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Upper bounds for the number of factors for a class
of polynomials with rational coefficients

by

Nicolae Ciprian Bonciocat (Bucureşti)

1. Introduction. Some results related to Hilbert’s irreducibility theo-
rem have been provided in [1]–[4]. In [1] it is shown that for any relatively
prime polynomials f(X), g(X) ∈ Q[X] with deg f < deg g, the polynomial
f(X)+pg(X) is irreducible over Q for all but finitely many prime numbers p.
In [2] this result has been improved by providing an explicit lower bound
b depending on f and g, such that for all primes p > b, the polynomial
f(X) + pg(X) is irreducible over Q.

Let now f, g ∈ Q[X] be relatively prime polynomials with deg f ≤ deg g.
In the present paper we adapt the method in [2] in order to provide

explicit upper bounds for the number of factors over Q of the polynomials
n1f(X)+n2g(X), where n1 and n2 are nonzero integers with absolute value
of n2/n1 greater than an explicit lower bound b. Here and henceforth, by
the number of factors of a polynomial f we shall understand the number of
irreducible factors of f counted with multiplicities.

We treat separately the cases deg f < deg g and deg f = deg g.
In the first case we prove that for any nonzero integers n1 and n2 with

absolute value of n2/n1 greater than an explicit lower bound b depending on
f and g, the number of factors over Q of the polynomial n1f(X) + n2g(X)
cannot exceed the total number of prime factors of n2 counting multiplicities.
We actually prove a slightly more general version of this result, in which the
lower bound b and the upper bound for the number of factors depend on
a suitable divisor of n2. As a corollary we find an improved form of the
irreducibility criterion given in [2, Th. 1]. Sharper bounds are then obtained
for polynomials with integral coefficients. We finally consider the case when
the polynomial n1f(X) + n2g(X) has no rational roots.
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Similar results are provided in the case deg f = deg g.
For any polynomial f ∈ Q[X] of degree k, we write f(X) uniquely in the

reduced form

f(X) =
a0 + a1X + . . .+ akX

k

q
,

where q, a0, . . . , ak ∈ Z, ak 6= 0, q ≥ 1, q as small as possible. Then for this
reduced form we set

H(f) = max{|a0|, |a1|, . . . , |ak|, q}, M(f) = max{|a0|, |a1|, . . . , |ak|}.
For any integer n with |n| > 1, we denote by Ω(n) the total number of

prime factors of n counting multiplicities.
In the case deg f < deg g we prove the following results:

Theorem 1. Let f(X), g(X) ∈ Q[X] be relatively prime polynomials
with k = deg f < deg g = m. Then for any nonzero integers n1, n2 and any
positive divisor d of n2 such that

∣∣∣∣
n2

n1

∣∣∣∣ >
(

2 +
1

2k+1dm

)k+1

dmH(f)mH(g)m+1,

the polynomial n1f(X) + n2g(X) has at most Ω(n2/d) factors over Q.

Corollary 1. For any relatively prime polynomials f(X), g(X) ∈ Q[X]
with k = deg f < deg g = m, and any prime p satisfying

p >

(
2 +

1
2k+1

)k+1

H(f)mH(g)m+1,

the polynomial f(X) + pg(X) is irreducible over Q.

Corollary 2 (of the proof of Theorem 1). Let f(X), g(X) ∈ Z[X] be
relatively prime polynomials with k = deg f < deg g = m. Then for any
nonzero integers n1, n2 and any positive divisor d of n2 such that

∣∣∣∣
n2

n1

∣∣∣∣ >
(

2 +
1

2k+1dmH(g)m+1

)k+1

dmH(f)H(g)m,

the polynomial n1f(X) + n2g(X) has at most Ω(n2/d) nonconstant factors
over Z.

We also prove a result similar to Theorem 1 in the case when the poly-
nomial n1f(X) + n2g(X) has no rational roots:

Theorem 2. Let f(X), g(X) ∈ Q[X] be relatively prime polynomials
with k = deg f < deg g = m. Then for any nonzero integers n1, n2 and any
positive divisor d of n2 such that

∣∣∣∣
n2

n1

∣∣∣∣ >
(

2 +
1

2k+1dm/2

)k+1

dm/2H(f)m/2H(g)1+max(m/2,k),
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if the polynomial n1f(X)+n2g(X) has no rational roots, then it has at most
Ω(n2/d) factors over Q.

