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1. Introduction and statement of the results. In this paper we
study the symmetry of the divisor function in almost all short intervals.
As in the previous paper [2] on the symmetry of the function ω∗(n) (i.e.
the number of prime divisors p |n with p <

√
n), we use the Large Sieve

to derive a similar bound for the divisor function, d(n) (number of divisors
of n). This function has the useful property (lacked by both ω(n) and ω∗(n))
of “flipping”, i.e. d(n) can be written as

d(n) =
∑

d|n
d<
√
n

1 +
∑

d|n
d>
√
n

1 = 2
∑

d|n
d<
√
n

1

(if n is not a square). This time the technical difficulties arising from the
“large” prime divisors (encountered, for example, in [2] with ω(n)) disappear
because of the flipping property.

This property can be applied, more generally, when dealing with the
symmetry of an arithmetical function f(n) which is the Dirichlet convolution
of a (fixed) arithmetical function g(n) with itself: f = g ∗ g, i.e. (if n is not
a square)

f(n) = 2
∑

d|n
d<
√
n

g(d)g
(
n

d

)
.

However, to apply our method, we also need the hypothesis that g is “smooth
(g ∈ C1([1,∞[) suffices) and with small derivative”.

A more general study of such classes of arithmetical functions f (which
we call “quasi-symmetric”) will be the object of a future paper.
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Here we confine ourselves to the case f(n) = d(n) (g(n) = 1, so it is the
smoothest, and with lowest derivative, i.e. 0), also because of the links of
this case to the Dirichlet problem for the divisor function in almost all short
intervals.

First of all, we consider n to be in a short interval of the kind [x−h, x+h]
(we call it short, as usual, if h = o(x) and h(x) → ∞ as x → ∞) and we
form the symmetry sum (here and in what follows x ∈ N and x→∞)

S±(x) :=
∑

x−h≤n≤x+h

d(n)sgn(n− x)

(here sgn(t) := t/|t| for t ∈ R− {0}, sgn(0) = 0); then we consider its mean
square (with h = h(N) ∈ N independent of x, where N is also an integer)

I(N,h) :=
∑

N<x≤2N

|S±(x)|2,

which has diagonal (‖ ‖ is the distance from Z)

D(N,h) := 8N
∑

t≤
√
N

µ(t)
t2

∑

k≤
√
N/t

∥∥∥∥
h

k

∥∥∥∥ log2

√
N

tk
.

Our main result is the following (in what follows L := logN):

Theorem 1. Let N and h = h(N) <
√
N/2 be large enough natural

numbers (with h → ∞ as N → ∞) and I(N,h), D(N,h) be defined as
above. Then

I(N,h) = D(N,h) +O(NhL5/2
√

logL).

Then, by simple calculations (see Section 3), we get from it the following
asymptotic estimate:

Corollary 1. Under the hypothesis of Theorem 1 we have

I(N,h) =
16
π2 Nh log3

√
N

h
+O(NhL5/2

√
logL).

Our method also allows us to prove estimates for the mean square of the
remainder of the Dirichlet divisor problem in a short interval [x, x+ h].

We remark that these results, in particular our Corollary 2, have been
obtained (but without the explicit constant and under slightly less general
hypotheses) by Kiuchi and Tanigawa in [6, Corollary]; however, they use
the Voronöı formula in their proofs (see also [5]), while our approach is
elementary (using only the Large Sieve, see Lemmas 1 and 3). Nonetheless,
we will not give the proofs of our Theorem 2 and Corollary 2 as they are a
straightforward adaptation of the proofs of Theorem 1 and Corollary 1.
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Define (as in [6]) the remainder in the Dirichlet problem:

∆(x) :=
∑

n≤x
d(n)−

(
x log x+ (2γ − 1)x+

1
4

)

(γ is the Euler constant). Then we get

J(N,h) :=
2N∑

x=N

|∆(x+ h)−∆(x)|2

=
2N∑

x=N

∣∣∣∣
∑

x<n≤x+h

d(n)− h log x− 2γh+O
(
h2

x
+ 1
)∣∣∣∣

2

=
2N∑

x=N

∣∣∣
∑

x<n≤x+h

d(n)− h log x− 2γh
∣∣∣
2

+O(Nh1/2L3/2),

by Cauchy’s inequality, if h <
√
N/2 (see the proof of Theorem 1); since

∑

x<n≤x+h

d(n) = 2
∑

d≤
√
x+h

∑

x/d<m≤(x+h)/d

1

and (see [13, p. 6])

2h
∑

d≤√x

1
d

= h log x+ 2γh+O
(
h√
x

)
,

we get, under the hypothesis h <
√
N/2 (here {} is the fractional part)

J(N,h) = 4
2N∑

x=N

∣∣∣∣
∑

d≤√x

({
x+ h

d

}
−
{
x

d

})∣∣∣∣
2

+O(Nh1/2L3/2).

