)) = (cz + d)^{\kappa} G(z)$$ and $G(z) = \sum_{j=0}^{r} a_j y^{-j} g_{\kappa - 2j}(z)$ where $g_{\kappa-2j}(z)$ is holomorphic on \mathcal{H} and has a Fourier expansion. Then $$G(z) = \sum_{i=0}^{r} \widetilde{a}_{j} \, \delta_{\kappa-2j}^{(j)} \, \widetilde{g}_{\kappa-2j}(z)$$ where $\widetilde{g}_{\kappa-2j}(z) \in \mathcal{M}_{\kappa-2j}$. As a consequence of Lemma 1, for $g_{\kappa}(z) \in \mathcal{M}_{\kappa}$ and $g_{\mu}(z) \in \mathcal{M}_{\mu}$ we have the decomposition $$\delta_{\kappa}^{(q)} g_{\kappa}(z) \cdot \delta_{\mu}^{(r)} g_{\mu}(z) = \sum_{l=0}^{q+r} \delta_{\kappa+\mu+2q+2r-2l}^{(l)} (\alpha_{l} E_{\kappa+\mu+2q+2r-2l}(z) + \beta_{l} F(l,z))$$ where $F(l,z) \in \mathcal{C}_{\kappa+\mu+2q+2r-2l}$ and $\alpha_{l}, \beta_{l} \in \mathbb{C}$. Proposition 1. For $q \leq r$, $$\delta_{\kappa}^{(q)} E_{\kappa}(z) \cdot \delta_{\mu}^{(r)} E_{\mu}(z) = \frac{\Gamma(\kappa + q)\Gamma(\mu + r)\Gamma(\kappa + \mu)}{\Gamma(\kappa)\Gamma(\mu)\Gamma(\kappa + \mu + q + r)} \delta_{\kappa + \mu}^{(q+r)} E_{\kappa + \mu}(z) + \sum_{l=0}^{q+r} \beta_{l} \delta_{\kappa + \mu + 2q + 2r - 2l}^{(l)} F(l, z)$$ where the $F(l,z) \in \mathcal{C}_{\kappa+\mu+2r+2r-2l}$ are normalized so their first non-zero Fourier coefficients are 1 and the $\beta_l \in \mathbb{C}$ consist of integer values of Γ -functions and $\zeta(s)$. *Proof.* For simplicity write $E_{\kappa}(z) = \sum_{m=0}^{\infty} c_{\kappa}(m)e(mz)$; then from equation (3) we get $$\delta_{\kappa}^{(q)} E_{\kappa}(z) = \sum_{m=0}^{\infty} c_{\kappa}(m) \Big(\sum_{k=0}^{q} P_{k,\kappa}^{(q)} (-4\pi y)^{-k} m^{q-k} \Big) e(mz).$$ For $E_{\mu}(x) = \sum_{n=0}^{\infty} c_{\mu}(n)e(nz)$ we then have $$(4) \qquad \delta_{\kappa}^{(q)} E_{\kappa}(z) \cdot \delta_{\mu}^{(r)} E_{\mu}(z)$$ $$= \Big(\sum_{m=0}^{\infty} c_{\kappa}(m) \Big(\sum_{k=0}^{q} P_{k,\kappa}^{(q)} (-4\pi y)^{-k} m^{q-k} \Big) e(mz) \Big)$$ $$\times \Big(\sum_{n=0}^{\infty} c_{\mu}(n) \Big(\sum_{j=0}^{r} P_{j,\mu}^{(r)} (-4\pi y)^{-j} n^{r-j} \Big) e(nz) \Big)$$ $$= \sum_{t=0}^{\infty} \sum_{s=0}^{q+r} \Big(\sum_{m+n=t} \Big(\sum_{j+k=s} c_{\kappa}(m) c_{\mu}(n) P_{k,\kappa}^{(q)} m^{q-k} P_{j,\mu}^{(r)} n^{r-j} \Big) (-4\pi y)^{-s} \Big) e(tz).