Corollary 3 (of the proof of Theorem 2). Let f(X), g(X) ∈ Z[X] be
relatively prime polynomials with k = deg f < deg g = m. Then for any
nonzero integers n1, n2 and any positive divisor d of n2 such that
∣∣∣∣
n2

n1

∣∣∣∣ >
(

2 +
1

2k+1dm/2H(g)1+max(m/2,k)

)k+1

dm/2H(f)H(g)max(m/2,k),

if the polynomial n1f(X)+n2g(X) has no rational roots, then it has at most
Ω(n2/d) nonconstant factors over Z.

In the case deg f = deg g we prove the following results:

Theorem 3. Let

f(X) =
a0 + a1X + . . .+ amX

m

q1
, g(X) =

b0 + b1X + . . .+ bmX
m

q2

be relatively prime polynomials in Q[X] of degree m, written in reduced form.
Let also n1, n2 be nonzero integers, h = (n1amq2 + n2bmq1)/gcd(q1, q2) and
d a positive divisor of h. If

∣∣∣∣
n2

n1

∣∣∣∣ > dmH(f)H(g)
(

1 +H(f)H(g) +
1

2mdm

)m+1

,

then the polynomial n1f(X) + n2g(X) has at most Ω(h/d) factors over Q.

Corollary 4. Let f(X) and g(X) be as in Theorem 3. If n1 and n2
are nonzero integers such that |(n1amq2 + n2bmq1)/gcd(q1, q2)| is a prime
and ∣∣∣∣

n2

n1

∣∣∣∣ > H(f)H(g)
(

1 +H(f)H(g) +
1

2m

)m+1

,

then the polynomial n1f(X) + n2g(X) is irreducible over Q.

Corollary 5 (of the proof of Theorem 3). Let f(X), g(X) ∈ Z[X] be
relatively prime polynomials of degree m, with leading coefficients am and
bm respectively. Let n1 and n2 be nonzero integers, h = n1am + n2bm and d
a positive divisor of h. If

∣∣∣∣
n2

n1

∣∣∣∣ > dmH(f)
(

1 +H(g) +
1

dm[1 +H(g)]m

)m+1

,

then n1f(X) + n2g(X) has at most Ω(h/d) nonconstant factors over Z.

In particular, we have

Corollary 6. Let f(X), g(X) ∈ Z[X] be relatively prime polynomials
of degree m, with leading coefficients am and bm respectively. If n1 and n2
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are nonzero integers such that |n1am + n2bm| is a prime number and
∣∣∣∣
n2

n1

∣∣∣∣ > H(f)
(

1 +H(g) +
1

[1 +H(g)]m

)m+1

,

then the polynomial n1f(X) + n2g(X) is irreducible over Z.

The proofs of these results are presented in Sections 2 and 3 below.

2. The case deg f < deg g

2.1. Proof of Theorem 1. Let

f(X) =
a0 + a1X + . . .+ akX

k

q1
and g(X) =

b0 + b1X + . . .+ bmX
m

q2

be two relatively prime polynomials in Q[X] written in reduced form, with
k = deg f < deg g = m, and let also n1, n2 and d be as in the statement
of the theorem. Our assumption on n1, n2 and d shows that |n2| > d, so
Ω(n2/d) makes sense. We may obviously assume Ω(n2/d) < m.

We write g(X) in the following form:

g(X) =
b0 + b1X + . . .+ bmX

m

q2
=
bg(X)
q2

,

where b ∈ Z and g(X) ∈ Z[X], g(X) primitive. Then we write

n1f(X) + n2g(X) =
a

q
F (X),

with gcd(a, q) = 1 and F (X) ∈ Z[X], F (X) primitive. Assume now that
n1f(X)+n2g(X) has more than Ω(n2/d) factors. Then by Gauss’s Lemma,
F (X) decomposes as F (X) = F1(X) . . . Fs(X) with Ω(n2/d) < s ≤ m and
F1(X), . . . , Fs(X) ∈ Z[X], F1, . . . , Fs primitive with degF1, . . . ,degFs ≥ 1.
Let t1, . . . , ts ∈ Z be the leading coefficients of F1, . . . , Fs, respectively. Then
one finds

t1 . . . ts =
n2qbm
aq2

.