Then we have the following two results.

Theorem 2. Under the hypotheses of Theorem 1 we have

J(N,h) = 4N
∑

t≤
√
N

µ(t)
t2

∑

k≤
√
N/t

({
h

k

}
−
{
h

k

}2)
log2

√
N

tk

+O(NhL5/2
√

logL).

Corollary 2. Under the hypothesis of Theorem 2 we have

J(N,h) =
8
π2 Nh log3

√
N

h
+O(NhL5/2

√
logL).

The paper is organized as follows: in Section 2 we give the lemmas nec-
essary to prove Theorem 1, and in Section 3 we prove Theorem 1 and Corol-
lary 1.
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2. Lemmas

Lemma 1. Let Q and N be natural numbers, M be an integer and λa,q
be complex numbers (∀a, q ∈ N); then

M+N∑

n=M+1

∣∣∣
∑

q≤2Q

∑∗

a≤q
λa,qeq(an)

∣∣∣
2

= (N +O(Q2))
∑

q≤2Q

∑∗

a≤q
|λa,q|2.

(Here, as usual, the ∗ in the sum means that (a, q) = 1.)
This is a version of the well known Large Sieve inequality, usually ob-

tained by applying the Duality Principle (e.g. [10, p. 134]) to the “main”
version (see, for example, [1, p. 13]); here we have a more precise statement,
obtained from the proof of the next Lemma 3 (using Hilbert’s inequality
instead of Lemma 2: see the remarks after the next lemma). In fact, also
Lemma 3 gives an estimate of the off-diagonal terms. On the other hand, on
the diagonal “well spaced” property of the arguments a/q of the exponen-
tials does not hold and the sum over n simply counts the number of terms,
giving the “main term”.

With these ideas in mind, we will prove Lemma 3 by means of the fol-
lowing:

Lemma 2. Let R,S be natural numbers, λj be arbitrary (distinct) real
numbers and u1, . . . , uR, v1, . . . , vS be arbitrary complex numbers with `2-
norms

‖u‖2 :=
(∑

r≤R
|ur|2

)1/2
, ‖v‖2 :=

(∑

s≤S
|vs|2

)1/2
;

then, writing ‖β‖ for the distance of β ∈ R from the nearest integer and
letting δ > 0 we have

‖λr − λs‖ ≥ δ ∀r 6= s ⇒
∣∣∣∣
∑

r≤R

∑

s≤S
s6=r

urvs
‖λr − λs‖

∣∣∣∣ ≤
2 + log(RS)

δ
‖u‖2‖v‖2.

We remark that the idea to use a lemma of this kind (similar to Hilbert’s
inequality) to prove an estimate like Lemma 3 (similar to the Large Sieve)
is not new. See, for example, the work of Elliott [4] and also [7]–[9], [11],
[12].

However, we will prove both our lemmas in full detail, due to the de-
pendence of the inner sums of Lemma 3 on x (i.e., due to the complicating
function αj,d(x)).
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In fact, we cannot use Hilbert’s inequality as it stands (i.e., with λr−λs
instead of ‖λr−λs‖), because we need to estimate the exponential sum over
x in absolute value (to bound the terms αj,d(x); see the proof of Lemma 3);
this justifies the additional logarithm we get.

In order to make the arguments and the presence of each term in the
bounds clear, we present a complete proof of Lemma 2.

Proof of Lemma 2. Since ‖λr − λs‖ ≥ δ > 0 for r 6= s we may suppose
(on reordering r, s if necessary) that ‖λr − λs‖ ≥ δ|r − s|, whence

1
‖λr − λs‖

≤ 1
δ

1
|r − s| ∀r 6= s.

By Cauchy’s inequality,
∣∣∣∣
∑

r≤R

∑

s≤S
s6=r

urvs
‖λr − λs‖

∣∣∣∣
2

≤
(∑

r≤R

∑

s≤S
s6=r

|ur|2
δ|r − s|

)(∑

s≤S

∑

r≤R
r 6=s

|vs|2
δ|s− r|

)
,

whence it suffices to prove that (due to the symmetry in r, s)
∑

s≤S
s6=r

1
|s− r| ≤ 2 + log(RS).

Here the left-hand side is (the sums, now, could be empty)

r−1∑

s=1

1
r − s +

S∑

s=r+1

1
s− r =

∑

j≤r−1

1
j

+
∑

j≤S−r

1
j
≤ logR+ logS + 2,

by the elementary estimate

∑

j≤n

1
j
≤ 1 +

n�

1

dt

t
= 1 + logn ∀n ≥ 1;

this gives the stated inequality and hence the lemma.

Remark. The constant 2 + log(RS) is not optimal, but it is sufficient
for our purposes.

