Upper bounds for the number of factors for a class of polynomials with rational coefficients

by

NICOLAE CIPRIAN BONCIOCAT (București)

1. Introduction. Some results related to Hilbert's irreducibility theorem have been provided in [1]–[4]. In [1] it is shown that for any relatively prime polynomials $f(X), g(X) \in \mathbb{Q}[X]$ with deg $f < \deg g$, the polynomial f(X)+pg(X) is irreducible over \mathbb{Q} for all but finitely many prime numbers p. In [2] this result has been improved by providing an explicit lower bound b depending on f and g, such that for all primes p > b, the polynomial f(X) + pg(X) is irreducible over \mathbb{Q} .

Let now $f, q \in \mathbb{Q}[X]$ be relatively prime polynomials with deg $f \leq \deg q$.

In the present paper we adapt the method in [2] in order to provide explicit upper bounds for the number of factors over \mathbb{Q} of the polynomials $n_1 f(X) + n_2 g(X)$, where n_1 and n_2 are nonzero integers with absolute value of n_2/n_1 greater than an explicit lower bound b. Here and henceforth, by the number of factors of a polynomial f we shall understand the number of irreducible factors of f counted with multiplicities.

We treat separately the cases $\deg f < \deg g$ and $\deg f = \deg g$.

In the first case we prove that for any nonzero integers n_1 and n_2 with absolute value of n_2/n_1 greater than an explicit lower bound b depending on f and g, the number of factors over \mathbb{Q} of the polynomial $n_1f(X) + n_2g(X)$ cannot exceed the total number of prime factors of n_2 counting multiplicities. We actually prove a slightly more general version of this result, in which the lower bound b and the upper bound for the number of factors depend on a suitable divisor of n_2 . As a corollary we find an improved form of the irreducibility criterion given in [2, Th. 1]. Sharper bounds are then obtained for polynomials with integral coefficients. We finally consider the case when the polynomial $n_1 f(X) + n_2 g(X)$ has no rational roots.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11C08.

This work was partially supported by the CERES Program of the Romanian Ministry of Education, Youth and Research, contract no. 39/2002 and by the EURROMMAT program ICA1-CT-2000-70022 of the European Commission.

N. C. Bonciocat

Similar results are provided in the case $\deg f = \deg g$.

For any polynomial $f \in \mathbb{Q}[X]$ of degree k, we write f(X) uniquely in the reduced form

$$f(X) = \frac{a_0 + a_1 X + \ldots + a_k X^k}{q},$$

where $q, a_0, \ldots, a_k \in \mathbb{Z}$, $a_k \neq 0$, $q \geq 1$, q as small as possible. Then for this reduced form we set

$$H(f) = \max\{|a_0|, |a_1|, \dots, |a_k|, q\}, \quad M(f) = \max\{|a_0|, |a_1|, \dots, |a_k|\}.$$

For any integer n with |n| > 1, we denote by $\Omega(n)$ the total number of prime factors of n counting multiplicities.

In the case deg $f < \deg g$ we prove the following results:

THEOREM 1. Let f(X), $g(X) \in \mathbb{Q}[X]$ be relatively prime polynomials with $k = \deg f < \deg g = m$. Then for any nonzero integers n_1 , n_2 and any positive divisor d of n_2 such that

$$\left|\frac{n_2}{n_1}\right| > \left(2 + \frac{1}{2^{k+1}d^m}\right)^{k+1} d^m H(f)^m H(g)^{m+1},$$

the polynomial $n_1f(X) + n_2g(X)$ has at most $\Omega(n_2/d)$ factors over \mathbb{Q} .

COROLLARY 1. For any relatively prime polynomials $f(X), g(X) \in \mathbb{Q}[X]$ with $k = \deg f < \deg g = m$, and any prime p satisfying

$$p > \left(2 + \frac{1}{2^{k+1}}\right)^{k+1} H(f)^m H(g)^{m+1},$$

the polynomial f(X) + pg(X) is irreducible over \mathbb{Q} .

COROLLARY 2 (of the proof of Theorem 1). Let $f(X), g(X) \in \mathbb{Z}[X]$ be relatively prime polynomials with $k = \deg f < \deg g = m$. Then for any nonzero integers n_1, n_2 and any positive divisor d of n_2 such that

$$\left|\frac{n_2}{n_1}\right| > \left(2 + \frac{1}{2^{k+1}d^m H(g)^{m+1}}\right)^{k+1} d^m H(f) H(g)^m,$$

the polynomial $n_1f(X) + n_2g(X)$ has at most $\Omega(n_2/d)$ nonconstant factors over \mathbb{Z} .