If q/q2 = β/γ with gcd(β, γ) = 1, then β divides q1, since q divides q1q2.
Therefore we have aγt1 . . . ts = n2βbm, and since Ω(n2/d) < s, at least one
of the ti’s, say t1, divides dβbm. So we have

|t1| ≤ dq1|bm|.(1)

Now we are going to estimate the resultant R(g, F1). Since g and F1 are
relatively prime, R(g, F1) must be a nonzero integer, so in particular

|R(g, F1)| ≥ 1.(2)
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If we decompose F1, say F1(X) = t1(X − θ1) . . . (X − θr), then

|R(g, F1)| = |t1|m
∏

1≤j≤r
|g(θj)|.(3)

Since each root θj of F1 is also a root of F (X), we have

g(θj) = −n1f(θj)
n2

(4)

and moreover, since f and g are relatively prime, f(θj) 6= 0 and g(θj) 6= 0
for any j ∈ {1, . . . , r}. The definition of g shows that

|g(θj)| ≤ q2|g(θj)|.(5)

Using now (3)–(5) we obtain

|R(g, F1)| ≤ |t1|m
qr2|n1|r
|n2|r

∏

1≤j≤r
|f(θj)|.(6)

We now proceed to find an upper bound for |f(θj)|. The equality n1f(θj)
+ n2g(θj) = 0 implies
(
n1a0

q1
+
n2b0
q2

)
+ . . .+

(
n1ak
q1

+
n2bk
q2

)
θkj +

n2bk+1

q2
θk+1
j + . . .+

n2bm
q2

θmj = 0,

from which we deduce that
|n2bm|
q2

|θj |m ≤
( |n1a0|

q1
+
|n2b0|
q2

)
+ . . .+

( |n1ak|
q1

+
|n2bk|
q2

)
|θj|k

+
|n2bk+1|
q2

|θj |k+1 + . . .+
|n2bm−1|

q2
|θj |m−1

≤
( |n1|M(f)

q1
+
|n2|M(g)

q2

)
(1 + |θj |+ . . .+ |θj |m−1).

Therefore, either |θj | ≤ 1, or if not, then

|n2bm|
q2

|θj |m <

( |n1|M(f)
q1

+
|n2|M(g)

q2

) |θj |m
|θj | − 1

,

so in both cases we have

|θj | < 1 +
1
|bm|

( |n1|q2

|n2|q1
M(f) +M(g)

)
.(7)

Now, since obviously

|f(θj)| ≤
M(f)
q1

(1 + |θj |+ . . .+ |θj |k),

inequality (7) yields

|f(θj)| <
M(f)
q1
·
[
1 + 1

|bm|
( |n1|q2
|n2|q1M(f) +M(g)

)]k+1 − 1

1
|bm|
( |n1|q2
|n2|q1M(f) +M(g)

) .(8)
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Instead of (8) it will be more convenient to consider

|f(θj)| <
|bm|M(f)

q1
·
[
1 + 1

|bm|
( |n1|q2
|n2|q1 M(f) +M(g)

)]k+1

|n1|q2
|n2|q1 M(f) +M(g)

.(9)

Using now (6) and (9), we obtain

|R(g, F1)| < |t1|m
[ |n1|q2

|n2|q1
M(f)

|bm|
[
1 + 1

|bm|
( |n1|q2
|n2|q1 M(f) +M(g)

)]k+1

|n1|q2
|n2|q1 M(f) +M(g)

]r
.

Since r ≥ 1, all we need to prove is that our assumption on n1, n2 and d
forces

|t1|m ·
|bm|

[
1 + 1

|bm|
( |n1|q2
|n2|q1 M(f) +M(g)

)]k+1

1 + |n2|q1M(g)
|n1|q2M(f)

< 1.