$$ For simplicity again, put $$E_{\kappa+\mu+2q+2r-2l}(z) = \sum_{n=0}^{\infty} c(l,n)e(nz), \quad F(l,z) = \sum_{n=1}^{\infty} d(l,n)e(nz)$$ where we normalize F(l, z) so its first non-zero Fourier coefficient is 1. Then $$\delta_{\kappa+\mu+2q+2r-2l}^{(l)} E_{\kappa+\mu+2q+2r-2l}(z) = \sum_{t=0}^{\infty} c(l,t) \left(\sum_{j=0}^{l} p_j^l(t) y^{-j} \right) e(tz)$$ where $p_{j}^{l}(t) = P_{j,\kappa+\mu+2q+2r-2l}^{(l)}(-4\pi)^{-j}t^{l-j}$ and $$\delta_{\kappa+\mu+2q+2r-2l}^{(l)} F(l,z) = \sum_{t=1}^{\infty} d(l,t) \left(\sum_{j=0}^{l} p_j^l(t) y^{-j} \right) e(tz).$$ Taking the Fourier expansions and switching the order of summations yields $$\begin{split} \sum_{l=0}^{q+r} \delta_{\kappa+\mu+2q+2r-2l}^{(l)} &(\alpha_l E_{\kappa+\mu+2q+2r-2l}(z) + \beta_l F(l,z)) \\ &= \sum_{l=0}^{q+r} \left[\alpha_l \sum_{t=0}^{\infty} c(l,t) \left(\sum_{s=0}^{l} p_s^l(t) y^{-s} \right) e(tz) \right. \\ &+ \beta_l \sum_{t=1}^{\infty} d(l,t) \left(\sum_{s=0}^{l} p_s^l(t) y^{-s} \right) e(tz) \right] \\ &= \sum_{s=0}^{q+r} \left(\sum_{l=s}^{q+r} \alpha_l c(l,0) p_s^l(0) \right) y^{-s} \\ &+ \sum_{t=1}^{\infty} \left[\sum_{s=0}^{q+r} \left(\sum_{l=s}^{q+r} (\alpha_l c(l,t) p_s^l(t) + \beta_l d(l,t) p_s^l(t)) \right) y^{-s} \right] e(tz). \end{split}$$ From Lemma 1 we can set the above result equal to (4). Then for t = 0 we set the terms indexed by $(-4\pi y)^{-s}$ equal and get the equation (5) $$\sum_{j+k=s} (P_{k,\kappa}^{(q)} m^{q-k} P_{j,\mu}^{(r)} n^{r-j})|_{\substack{m=0\\n=0}} = \sum_{l=j+k}^{q+r} \alpha_l p_{j+k}^l(0).$$ Now, $$p_{j+k}^{j+k}(0) = (-4\pi)^{-j-k} \frac{\Gamma(\kappa + \mu + 2q + 2r - j - k)}{\Gamma(\kappa + \mu + 2q + 2r - 2j - 2k)} \neq 0$$ and $p_{i+k}^l(0) = 0$ for $l \neq j + k$. Therefore equation (5) becomes $$(P_{k,\kappa}^{(q)}m^{q-k})|_{m=0}(P_{j,\mu}^{(r)}n^{r-j})|_{n=0}=\alpha_{j+k}P_{j+k}^{j+k}(0).$$ But $(P_{k,\kappa}^{(q)}m^{q-k})|_{m=0} = 0$ for $k \neq q$ and $P_{q,\kappa}^{(q)} = \Gamma(\kappa + q)/\Gamma(\kappa) \neq 0$, and similarly for $(P_{j,\mu}^{(r)}n^{r-j})|_{n=0}$. This implies $\alpha_s = 0$ for s < q + r and also $$\alpha_{q+r} = \frac{(P_{k,\kappa}^{(q)} m^{q-k})|_{\substack{k=q \ m=0}} (P_{j,\mu}^{(r)} n^{r-j})|_{\substack{j=r \ n=0}}}{p_{q+r}^{q+r}(0)} = \frac{\Gamma(\kappa+q)\Gamma(\mu+r)\Gamma(\kappa+\mu)}{\Gamma(\kappa)\Gamma(\mu)\Gamma(\kappa+\mu+q+r)}.