We also prove a result similar to Theorem 1 in the case when the polynomial $n_1 f(X) + n_2 g(X)$ has no rational roots:

THEOREM 2. Let $f(X), g(X) \in \mathbb{Q}[X]$ be relatively prime polynomials with $k = \deg f < \deg g = m$. Then for any nonzero integers n_1, n_2 and any positive divisor d of n_2 such that

$$\left|\frac{n_2}{n_1}\right| > \left(2 + \frac{1}{2^{k+1}d^{m/2}}\right)^{k+1} d^{m/2} H(f)^{m/2} H(g)^{1 + \max(m/2,k)},$$

if the polynomial $n_1 f(X) + n_2 g(X)$ has no rational roots, then it has at most $\Omega(n_2/d)$ factors over \mathbb{Q} .

COROLLARY 3 (of the proof of Theorem 2). Let f(X), $g(X) \in \mathbb{Z}[X]$ be relatively prime polynomials with $k = \deg f < \deg g = m$. Then for any nonzero integers n_1 , n_2 and any positive divisor d of n_2 such that

$$\left|\frac{n_2}{n_1}\right| > \left(2 + \frac{1}{2^{k+1}d^{m/2}H(g)^{1+\max(m/2,k)}}\right)^{k+1} d^{m/2}H(f)H(g)^{\max(m/2,k)},$$

if the polynomial $n_1 f(X) + n_2 g(X)$ has no rational roots, then it has at most $\Omega(n_2/d)$ nonconstant factors over \mathbb{Z} .

In the case deg $f = \deg g$ we prove the following results:

THEOREM 3. Let

$$f(X) = \frac{a_0 + a_1 X + \dots + a_m X^m}{q_1}, \quad g(X) = \frac{b_0 + b_1 X + \dots + b_m X^m}{q_2}$$

be relatively prime polynomials in $\mathbb{Q}[X]$ of degree m, written in reduced form. Let also n_1 , n_2 be nonzero integers, $h = (n_1 a_m q_2 + n_2 b_m q_1)/\gcd(q_1, q_2)$ and d a positive divisor of h. If

$$\left|\frac{n_2}{n_1}\right| > d^m H(f) H(g) \left(1 + H(f) H(g) + \frac{1}{2^m d^m}\right)^{m+1},$$

then the polynomial $n_1f(X) + n_2g(X)$ has at most $\Omega(h/d)$ factors over \mathbb{Q} .

COROLLARY 4. Let f(X) and g(X) be as in Theorem 3. If n_1 and n_2 are nonzero integers such that $|(n_1a_mq_2 + n_2b_mq_1)/\gcd(q_1, q_2)|$ is a prime and

$$\left|\frac{n_2}{n_1}\right| > H(f)H(g) \left(1 + H(f)H(g) + \frac{1}{2^m}\right)^{m+1},$$

then the polynomial $n_1f(X) + n_2g(X)$ is irreducible over \mathbb{Q} .

COROLLARY 5 (of the proof of Theorem 3). Let f(X), $g(X) \in \mathbb{Z}[X]$ be relatively prime polynomials of degree m, with leading coefficients a_m and b_m respectively. Let n_1 and n_2 be nonzero integers, $h = n_1 a_m + n_2 b_m$ and da positive divisor of h. If

$$\left|\frac{n_2}{n_1}\right| > d^m H(f) \left(1 + H(g) + \frac{1}{d^m [1 + H(g)]^m}\right)^{m+1},$$

then $n_1f(X) + n_2g(X)$ has at most $\Omega(h/d)$ nonconstant factors over \mathbb{Z} .

In particular, we have

COROLLARY 6. Let $f(X), g(X) \in \mathbb{Z}[X]$ be relatively prime polynomials of degree m, with leading coefficients a_m and b_m respectively. If n_1 and n_2 are nonzero integers such that $|n_1a_m + n_2b_m|$ is a prime number and

$$\left|\frac{n_2}{n_1}\right| > H(f) \left(1 + H(g) + \frac{1}{[1 + H(g)]^m}\right)^{m+1}$$

,

then the polynomial $n_1 f(X) + n_2 g(X)$ is irreducible over \mathbb{Z} .

The proofs of these results are presented in Sections 2 and 3 below.

2. The case $\deg f < \deg g$

2.1. Proof of Theorem 1. Let

$$f(X) = \frac{a_0 + a_1 X + \ldots + a_k X^k}{q_1}$$
 and $g(X) = \frac{b_0 + b_1 X + \ldots + b_m X^m}{q_2}$

be two relatively prime polynomials in $\mathbb{Q}[X]$ written in reduced form, with $k = \deg f < \deg g = m$, and let also n_1 , n_2 and d be as in the statement of the theorem. Our assumption on n_1 , n_2 and d shows that $|n_2| > d$, so $\Omega(n_2/d)$ makes sense. We may obviously assume $\Omega(n_2/d) < m$.