In view of (1), it is sufficient to prove that

dmqm1 |bm|m+1
[
1 +

1
|bm|

( |n1|q2

|n2|q1
M(f) +M(g)

)]k+1

< 1 +
|n2|q1M(g)
|n1|q2M(f)

,

which is equivalent to

dmqm1 |bm|m−k
(
|bm|+M(g) +

|n1|q2

|n2|q1
M(f)

)k+1

< 1 +
|n2|q1M(g)
|n1|q2M(f)

.(10)

Now since |bm| ≤M(g), it suffices to prove that

dmqm1 M(g)m+1
(

2 +
|n1|q2M(f)
|n2|q1M(g)

)k+1

<
|n2|q1M(g)
|n1|q2M(f)

,

or equivalently,
∣∣∣∣
n2

n1

∣∣∣∣ > dmqm−1
1 q2M(f)M(g)m

(
2 +

q2M(f)∣∣n2
n1

∣∣q1M(g)

)k+1

.(11)

We search for a suitable δ such that if |n2/n1| > δ · dmqm−1
1 q2M(f)M(g)m,

then |n2/n1| also satisfies (11). So it is sufficient to find a δ satisfying

δ >

(
2 +

1
δ · dmqm1 M(g)m+1

)k+1

.

Denote dmqm1 M(g)m+1 by w. A suitable candidate for δ is
(
2 + 1

2k+1w

)k+1,
since (

2 +
1

2k+1w

)k+1

>

(
2 +

1
(
2 + 1

2k+1w

)k+1
w

)k+1

.
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This proves that for
∣∣∣∣
n2

n1

∣∣∣∣ >
(

2 +
1

2k+1dmqm1 M(g)m+1

)k+1

dmqm−1
1 q2M(f)M(g)m(12)

we have |R(g, F1)| < 1, which contradicts (2). The desired conclusion follows
now by noting that qm−1

1 M(f) ≤ H(f)m and q2M(g)m ≤ H(g)m+1. This
completes the proof of the theorem.

Remarks. 1. The inequality (12) leads to an improved version of The-
orem 1. If |bm| < M(g) it might be useful to directly test inequality (10).
Further improvements can be done, for instance, by considering the upper
bound for |f(θj)| given by (8), instead of (9), but they lead to more compli-
cated assumptions on n1, n2 and d.

2. In [2, Th. 1], the following result has been provided:

Theorem. For any relatively prime polynomials f(X), g(X) ∈ Q[X]
with deg f < deg g = m, and any prime p > 2mmH(f)m+1H(g)3m, the
polynomial f(X) + pg(X) is irreducible over Q.

For m > 1, Corollary 1 provides a sharper bound, since(
2 +

1
2m

)m
H(f)mH(g)m+1 < 2mmH(f)m+1H(g)3m.

3. Corollary 2 follows immediately by (12).

A result similar to Corollary 2 is the following:

Proposition 1. Let f(X) = a0 + a1X + . . .+ akX
k and g(X) = b0 +

b1X + . . . + bmX
m ∈ Z[X] be two relatively prime polynomials with k =

deg f < deg g = m. If n1, n2 are nonzero integers and d is a positive divisor
of n2bm such that

∣∣∣∣
n2

n1

∣∣∣∣ >
(

2 +
1

2k+1dmH(g)k+1

)k+1

dmH(f)H(g)k,

then n1f(X) + n2g(X) has at most Ω(n2bm/d) nonconstant factors over Z.

Sketch of the proof. The proof goes as that of Theorem 1, except that
q1 = q2 = 1 and instead of (1) we find |t1| ≤ d. Indeed, since we have
at1 . . . ts = n2bm with Ω(n2bm/d) < s ≤ m, at least one of the ti’s divides d.
Thus, instead of (10) we have to prove that

dm

|bm|k
(
|bm|+H(g) +

|n1|
|n2|

H(f)
)k+1

< 1 +
|n2|H(g)
|n1|H(f)

.

Since |bm| ≤ H(g) it is sufficient to prove that
∣∣∣∣
n2

n1

∣∣∣∣ > dmH(f)H(g)k
(

2 +
H(f)∣∣n2
n1

∣∣H(g)

)k+1

.(13)
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Computations as in Theorem 1 show that inequality (13) is satisfied if
|n2/n1| > δ · dmH(f)H(g)k with δ = (2 + 2−k−1d−mH(g)−k−1)k+1.