$$ For t=1 we set the $(-4\pi y)^{-s}e(z)$ terms equal. As $c_{\kappa}(1)=2/\zeta(1-\kappa)$ and $c_{\mu}(1)=2/\zeta(1-\mu)$, we get the equation (6) $$\sum_{j+k=s} \frac{2}{\zeta(1-\mu)} \left(P_{k,\kappa}^{(q)} m^{q-k} \right) |_{m=0} P_{j,\mu}^{(r)} + \frac{2}{\zeta(1-\kappa)} P_{k,\kappa}^{(q)} \left(P_{j,\mu}^{(r)} n^{r-j} \right) |_{n=0}$$ $$= \sum_{l=j+k}^{q+r} \alpha_l c(l,1) p_{j+k}^l(1) + \beta_l d(l,1) p_{j+k}^l(1).$$ In a similar way to what happened for (5), equation (6) gives us $$\sum_{l=s}^{q+r} \beta_l d(l,1) p_s^l(1) = -\alpha_{q+r} c(q+r,1) p_s^{q+r}(1)$$ $$+ \begin{cases} 0, & q > s, \\ \frac{2}{\zeta(1-\mu)} \left(P_{k,\kappa}^{(q)} m^{q-k} \right) \Big|_{\substack{k=q \\ m=0}} P_{s-q,\mu}^{(r)}, & r > s \ge q, \end{cases}$$ $$+ \begin{cases} \frac{2}{\zeta(1-\mu)} \left(P_{k,\kappa}^{(q)} m^{q-k} \right) \Big|_{\substack{k=q \\ m=0}} P_{s-q,\mu}^{(r)} \\ + \frac{2}{\zeta(1-\kappa)} \left(P_{s-r,\kappa}^{(q)} \left(P_{j,\mu}^{(r)} n^{r-j} \right) \right|_{\substack{j=r \\ n=0}}, & s \ge r, \end{cases}$$ and evaluating these, we get $$\sum_{l=s}^{q+r} \beta_l d(l,1) p_s^l(1) = -\alpha_{q+r} c(q+r,1) p_s^{q+r}(1)$$ $$+ \begin{cases} 0, & q > s, \\ \frac{2}{\zeta(1-\mu)} \binom{r}{s-q} \frac{\Gamma(\kappa+q) \Gamma(\mu+r)}{\Gamma(\kappa) \Gamma(\kappa+q+r-s)}, & r > s \ge q, \\ \left[\frac{2}{\zeta(1-\mu)} \binom{r}{s-q} + \frac{2}{\zeta(1-\kappa)} \binom{q}{s-r} \right] \\ \times \frac{\Gamma(\kappa+q) \Gamma(\mu+r)}{\Gamma(\kappa) \Gamma(\kappa+q+r-s)}, & s \ge r. \end{cases}$$ Substituting α_{q+r} and the equation above into equation (6) we can solve for the β_l . In order to illustrate an application of this result note that from Proposition 1 we have $$E_4(z) \cdot \delta_4 E_4(z) = \frac{1}{2} \delta_8 E_8(z).$$ Setting the Fourier coefficients of the $(-4\pi y)^{-1}e(nz)$ terms from both sides of this equation equal we get $$n\sigma_7(n) = n\sigma_3(n) + 240 \sum_{m=1}^{n-1} m\sigma_3(m)\sigma_3(n-m).$$ This is formula (7.5) from [4]. **3.** Proofs of the identities for Ramanujan's tau function. We give a proof for Theorem 1. The proofs for the other theorems are similar and we give appropriate indications for those. From Proposition 1 we have (7) $$\delta_4^{(q)} E_4(z) \cdot \delta_4^{(r)} E_4(z)$$ $$= \frac{\Gamma(4+q)\Gamma(4+r)\Gamma(8)}{\Gamma(4)^2 \Gamma(8+q+r)} \delta_8^{(q+r)} E_8(z)$$ $$+ \beta_0 \Phi_{8+2q+2r}(z) + \beta_1 \delta_{6+2q+2r}^{(1)} \Phi_{6+2q+2r}(z) + \dots + \beta_{q+r-2} \delta_{12}^{(q+r-2)} \Delta(z).