We write g(X) in the following form:

$$g(X) = \frac{b_0 + b_1 X + \ldots + b_m X^m}{q_2} = \frac{\overline{b}\overline{g}(X)}{q_2}$$

where $\overline{b} \in \mathbb{Z}$ and $\overline{g}(X) \in \mathbb{Z}[X], \overline{g}(X)$ primitive. Then we write

$$n_1 f(X) + n_2 g(X) = \frac{a}{q} F(X),$$

with gcd(a,q) = 1 and $F(X) \in \mathbb{Z}[X]$, F(X) primitive. Assume now that $n_1f(X) + n_2g(X)$ has more than $\Omega(n_2/d)$ factors. Then by Gauss's Lemma, F(X) decomposes as $F(X) = F_1(X) \dots F_s(X)$ with $\Omega(n_2/d) < s \leq m$ and $F_1(X), \dots, F_s(X) \in \mathbb{Z}[X], F_1, \dots, F_s$ primitive with deg $F_1, \dots, deg F_s \geq 1$. Let $t_1, \dots, t_s \in \mathbb{Z}$ be the leading coefficients of F_1, \dots, F_s , respectively. Then one finds

$$t_1 \dots t_s = \frac{n_2 q b_m}{a q_2}.$$

If $q/q_2 = \beta/\gamma$ with $gcd(\beta, \gamma) = 1$, then β divides q_1 , since q divides q_1q_2 . Therefore we have $a\gamma t_1 \dots t_s = n_2\beta b_m$, and since $\Omega(n_2/d) < s$, at least one of the t_i 's, say t_1 , divides $d\beta b_m$. So we have

$$(1) |t_1| \le dq_1 |b_m|.$$

Now we are going to estimate the resultant $R(\overline{g}, F_1)$. Since \overline{g} and F_1 are relatively prime, $R(\overline{g}, F_1)$ must be a nonzero integer, so in particular

$$(2) |R(\overline{g}, F_1)| \ge 1.$$

If we decompose F_1 , say $F_1(X) = t_1(X - \theta_1) \dots (X - \theta_r)$, then (3) $|R(\overline{g}, F_1)| = |t_1|^m \prod_{1 \le j \le r} |\overline{g}(\theta_j)|.$

Since each root θ_i of F_1 is also a root of F(X), we have

(4)
$$g(\theta_j) = -\frac{n_1 f(\theta_j)}{n_2}$$

and moreover, since f and g are relatively prime, $f(\theta_j) \neq 0$ and $g(\theta_j) \neq 0$ for any $j \in \{1, \ldots, r\}$. The definition of \overline{g} shows that

(5)
$$|\overline{g}(\theta_j)| \le q_2 |g(\theta_j)|$$

Using now (3)–(5) we obtain

(6)
$$|R(\overline{g}, F_1)| \le |t_1|^m \frac{q_2^r |n_1|^r}{|n_2|^r} \prod_{1 \le j \le r} |f(\theta_j)|.$$

We now proceed to find an upper bound for $|f(\theta_j)|$. The equality $n_1 f(\theta_j) + n_2 g(\theta_j) = 0$ implies

$$\left(\frac{n_1a_0}{q_1} + \frac{n_2b_0}{q_2}\right) + \ldots + \left(\frac{n_1a_k}{q_1} + \frac{n_2b_k}{q_2}\right)\theta_j^k + \frac{n_2b_{k+1}}{q_2}\theta_j^{k+1} + \ldots + \frac{n_2b_m}{q_2}\theta_j^m = 0,$$

from which we deduce that

$$\frac{|n_2 b_m|}{q_2} |\theta_j|^m \le \left(\frac{|n_1 a_0|}{q_1} + \frac{|n_2 b_0|}{q_2}\right) + \dots + \left(\frac{|n_1 a_k|}{q_1} + \frac{|n_2 b_k|}{q_2}\right) |\theta_j|^k \\ + \frac{|n_2 b_{k+1}|}{q_2} |\theta_j|^{k+1} + \dots + \frac{|n_2 b_{m-1}|}{q_2} |\theta_j|^{m-1} \\ \le \left(\frac{|n_1|M(f)}{q_1} + \frac{|n_2|M(g)}{q_2}\right) (1 + |\theta_j| + \dots + |\theta_j|^{m-1}).$$

Therefore, either $|\theta_j| \leq 1$, or if not, then

$$\frac{|n_2 b_m|}{q_2} |\theta_j|^m < \left(\frac{|n_1|M(f)|}{q_1} + \frac{|n_2|M(g)|}{q_2}\right) \frac{|\theta_j|^m}{|\theta_j| - 1},$$

so in both cases we have

(7)
$$|\theta_j| < 1 + \frac{1}{|b_m|} \left(\frac{|n_1|q_2}{|n_2|q_1} M(f) + M(g) \right).$$

Now, since obviously

$$|f(\theta_j)| \le \frac{M(f)}{q_1} \left(1 + |\theta_j| + \ldots + |\theta_j|^k\right),$$

inequality (7) yields

(8)
$$|f(\theta_j)| < \frac{M(f)}{q_1} \cdot \frac{\left[1 + \frac{1}{|b_m|} \left(\frac{|n_1|q_2}{|n_2|q_1} M(f) + M(g)\right)\right]^{k+1} - 1}{\frac{1}{|b_m|} \left(\frac{|n_1|q_2}{|n_2|q_1} M(f) + M(g)\right)}.$$