2.2. Proof of Theorem 2. In this case we may obviously assume m ≥ 2,
and since the degree r of the polynomial F1 is at least 2, it is sufficient
instead of (10) to prove that

dmqm1 |bm|m−2k
(
|bm|+M(g) +

|n1|q2

|n2|q1
M(f)

)2(k+1)

<

(
1 +
|n2|q1M(g)
|n1|q2M(f)

)2

,

or even more, that

dm/2q
m/2
1 |bm|m/2−k

(
|bm|+M(g) +

|n1|q2

|n2|q1
M(f)

)k+1

<
|n2|q1M(g)
|n1|q2M(f)

.

Now, since |bm| ≤M(g) it suffices to prove that
∣∣∣∣
n2

n1

∣∣∣∣ > dm/2q
m/2−1
1 q2M(f)M(g)m/2

(
2 +

q2M(f)∣∣n2
n1

∣∣q1M(g)

)k+1

,

if m/2 ≥ k, and
∣∣∣∣
n2

n1

∣∣∣∣ > dm/2q
m/2−1
1 q2M(f)M(g)k

(
2 +

q2M(f)∣∣n2
n1

∣∣q1M(g)

)k+1

,

if m/2 < k. So in both cases it is sufficient to prove that
∣∣∣∣
n2

n1

∣∣∣∣ > dm/2q
m/2−1
1 q2M(f)M(g)max(m/2,k)

(
2 +

q2M(f)∣∣n2
n1

∣∣q1M(g)

)k+1

.

Let w = 2k+1dm/2q
m/2
1 M(g)1+max(m/2,k). It is straightforward to verify that

the last inequality holds for
∣∣∣∣
n2

n1

∣∣∣∣ >
(

2 +
1
w

)k+1

dm/2q
m/2−1
1 q2M(f)M(g)max(m/2,k),(14)

which completes the proof.

Corollary 3 follows immediately from (14).

3. The case deg f = deg g

3.1. Proof of Theorem 3. We use slightly different arguments than those
used in the proof of Theorem 1. First of all, in order to see thatΩ(h/d) makes
sense, we have to prove that

|h| > d.(15)

The definition of h shows that

|h| ≥ |n2| − |n1|q2M(f) > 0.(16)
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Indeed, if n1am and n2bm have the same sign, we find |h| ≥ |n2| + 1. Our
assumption that

∣∣∣∣
n2

n1

∣∣∣∣ > dmH(f)H(g)
(

1 +H(f)H(g) +
1

2mdm

)m+1

(17)

implies |n2| > |n1|q2M(f), so we obviously have |n2bm|q1 > |n1am|q2. Thus,
if n1am and n2bm have opposite signs, we find

|h| = |n2bm|q1 − |n1am|q2

gcd(q1, q2)
≥ |n2| − |n1|q2M(f) > 0.

Dividing now by d in (16) and using again (17), we find

|h|
d
> |n1| · dm−1H(f)H(g)

[(
1 +H(f)H(g) +

1
2mdm

)m+1

− 1
]
> 1,

which proves (15).
Now we may obviously assume Ω(h/d) < m. We write again g(X) in the

form

g(X) =
b0 + b1X + . . .+ bmX

m

q2
=
bg(X)
q2

,

where b ∈ Z and g(X) ∈ Z[X], g(X) primitive. Then we write

n1f(X) + n2g(X) =
a

q
F (X)

with gcd(a, q) = 1 and F (X) ∈ Z[X], F (X) primitive.
Assume now that n1f(X)+n2g(X) has more than Ω(h/d) factors. Then

by the Gauss Lemma, F (X) will decompose as F (X) = F1(X) . . . Fs(X)
with Ω(h/d) < s ≤ m and F1(X), . . . , Fs(X) ∈ Z[X], F1, . . . , Fs primitive
with degF1, . . . ,degFs ≥ 1. Let t1, . . . , ts ∈ Z be the leading coefficients of
F1, . . . , Fs, respectively. Let also q1 = q1/gcd(q1, q2), q2 = q2/gcd(q1, q2) and
denote n1aiq2 + n2biq1 by hi for all i ∈ {0, . . . ,m− 1}. Since

h0 + h1X + . . .+ hm−1X
m−1 + hXm

lcm(q1, q2)
=
a

q
F1(X) . . . Fs(X),

we see that a divides h and q divides lcm(q1, q2). On the other hand, by
comparing the leading coefficients we find

h = t1 . . . tsa ·
lcm(q1, q2)

q
.(18)