$$ Lemma 2. (i) $$\delta_4 E_4(z) \cdot \delta_4 E_4(z) = \frac{2}{9} \delta_8^{(2)} E_8(z) - \frac{320}{3} \Delta(z),$$ (ii) $$E_4(z) \cdot \delta_4^{(2)} E_4(z) = \frac{5}{18} \delta_8^{(2)} E_8(z) + \frac{320}{3} \Delta(z),$$ (iii) $$\delta_4^{(2)} E_4(z) \cdot \delta_4 E_4(z) = \frac{1}{9} \delta_8^{(3)} E_8(z) - \frac{160}{3} \delta_{12} \Delta(z),$$ (iv) $$E_4(z) \cdot \delta_4^{(3)} E_4(z) = \frac{1}{6} \delta_8^{(3)} E_8(z) + 160 \delta_{12} \Delta(z).$$ *Proof.* From (7) we have $$\delta_4 E_4(z) \cdot \delta_4 E_4(z) = \frac{2}{9} \, \delta_8^{(2)} E_8(z) + \beta_0 \Delta(z),$$ $$E_4(z) \cdot \delta_4^{(2)} E_4(z) = \frac{5}{18} \, \delta_8^{(2)} E_8(z) + \beta_0 \Delta(z),$$ $$\delta_4^{(2)} E_4(z) \cdot \delta_4 E_4(z) = \frac{1}{9} \, \delta_8^{(3)} E_8(z) + \beta_1 \, \delta_{12} \, \Delta(z),$$ $$E_4(z) \cdot \delta_4^{(3)} E_4(z) = \frac{1}{6} \, \delta_8^{(3)} E_8(z) + \beta_1 \, \delta_{12} \, \Delta(z).$$ We only need to look at the holomorphic part of each equation in order to solve for the β_i 's. As $$\delta_4 E_4(z) = \sum_{n=0}^{\infty} c_4(n)(n+4(-4\pi y)^{-1})e(nz),$$ $$\delta_4^{(2)} E_4(z) = \sum_{n=0}^{\infty} c_4(n)(n^2+10(-4\pi y)^{-1}n+20(-4\pi y)^{-2})e(nz),$$ $$\delta_4^{(3)} E_4(z) = \sum_{n=0}^{\infty} c_4(n)(n^3+18(-4\pi y)^{-1}n^2 +90(-4\pi y)^{-2}n+120(-4\pi y)^{-3})e(nz),$$ $$\delta_8^{(2)} E_8(z) = \sum_{n=0}^{\infty} c_8(n)(n^2+18(-4\pi y)^{-1}n+72(-4\pi y)^{-2})e(nz),$$ $$\delta_8^{(3)} E_8(z) = \sum_{n=0}^{\infty} c_8(n)(n^3+30(-4\pi y)^{-1}n^2 +270(-4\pi y)^{-2}n+720(-4\pi y)^{-3})e(nz)$$ we can find explicitly the holomorphic part of $\delta_4^{(q)} E_4(z) \cdot \delta_4^{(r)} E_4(z)$. The e(tz) term of the holomorphic part of $\delta_4 E_4(z) \cdot \delta_4 E_4(z)$ is $$\sum_{m+n=t} mc_4(m)nc_4(n)$$ and for t = 1 this is 0. The e(tz) term for the holomorphic part of $\frac{2}{9} \delta_8^{(2)} E_8(z) + \beta_0 \Delta(z)$ is $\frac{2}{9} t^2 c_8(t) + \beta_0 \tau(n)$. Setting t = 1 we get $$\beta_0 = -\frac{2}{9}c_8(1) = -\frac{2}{9}\frac{2}{\zeta(-7)} = -\frac{320}{3}.$$ This gives (i). The e(tz) term for the holomorphic part of $E_4(z) \cdot \delta_4^{(2)} E_4(z)$ is $$\sum_{m+n=t} c_4(m) n^2 c_4(n).