Instead of (8) it will be more convenient to consider

(9)
$$|f(\theta_j)| < \frac{|b_m|M(f)|}{q_1} \cdot \frac{\left[1 + \frac{1}{|b_m|} \left(\frac{|n_1|q_2}{|n_2|q_1|} M(f) + M(g)\right)\right]^{k+1}}{\frac{|n_1|q_2}{|n_2|q_1|} M(f) + M(g)}.$$

Using now (6) and (9), we obtain

$$|R(\overline{g}, F_1)| < |t_1|^m \left[\frac{|n_1|q_2}{|n_2|q_1} M(f) \frac{|b_m| \left[1 + \frac{1}{|b_m|} \left(\frac{|n_1|q_2}{|n_2|q_1} M(f) + M(g)\right)\right]^{k+1}}{\frac{|n_1|q_2}{|n_2|q_1} M(f) + M(g)} \right]^r.$$

Since $r \ge 1$, all we need to prove is that our assumption on n_1 , n_2 and d forces

$$|t_1|^m \cdot \frac{|b_m| \left[1 + \frac{1}{|b_m|} \left(\frac{|n_1|q_2}{|n_2|q_1} M(f) + M(g)\right)\right]^{k+1}}{1 + \frac{|n_2|q_1 M(g)}{|n_1|q_2 M(f)}} < 1.$$

In view of (1), it is sufficient to prove that

$$d^{m}q_{1}^{m}|b_{m}|^{m+1}\left[1+\frac{1}{|b_{m}|}\left(\frac{|n_{1}|q_{2}}{|n_{2}|q_{1}}M(f)+M(g)\right)\right]^{k+1} < 1+\frac{|n_{2}|q_{1}M(g)}{|n_{1}|q_{2}M(f)},$$

which is equivalent to

(10)
$$d^m q_1^m |b_m|^{m-k} \left(|b_m| + M(g) + \frac{|n_1|q_2}{|n_2|q_1} M(f) \right)^{k+1} < 1 + \frac{|n_2|q_1 M(g)}{|n_1|q_2 M(f)}.$$

Now since $|b_m| \leq M(g)$, it suffices to prove that

$$d^{m}q_{1}^{m}M(g)^{m+1}\left(2+\frac{|n_{1}|q_{2}M(f)}{|n_{2}|q_{1}M(g)}\right)^{k+1} < \frac{|n_{2}|q_{1}M(g)}{|n_{1}|q_{2}M(f)},$$

or equivalently,

(11)
$$\left|\frac{n_2}{n_1}\right| > d^m q_1^{m-1} q_2 M(f) M(g)^m \left(2 + \frac{q_2 M(f)}{\left|\frac{n_2}{n_1}\right| q_1 M(g)}\right)^{k+1}$$

We search for a suitable δ such that if $|n_2/n_1| > \delta \cdot d^m q_1^{m-1} q_2 M(f) M(g)^m$, then $|n_2/n_1|$ also satisfies (11). So it is sufficient to find a δ satisfying

$$\delta > \left(2 + \frac{1}{\delta \cdot d^m q_1^m M(g)^{m+1}}\right)^{k+1}.$$

Denote $d^m q_1^m M(g)^{m+1}$ by w. A suitable candidate for δ is $\left(2 + \frac{1}{2^{k+1}w}\right)^{k+1}$, since

$$\left(2 + \frac{1}{2^{k+1}w}\right)^{k+1} > \left(2 + \frac{1}{\left(2 + \frac{1}{2^{k+1}w}\right)^{k+1}w}\right)^{k+1}$$

.

180

This proves that for

(12)
$$\left|\frac{n_2}{n_1}\right| > \left(2 + \frac{1}{2^{k+1}d^m q_1^m M(g)^{m+1}}\right)^{k+1} d^m q_1^{m-1} q_2 M(f) M(g)^m$$

we have $|R(\overline{g}, F_1)| < 1$, which contradicts (2). The desired conclusion follows now by noting that $q_1^{m-1}M(f) \leq H(f)^m$ and $q_2M(g)^m \leq H(g)^{m+1}$. This completes the proof of the theorem.

REMARKS. 1. The inequality (12) leads to an improved version of Theorem 1. If $|b_m| < M(g)$ it might be useful to directly test inequality (10). Further improvements can be done, for instance, by considering the upper bound for $|f(\theta_j)|$ given by (8), instead of (9), but they lead to more complicated assumptions on n_1 , n_2 and d.

2. In [2, Th. 1], the following result has been provided:

THEOREM. For any relatively prime polynomials $f(X), g(X) \in \mathbb{Q}[X]$ with deg $f < \deg g = m$, and any prime $p > 2m^m H(f)^{m+1} H(g)^{3m}$, the polynomial f(X) + pg(X) is irreducible over \mathbb{Q} .