Now, since (lcm(q1, q2))/q is an integer and Ω(h/d) < s, (18) shows that at
least one of the ti’s, say t1, divides d. So we have

|t1| ≤ d.(19)

Again we proceed to estimate the resultant R(g, F1). As in Theorem 1, since
g and F1 are relatively prime, we must have |R(g, F1)| ≥ 1. If F1 decomposes
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as F1(X) = t1(X − θ1) . . . (X − θr), we have

|R(g, F1)| = |t1|m
∏

1≤j≤r
|g(θj)|.

Using (19) together with |g(θj)| ≤ q2|g(θj)| and g(θj) = −n1f(θj)/n2, we
find

|R(g, F1)| ≤ dm qr2|n1|r
|n2|r

∏

1≤j≤r
|f(θj)|.(20)

We now proceed to find the upper bound for |f(θj)|. The equality
n1f(θj) + n2g(θj) = 0 implies
(
n1a0

q1
+
n2b0
q2

)
+ . . .+

(
n1am−1

q1
+
n2bm−1

q2

)
θm−1
j +

h

lcm(q1, q2)
θmj = 0.

Since (16) allows us to divide by |h|, we further have

|θj |m ≤
lcm(q1, q2)
|h|

( |n1|M(f)
q1

+
|n2|M(g)

q2

)
(1 + |θj |+ . . .+ |θj |m−1).

Therefore, either |θj | ≤ 1, or if not, then

|θj |m <
q1q2

|h|

( |n1|M(f)
q1

+
|n2|M(g)

q2

) |θj |m
|θj | − 1

.

So in both cases we have

|θj | < 1 +
q1q2

|h|

( |n1|M(f)
q1

+
|n2|M(g)

q2

)
,

and since obviously

|f(θj)| ≤
M(f)
q1

(1 + |θj |+ . . .+ |θj |m),

we obtain the following upper bound for |f(θj)|:

|f(θj)| <
M(f)
q1

·
[
1 + q1q2

|h|
( |n1|M(f)

q1
+ |n2|M(g)

q2

)]m+1 − 1
q1q2
|h|
( |n1|M(f)

q1
+ |n2|M(g)

q2

) .

It is more convenient to use

|f(θj)| < |h|M(f)

[
1 + q1q2

|h|
( |n1|M(f)

q1
+ |n2|M(g)

q2

)]m+1

q1[|n1|q2M(f) + |n2|q1M(g)]
,

which further gives

|f(θj)| < M(f)
[
1 +

q1q2

|h|

( |n1|M(f)
q1

+
|n2|M(g)

q2

)]m+1

,

since |h| ≤ |n1|q2M(f) + |n2|q1M(g) and q1 ≥ 1. Therefore by (16) we find

|f(θj)| < M(f)
(

1 +
|n1|q2M(f) + |n2|q1M(g)
|n2| − |n1|q2M(f)

)m+1

,
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that is,

|f(θj)| < |n2|m+1M(f)
(

1 + q1M(g)
|n2| − |n1|q2M(f)

)m+1

.(21)

Together with (20), (21) yields

|R(g, F1)| < dm
[
q2|n1| · |n2|mM(f)

(
1 + q1M(g)

|n2| − |n1|q2M(f)

)m+1]r
.(22)

Let us denote dmq2|n1|M(f)[1 + q1M(g)]m+1 by α. We shall prove that

[|n2| − |n1|q2M(f)]m+1 > α|n2|m,(23)

which by (22) will contradict the fact that |R(g, F1)| ≥ 1.
We search for a suitable δ > 1 such that |n2| − |n1|q2M(f) > |n2|/δ,

which is equivalent to

|n2| > |n1|q2M(f)
δ

δ − 1
.(24)

For such a δ we then require
( |n2|

δ

)m+1

> α|n2|m,

or equivalently

|n2| > αδm+1.(25)

So if we find a δ > 1 such that αδm+1 > |n1|q2M(f)δ/(δ − 1), then any n2

satisfying (25) will also satisfy (23). Such a δ should verify

(δ − 1)δm >
1

dm[1 + q1M(g)]m+1 .