$$ The e(tz) term for the holomorphic part of $\frac{5}{18} \delta_8^{(2)} E_8(z) + \beta_0 \Delta(z)$ is $\frac{5}{18} t^2 c_8(t) + \beta_0 \Delta(z)$. Setting t = 1 we get $$\beta_0 = c_4(1) - \frac{5}{18}c_8(1) = \frac{2}{\zeta(-3)} - \frac{5}{18}\frac{2}{\zeta(-7)} = \frac{320}{3},$$ which gives (ii). The e(tz) term for the holomorphic part of $\delta_4^{(2)} E_4(z) \cdot \delta_4 E_4(z)$ is $$\sum_{m+n=t} m^2 c_4(m) n c_4(n).$$ This is 0 for t = 1. The e(tz) term for the holomorphic part of $\frac{1}{9} \delta_8^{(3)} E_8(z) + \beta_1 \delta_{12} \Delta(z)$ is $\frac{1}{9} t^3 c_8(t) + \beta_0 t \tau(t)$. Setting t = 1 we get $$\beta_1 = -\frac{1}{9} \frac{2}{\zeta(-7)} = -\frac{160}{3},$$ which gives (iii). The e(tz) term for the holomorphic part of $E_4(z) \cdot \delta_4^{(3)} E_4(z)$ is $$\sum_{m+n=t} c_4(m) n^3 c_4(n).$$ The e(tz) term for the holomorphic part of $\frac{1}{6} \delta_8^{(3)} E_8(z) + \beta_1 \delta_{12} \Delta(z)$ is $\frac{1}{6} t^3 c_8(t) + \beta_1 t \tau(t)$. Setting t = 1 we get $$\beta_1 = c_4(1) - \frac{1}{6}c_8(1) = \frac{2}{\zeta(-3)} - \frac{1}{6}\frac{2}{\zeta(-7)} = 160,$$ which gives (iv). Theorem 1 follows from Lemma 2 by uniqueness of Fourier coefficients. Looking at the e(nz) term of the holomorphic part of (i) gives us $$\sum_{m=0}^{n} mc_4(m)(n-m)c_4(n-m) = \frac{2}{9}n^2c_8(n) - \frac{320}{3}\tau(n)$$ SC $$\tau(n) = \frac{3}{320} \frac{2}{9} \frac{2}{\zeta(-7)} n^2 \sigma_7(n) - \frac{3}{320} \frac{4}{\zeta(-3)^2} \sum_{m=1}^{n-1} m(n-m) \sigma_3(m) \sigma_3(n-m)$$ $$= n^2 \sigma_7(n) - 540 \sum_{m=1}^{n-1} m(n-m) \sigma_3(m) \sigma_3(n-m),$$ which is (i) of Theorem 1. In a similar way we get (ii). Looking at the e(nz) term of the holomorphic part of (iii) gives us $$\sum_{m=0}^{n} m^{2} c_{4}(m)(n-m)c_{4}(n-m) = \frac{1}{9} n^{3} c_{8}(n) - \frac{160}{3} n\tau(n)$$ so $$\tau(n) = \frac{3}{160} \frac{1}{9} \frac{2}{\zeta(-7)} n^2 \sigma_7(n)$$ $$- \frac{3}{160} \frac{4}{\zeta(-3)^2} \frac{1}{n} \sum_{m=1}^{n-1} m^2 (n-m) \sigma_3(m) \sigma_3(n-m)$$ $$= n^2 \sigma_7(n) - \frac{1080}{n} \sum_{m=1}^{n-1} m^2 (n-m) \sigma_3(n) \sigma_3(n-m),$$ which is (iii) from Theorem 1. In a similar way we get (iv). In the same way we can establish the following lemmas. Lemma 3. (i) $$\delta_4 E_4(z) \cdot E_6(z) = \frac{2}{5} \delta_{10} E_{10}(z) + \frac{1728}{5} \Delta(z),$$ (ii) $$E_4(z) \cdot \delta_6 E_6(z) = \frac{3}{5} \delta_{10} E_{10}(z) - \frac{1728}{5} \Delta(z),$$ (iii) $$\delta_4^{(2)} E_4(z) \cdot E_6(z) = \frac{2}{11} \delta_{10}^{(2)} E_{10}(z) + 288 \delta_{12} \Delta(z),$$ (iv) $$\delta_4 E_4(z) \cdot \delta_6 E_6(z) = \frac{12}{55} \delta_{10}^{(2)} E_{10}(z) + \frac{288}{5} \delta_{12} \Delta(z),$$ (v) $$E_4(z) \cdot \delta_6^{(2)} E_6(z) = \frac{21}{55} \delta_{10}^{(2)} E_{10}(z) - \frac{2016}{5} \delta_{12} \Delta(z).$$ Lemma 4. $$\delta_6 E_6(z) \cdot E_6(z) = \frac{1}{2} \delta_{12} E_{12}(z) - \frac{381024}{691} \delta_{12} \Delta(z).$$ Lemma 5. (i) $$\delta_4 E_4(z) \cdot E_8(z) = \frac{1}{3} \delta_{12} E_{12}(z) + \frac{144000}{691} \delta_{12} \Delta(z),$$ (ii) $$E_4(z) \cdot \delta_8 E_8(z) = \frac{2}{3} \delta_{12} E_{12}(z) + \frac{288000}{691} \delta_{12} \Delta(z).$$ From these lemmas we get Theorems 2, 3, and 4 just as was done for Theorem 1. ## References - J. E. Beineke, Renormalization of certain integrals defining triple product L-functions, Pacific J. Math. 203 (2002), 89–114. - [2] D. Bump, Automorphic Forms and Representations, Cambridge Stud. Adv. Math. 55, Cambridge Univ. Press, 1997. - [3] P. B. Garrett, Holomorphic Hilbert Modular Forms, Wadsworth-Brooks-Cole, 1990. - [4] D. B. Lahiri, On Ramanujan's function $\tau(n)$ and the divisor function $\sigma_k(n)$. I, Bull. Calcutta Math. Soc. 38 (1946), 193–206. - [5] —, On Ramanujan's function $\tau(n)$ and the divisor function $\sigma_k(n)$. II, ibid. 39 (1947), 33–52. - [6] D. Lanphier, The trace of special values of L-functions attached to modular forms, submitted. - [7] H. Maass, Siegel Modular Forms and Dirichlet Series, Lecture Notes in Math. 216, Springer, 1971. - [8] T. Orloff, Special values and mixed weight triple products, Invent. Math. 90 (1987), 169–188. - [9] B. van der Pol, On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications. I, II, Indag. Math. 13 (1951), 261–271, 272–284. - [10] H. L. Resnikoff, On differential operators and automorphic forms, Trans. Amer. Math. Soc. 124 (1966), 334–346. - [11] G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), 783–804. - [12] —, Differential operators, holomorphic projection, and singular forms, Duke Math. J. 76 (1994), 141–173. Department of Mathematics Kansas State University Manhattan, KS 66506-2602, U.S.A. E-mail: lanphier@math.ksu.edu Received on 19.11.2002 (4411)