For m > 1, Corollary 1 provides a sharper bound, since

$$\left(2+\frac{1}{2^m}\right)^m H(f)^m H(g)^{m+1} < 2m^m H(f)^{m+1} H(g)^{3m}.$$

3. Corollary 2 follows immediately by (12).

A result similar to Corollary 2 is the following:

PROPOSITION 1. Let $f(X) = a_0 + a_1X + \ldots + a_kX^k$ and $g(X) = b_0 + b_1X + \ldots + b_mX^m \in \mathbb{Z}[X]$ be two relatively prime polynomials with $k = \deg f < \deg g = m$. If n_1, n_2 are nonzero integers and d is a positive divisor of n_2b_m such that

$$\left|\frac{n_2}{n_1}\right| > \left(2 + \frac{1}{2^{k+1}d^m H(g)^{k+1}}\right)^{k+1} d^m H(f) H(g)^k,$$

then $n_1f(X) + n_2g(X)$ has at most $\Omega(n_2b_m/d)$ nonconstant factors over \mathbb{Z} .

Sketch of the proof. The proof goes as that of Theorem 1, except that $q_1 = q_2 = 1$ and instead of (1) we find $|t_1| \leq d$. Indeed, since we have $at_1 \ldots t_s = n_2 b_m$ with $\Omega(n_2 b_m/d) < s \leq m$, at least one of the t_i 's divides d. Thus, instead of (10) we have to prove that

$$\frac{d^m}{|b_m|^k} \left(|b_m| + H(g) + \frac{|n_1|}{|n_2|} H(f) \right)^{k+1} < 1 + \frac{|n_2|H(g)}{|n_1|H(f)}.$$

Since $|b_m| \leq H(g)$ it is sufficient to prove that

(13)
$$\left|\frac{n_2}{n_1}\right| > d^m H(f) H(g)^k \left(2 + \frac{H(f)}{\left|\frac{n_2}{n_1}\right| H(g)}\right)^{k+1}.$$

Computations as in Theorem 1 show that inequality (13) is satisfied if $|n_2/n_1| > \delta \cdot d^m H(f) H(g)^k$ with $\delta = (2 + 2^{-k-1} d^{-m} H(g)^{-k-1})^{k+1}$.

2.2. Proof of Theorem 2. In this case we may obviously assume $m \ge 2$, and since the degree r of the polynomial F_1 is at least 2, it is sufficient instead of (10) to prove that

$$d^{m}q_{1}^{m}|b_{m}|^{m-2k}\left(|b_{m}|+M(g)+\frac{|n_{1}|q_{2}}{|n_{2}|q_{1}}M(f)\right)^{2(k+1)} < \left(1+\frac{|n_{2}|q_{1}M(g)}{|n_{1}|q_{2}M(f)}\right)^{2},$$

or even more, that

$$d^{m/2}q_1^{m/2}|b_m|^{m/2-k} \left(|b_m| + M(g) + \frac{|n_1|q_2}{|n_2|q_1}M(f)\right)^{k+1} < \frac{|n_2|q_1M(g)|}{|n_1|q_2M(f)|}$$

Now, since $|b_m| \leq M(g)$ it suffices to prove that

$$\left|\frac{n_2}{n_1}\right| > d^{m/2} q_1^{m/2-1} q_2 M(f) M(g)^{m/2} \left(2 + \frac{q_2 M(f)}{\left|\frac{n_2}{n_1}\right| q_1 M(g)}\right)^{k+1},$$

if $m/2 \ge k$, and

$$\left|\frac{n_2}{n_1}\right| > d^{m/2} q_1^{m/2-1} q_2 M(f) M(g)^k \left(2 + \frac{q_2 M(f)}{\left|\frac{n_2}{n_1}\right| q_1 M(g)}\right)^{k+1},$$

if m/2 < k. So in both cases it is sufficient to prove that

$$\left|\frac{n_2}{n_1}\right| > d^{m/2} q_1^{m/2-1} q_2 M(f) M(g)^{\max(m/2,k)} \left(2 + \frac{q_2 M(f)}{\left|\frac{n_2}{n_1}\right| q_1 M(g)}\right)^{k+1}$$

Let $w = 2^{k+1} d^{m/2} q_1^{m/2} M(g)^{1+\max(m/2,k)}$. It is straightforward to verify that the last inequality holds for

(14)
$$\left|\frac{n_2}{n_1}\right| > \left(2 + \frac{1}{w}\right)^{k+1} d^{m/2} q_1^{m/2-1} q_2 M(f) M(g)^{\max(m/2,k)},$$

which completes the proof. \blacksquare

Corollary 3 follows immediately from (14).