Denote dm[1 + q1M(g)]m+1 by w. One candidate for δ is 1 + 1/w, since
obviously

1
w

(
1 +

1
w

)m
>

1
w
.

So we have proved that for

|n2| > |n1|dmq2M(f)
(

1 + q1M(g) +
1

dm[1 + q1M(g)]m

)m+1

(26)

we have |R(g, F1)| < 1, a contradiction. The proof finishes by noting that
q2M(f) ≤ H(f)H(g) and q1M(g) ≤ H(f)H(g).

Remarks. 1. Since the sharper bound given by (26) still implies (15)
and (16), one can use (26) to rephrase Theorem 2 in terms of q1, q2, M(f)
and M(g) instead of H(f) and H(g).

2. Corollary 5 follows immediately from (26).
3. As in the preceding section, we may also consider the case when the

polynomial n1f(X)+n2g(X) has no rational roots. In that case, we see from
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(22) that the same conclusion as in Theorem 3 holds, provided that (26) is
replaced by

∣∣∣∣
n2

n1

∣∣∣∣ > dm/2q2M(f)
(

1 + q1M(g) +
1

dm/2[1 + q1M(g)]m

)m+1

.

3.2. Proof of Corollary 6. In this case all that remains is to show that
our assumptions force n1f(X) + n2g(X) to be primitive.

Let λ = H(f)(1 + H(g) + [1 + H(g)]−m)m+1. Since |n1am + n2bm| = p,
we have either n2 = (p− n1am)/bm, or n2 = −(p+ n1am)/bm.

In the first case we must have p > n1am, otherwise our assumption that
|n2| > λ|n1| would imply p < n1am − λ|n1bm| < 0, a contradiction. Thus
|n2| > λ|n1| becomes (p− n1am)/|bm| > λ|n1|, which further gives

p > |n1| · [λ−H(f)].(27)

Assume now that p divides n1ai + p−n1am
bm

bi for all i ∈ {0, . . . ,m − 1},
that is, p divides n1(aibm − ambi) for all i ∈ {0, . . . ,m− 1}. Since

|n1(aibm − ambi)| ≤ 2|n1|H(f)H(g) < |n1| · [λ−H(f)],

the inequality (27) forces aibm = ambi for all i ∈ {0, . . . ,m − 1}, that is,
bmf(X) = amg(X), a contradiction.

Similarly, in the second case we must have p > −n1am, which also implies
(27). Assuming now that p divides n1ai− p+n1am

bm
bi for all i ∈ {0, . . . ,m−1},

we will get the same contradiction, which completes the proof.

One may improve Corollary 6 as follows. Let f(X) = a0 + . . .+ amX
m

and g(X) = b0 + . . .+ bmX
m ∈ Z[X] be two relatively prime polynomials of

degree m. Assume n1 and n2 are nonzero integers such that n1am + n2bm
is a prime number p and let h(X) = n1f(X) + n2g(X). For any integer j
such that n1am + jbm 6= 0, the polynomials n1f(X) + jg(X) and g(X) are
relatively prime of degree m, with leading coefficients n1am + jbm and bm
respectively. We obviously have n1am + jbm + (n2 − j)bm = p and

h(X) = n1f(X) + jg(X) + (n2 − j)g(X).

Let K(g) = (1 + H(g) + [1 + H(g)]−m)m+1. Then by Corollary 6, h(X) is
irreducible over Z if |n2 − j| > H(n1f + jg)K(g), or equivalently

|p− n1am − jbm| > H(n1f + jg) · |bm| ·K(g).

If p ≤ n1am + jbm, we find p < n1am + jbm −H(n1f + jg) · |bm| ·K(g) < 0,
a contradiction. Therefore we conclude that h(X) is irreducible over Z for
primes p satisfying

p > min
j 6=−n1am/bm

{n1am + jbm +H(n1f + jg) · |bm| ·K(g)}.
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Similarly, if n1am + n2bm = −p, then h(X) is irreducible over Z for

p > min
j 6=−n1am/bm

{−n1am − jbm +H(n1f + jg) · |bm| ·K(g)}.
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