3. The case $\deg f = \deg g$

3.1. Proof of Theorem 3. We use slightly different arguments than those used in the proof of Theorem 1. First of all, in order to see that $\Omega(h/d)$ makes sense, we have to prove that

$$(15) |h| > d.$$

The definition of h shows that

(16)
$$|h| \ge |n_2| - |n_1|q_2 M(f) > 0$$

Indeed, if $n_1 a_m$ and $n_2 b_m$ have the same sign, we find $|h| \ge |n_2| + 1$. Our assumption that

(17)
$$\left|\frac{n_2}{n_1}\right| > d^m H(f) H(g) \left(1 + H(f) H(g) + \frac{1}{2^m d^m}\right)^{m+1}$$

implies $|n_2| > |n_1|q_2M(f)$, so we obviously have $|n_2b_m|q_1 > |n_1a_m|q_2$. Thus, if n_1a_m and n_2b_m have opposite signs, we find

$$|h| = \frac{|n_2 b_m|q_1 - |n_1 a_m|q_2}{\gcd(q_1, q_2)} \ge |n_2| - |n_1|q_2 M(f) > 0.$$

Dividing now by d in (16) and using again (17), we find

$$\frac{|h|}{d} > |n_1| \cdot d^{m-1}H(f)H(g) \left[\left(1 + H(f)H(g) + \frac{1}{2^m d^m} \right)^{m+1} - 1 \right] > 1,$$

which proves (15).

Now we may obviously assume $\Omega(h/d) < m$. We write again g(X) in the form

$$g(X) = \frac{b_0 + b_1 X + \ldots + b_m X^m}{q_2} = \frac{b\overline{g}(X)}{q_2},$$

where $\overline{b} \in \mathbb{Z}$ and $\overline{g}(X) \in \mathbb{Z}[X]$, $\overline{g}(X)$ primitive. Then we write

$$n_1 f(X) + n_2 g(X) = \frac{a}{q} F(X)$$

with gcd(a,q) = 1 and $F(X) \in \mathbb{Z}[X]$, F(X) primitive.

Assume now that $n_1f(X) + n_2g(X)$ has more than $\Omega(h/d)$ factors. Then by the Gauss Lemma, F(X) will decompose as $F(X) = F_1(X) \dots F_s(X)$ with $\Omega(h/d) < s \leq m$ and $F_1(X), \dots, F_s(X) \in \mathbb{Z}[X], F_1, \dots, F_s$ primitive with deg $F_1, \dots, \deg F_s \geq 1$. Let $t_1, \dots, t_s \in \mathbb{Z}$ be the leading coefficients of F_1, \dots, F_s , respectively. Let also $\overline{q}_1 = q_1/\gcd(q_1, q_2), \overline{q}_2 = q_2/\gcd(q_1, q_2)$ and denote $n_1a_i\overline{q}_2 + n_2b_i\overline{q}_1$ by h_i for all $i \in \{0, \dots, m-1\}$. Since

$$\frac{h_0 + h_1 X + \ldots + h_{m-1} X^{m-1} + h X^m}{\operatorname{lcm}(q_1, q_2)} = \frac{a}{q} F_1(X) \ldots F_s(X),$$

we see that a divides h and q divides $lcm(q_1, q_2)$. On the other hand, by comparing the leading coefficients we find

(18)
$$h = t_1 \dots t_s a \cdot \frac{\operatorname{lcm}(q_1, q_2)}{q}$$

Now, since $(\operatorname{lcm}(q_1, q_2))/q$ is an integer and $\Omega(h/d) < s$, (18) shows that at least one of the t_i 's, say t_1 , divides d. So we have

$$(19) |t_1| \le d.$$

Again we proceed to estimate the resultant $R(\overline{g}, F_1)$. As in Theorem 1, since \overline{g} and F_1 are relatively prime, we must have $|R(\overline{g}, F_1)| \ge 1$. If F_1 decomposes

as $F_1(X) = t_1(X - \theta_1) \dots (X - \theta_r)$, we have $|R(\overline{g}, F_1)| = |t_1|^m \prod_{1 \le j \le r} |\overline{g}(\theta_j)|.$

Using (19) together with $|\overline{g}(\theta_j)| \leq q_2 |g(\theta_j)|$ and $g(\theta_j) = -n_1 f(\theta_j)/n_2$, we find

(20)
$$|R(\overline{g}, F_1)| \le d^m \, \frac{q_2^r |n_1|^r}{|n_2|^r} \prod_{1 \le j \le r} |f(\theta_j)|.$$

We now proceed to find the upper bound for $|f(\theta_j)|$. The equality $n_1 f(\theta_j) + n_2 g(\theta_j) = 0$ implies

$$\left(\frac{n_1a_0}{q_1} + \frac{n_2b_0}{q_2}\right) + \ldots + \left(\frac{n_1a_{m-1}}{q_1} + \frac{n_2b_{m-1}}{q_2}\right)\theta_j^{m-1} + \frac{h}{\operatorname{lcm}(q_1, q_2)}\theta_j^m = 0.$$

Since (16) allows us to divide by |h|, we further have

$$|\theta_j|^m \le \frac{\operatorname{lcm}(q_1, q_2)}{|h|} \left(\frac{|n_1|M(f)|}{q_1} + \frac{|n_2|M(g)|}{q_2} \right) (1 + |\theta_j| + \ldots + |\theta_j|^{m-1}).$$

Therefore, either $|\theta_j| \leq 1$, or if not, then

$$|\theta_j|^m < \frac{q_1 q_2}{|h|} \left(\frac{|n_1|M(f)|}{q_1} + \frac{|n_2|M(g)|}{q_2} \right) \frac{|\theta_j|^m}{|\theta_j| - 1}.$$

So in both cases we have

$$|\theta_j| < 1 + \frac{q_1 q_2}{|h|} \left(\frac{|n_1| M(f)}{q_1} + \frac{|n_2| M(g)}{q_2} \right),$$

and since obviously

$$|f(\theta_j)| \leq \frac{M(f)}{q_1} \left(1 + |\theta_j| + \ldots + |\theta_j|^m\right),$$

we obtain the following upper bound for $|f(\theta_j)|$:

$$|f(\theta_j)| < \frac{M(f)}{q_1} \cdot \frac{\left[1 + \frac{q_1q_2}{|h|} \left(\frac{|n_1|M(f)}{q_1} + \frac{|n_2|M(g)}{q_2}\right)\right]^{m+1} - 1}{\frac{q_1q_2}{|h|} \left(\frac{|n_1|M(f)}{q_1} + \frac{|n_2|M(g)}{q_2}\right)}.$$

It is more convenient to use

$$|f(\theta_j)| < |h|M(f) \frac{\left[1 + \frac{q_1q_2}{|h|} \left(\frac{|n_1|M(f)}{q_1} + \frac{|n_2|M(g)}{q_2}\right)\right]^{m+1}}{q_1[|n_1|q_2M(f) + |n_2|q_1M(g)]},$$

which further gives

$$|f(\theta_j)| < M(f) \left[1 + \frac{q_1 q_2}{|h|} \left(\frac{|n_1| M(f)}{q_1} + \frac{|n_2| M(g)}{q_2} \right) \right]^{m+1},$$

since $|h| \leq |n_1|q_2M(f) + |n_2|q_1M(g)$ and $q_1 \geq 1$. Therefore by (16) we find

$$|f(\theta_j)| < M(f) \left(1 + \frac{|n_1|q_2 M(f) + |n_2|q_1 M(g)|}{|n_2| - |n_1|q_2 M(f)|} \right)^{m+1},$$

184

that is,

(21)
$$|f(\theta_j)| < |n_2|^{m+1} M(f) \left(\frac{1+q_1 M(g)}{|n_2|-|n_1|q_2 M(f)}\right)^{m+1}$$

Together with (20), (21) yields

(22)
$$|R(\overline{g}, F_1)| < d^m \left[q_2 |n_1| \cdot |n_2|^m M(f) \left(\frac{1 + q_1 M(g)}{|n_2| - |n_1| q_2 M(f)} \right)^{m+1} \right]^r.$$

Let us denote $d^m q_2 |n_1| M(f) [1 + q_1 M(g)]^{m+1}$ by α . We shall prove that (23) $[|n_2| - |n_1| q_2 M(f)]^{m+1} > \alpha |n_2|^m$,

which by (22) will contradict the fact that $|R(\overline{g}, F_1)| \ge 1$.

We search for a suitable $\delta > 1$ such that $|n_2| - |n_1|q_2M(f) > |n_2|/\delta$, which is equivalent to

(24)
$$|n_2| > |n_1|q_2 M(f) \frac{\delta}{\delta - 1}.$$

For such a δ we then require

$$\left(\frac{|n_2|}{\delta}\right)^{m+1} > \alpha |n_2|^m,$$

or equivalently

$$(25) |n_2| > \alpha \delta^{m+1}$$

So if we find a $\delta > 1$ such that $\alpha \delta^{m+1} > |n_1|q_2 M(f)\delta/(\delta-1)$, then any n_2 satisfying (25) will also satisfy (23). Such a δ should verify

$$(\delta - 1)\delta^m > \frac{1}{d^m [1 + q_1 M(g)]^{m+1}}.$$

Denote $d^m [1 + q_1 M(g)]^{m+1}$ by w. One candidate for δ is 1 + 1/w, since obviously

$$\frac{1}{w}\left(1+\frac{1}{w}\right)^m > \frac{1}{w}$$

So we have proved that for

(26)
$$|n_2| > |n_1| d^m q_2 M(f) \left(1 + q_1 M(g) + \frac{1}{d^m [1 + q_1 M(g)]^m} \right)^{m+1}$$

we have $|R(\overline{g}, F_1)| < 1$, a contradiction. The proof finishes by noting that $q_2M(f) \leq H(f)H(g)$ and $q_1M(g) \leq H(f)H(g)$.

REMARKS. 1. Since the sharper bound given by (26) still implies (15) and (16), one can use (26) to rephrase Theorem 2 in terms of q_1 , q_2 , M(f) and M(g) instead of H(f) and H(g).

2. Corollary 5 follows immediately from (26).

3. As in the preceding section, we may also consider the case when the polynomial $n_1 f(X) + n_2 g(X)$ has no rational roots. In that case, we see from

N. C. Bonciocat

(22) that the same conclusion as in Theorem 3 holds, provided that (26) is replaced by

$$\left|\frac{n_2}{n_1}\right| > d^{m/2}q_2 M(f) \left(1 + q_1 M(g) + \frac{1}{d^{m/2} [1 + q_1 M(g)]^m}\right)^{m+1}$$

3.2. Proof of Corollary 6. In this case all that remains is to show that our assumptions force $n_1 f(X) + n_2 g(X)$ to be primitive.

Let $\lambda = H(f)(1 + H(g) + [1 + H(g)]^{-m})^{m+1}$. Since $|n_1a_m + n_2b_m| = p$, we have either $n_2 = (p - n_1a_m)/b_m$, or $n_2 = -(p + n_1a_m)/b_m$.

In the first case we must have $p > n_1 a_m$, otherwise our assumption that $|n_2| > \lambda |n_1|$ would imply $p < n_1 a_m - \lambda |n_1 b_m| < 0$, a contradiction. Thus $|n_2| > \lambda |n_1|$ becomes $(p - n_1 a_m)/|b_m| > \lambda |n_1|$, which further gives

(27)
$$p > |n_1| \cdot [\lambda - H(f)].$$

Assume now that p divides $n_1a_i + \frac{p-n_1a_m}{b_m}b_i$ for all $i \in \{0, \ldots, m-1\}$, that is, p divides $n_1(a_ib_m - a_mb_i)$ for all $i \in \{0, \ldots, m-1\}$. Since

$$|n_1(a_i b_m - a_m b_i)| \le 2|n_1|H(f)H(g) < |n_1| \cdot [\lambda - H(f)],$$

the inequality (27) forces $a_i b_m = a_m b_i$ for all $i \in \{0, \ldots, m-1\}$, that is, $b_m f(X) = a_m g(X)$, a contradiction.

Similarly, in the second case we must have $p > -n_1 a_m$, which also implies (27). Assuming now that p divides $n_1 a_i - \frac{p+n_1 a_m}{b_m} b_i$ for all $i \in \{0, \ldots, m-1\}$, we will get the same contradiction, which completes the proof.

One may improve Corollary 6 as follows. Let $f(X) = a_0 + \ldots + a_m X^m$ and $g(X) = b_0 + \ldots + b_m X^m \in \mathbb{Z}[X]$ be two relatively prime polynomials of degree m. Assume n_1 and n_2 are nonzero integers such that $n_1 a_m + n_2 b_m$ is a prime number p and let $h(X) = n_1 f(X) + n_2 g(X)$. For any integer jsuch that $n_1 a_m + j b_m \neq 0$, the polynomials $n_1 f(X) + j g(X)$ and g(X) are relatively prime of degree m, with leading coefficients $n_1 a_m + j b_m$ and b_m respectively. We obviously have $n_1 a_m + j b_m + (n_2 - j) b_m = p$ and

$$h(X) = n_1 f(X) + jg(X) + (n_2 - j)g(X).$$

Let $K(g) = (1 + H(g) + [1 + H(g)]^{-m})^{m+1}$. Then by Corollary 6, h(X) is irreducible over \mathbb{Z} if $|n_2 - j| > H(n_1f + jg)K(g)$, or equivalently

$$|p - n_1 a_m - j b_m| > H(n_1 f + jg) \cdot |b_m| \cdot K(g).$$

If $p \leq n_1 a_m + j b_m$, we find $p < n_1 a_m + j b_m - H(n_1 f + j g) \cdot |b_m| \cdot K(g) < 0$, a contradiction. Therefore we conclude that h(X) is irreducible over \mathbb{Z} for primes p satisfying

$$p > \min_{j \neq -n_1 a_m/b_m} \{ n_1 a_m + j b_m + H(n_1 f + j g) \cdot |b_m| \cdot K(g) \}.$$

186

Similarly, if $n_1 a_m + n_2 b_m = -p$, then h(X) is irreducible over \mathbb{Z} for $p > \min_{j \neq -n_1 a_m/b_m} \{-n_1 a_m - j b_m + H(n_1 f + j g) \cdot |b_m| \cdot K(g)\}.$

Acknowledgements. The author is grateful to Marian Vâjâitu, Mihai Cipu, Alexandru Zaharescu for useful discussions, and to an anonymous referee for valuable suggestions.

References

- M. Cavachi, On a special case of Hilbert's irreducibility theorem, J. Number Theory 82 (2000), 96–99.
- [2] M. Cavachi, M. Vâjâitu and A. Zaharescu, A class of irreducible polynomials, J. Ramanujan Math. Soc. 17 (2002), 161–172.
- [3] M. Fried, On Hilbert's irreducibility theorem, J. Number Theory 6 (1974), 211–231.
- [4] K. Langmann, Der Hilbertsche Irreduzibilitätssatz und Primzahlfragen, J. Reine Angew. Math. 413 (1991), 213–219.

Institute of Mathematics of the Romanian Academy P.O. Box 1-764 RO-70700 Bucureşti, Romania E-mail: Nicolae.Bonciocat@imar.ro

> Received on 16.4.2003 and in revised form on 29.12.2003

(4509)