Lemma 3. Let A,B and N be natural numbers, M be an integer and
cj,d be complex numbers (∀j, d ∈ N); for a sequence an > 0 ∀n ∈ N, define

αj,d(x) :=
∑

n∈N
anχI(j,d,n)(x)

where I(j, d, n) is an interval whose endpoints depend on these three (inte-
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ger) variables and χI(j,d,n)(x) indicates its characteristic function. Then

M+N∑

x=M+1

∣∣∣
B∑

d=A

∑∗

j≤d
αj,d(x)cj,ded(jx)

∣∣∣
2

=
B∑

d=A

∑∗

j≤d
|cj,d|2

M+N∑

x=M+1

|αj,d(x)|2

+O
(
α2B2 logB

B∑

d=A

∑

j≤d
|cj,d|2

)
,

with (α > 0)
α := max

M<x≤M+N
j,d

|αj,d(x)| � 1.

(Here the implied constant depends at most on A,B,M,N .)

Proof. We first expand the square on the left-hand side and we isolate
the main term (explicitly given), so that we have only to estimate the off-
diagonal terms. All of these have well-spaced j/d:

‖j/d− j′/d′‖ ≥ 1
dd′
≥ 1/B2 ∀j/d 6= j′/d′,

provided d, d′ ≤ B (which we suppose; here ‖ ‖ is the distance from an
integer).

Thus the off-diagonal terms are (here the dash indicates j/d 6= j ′/d′)

B∑

d,d′=A

∑′

j,j′

cj,dcj′,d′
M+N∑

x=M+1

αj,d(x)αj′,d′(x)e((j/d− j′/d′)x);

the sum over x can be estimated (in absolute value) as (see the lemma for
the definition of α)

� α2
∣∣∣
∑

x

e((j/d− j′/d′)x)
∣∣∣;

now the range of the sum over x also depends on the variables j, d, j ′, d′.
However, by the definition of the functions αj,d(x), x is an integer in an

interval of (consecutive) integers and by a well known estimate ([3, p. 143])

M+N∑

x=M+1

αj,d(x)αj′,d′(x)e((j/d− j′/d′)x)� α2

‖j/d− j′/d′‖ .

In fact, from the definition of αj,d(x), we can write

α(x) := αj,d(x)αj′,d′(x) =
∑

n

b(n)χI(n)(x),

where I(n) = [un, vn] is an interval depending on n and b(n) is positive.
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Then we have
∑

x

α(x)e(xξ) =
∑

n

b(n)
( ∑

x∈I(n)

e(xξ)
)

=
∑

n

b(n)
e(ξun)− e(ξvn)

1− e(ξ) � α2

‖ξ‖ .

We then transform the double summation over j, d into summation over
k := j/d and let cj,d := Ck (note that (j, d) = 1 allows us to do so); in this
way the off-diagonal terms are bounded by

α2
∑

kr,ks∈K
kr 6=ks

|Ckr | |Cks |
1

‖kr − ks‖
,

where K is a set of well-spaced numbers (i.e. ‖kr−ks‖ ≥ 1/B2 by the above),
whose cardinality is O(B2).

Since we can apply Lemma 2 with R = S = O(B2), kr = λr and ks = λs,
setting δ = 1/B2 we get the O-estimate of Lemma 3 (the diagonal being
easy to evaluate).

Remark. We explicitly point out that the additional logarithm (logB),
due to the estimates of Lemma 2, is not a problem, since it will give a
negligible contribution to the terms with

√
N < d ≤ √x (see the proof of

Theorem 1 in the next section).

3. Proof of Theorem 1 and of Corollary 1. We start by writing
the symmetry sum in order to apply the Large Sieve (for both Lemmas 1
and 3):

S±(x) = 2
∑

d<
√
x+h

∑′

(x−h)/d≤m≤(x+h)/d

sgn(md− x) +O
( ∑
√
x−h≤d≤

√
x+h

1
)

;

here the remainder is clearly O(h/
√
x + 1) and the dash means that the

second sum has the further limitation on m given by m > d; this has no
influence when d ≤

√
x− h, while the range

√
x− h < d <

√
x+ h con-

tributes

S±(x) = 2
∑

d≤√x

∑

(x−h)/d≤m≤(x+h)/d

sgn(md− x) +O
(
h2

x
+

h√
x

+ 1
)
.

Here the remainders are O(1), which gives rise to O(hN logN) in the mean
square I(N,h) after using the trivial estimate

O
( ∑

x∼N

∑

d<
√
x

∑

(x−h)/d≤m≤(x+h)/d

1
)
.

We remark that the inner sum on m:

χq(x) :=
∑

|m−x/q|≤h/q
sgn(mq − x)
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is treated in [2] in a slightly different manner (which, in this case, would
entail small technical problems), while here we use directly the orthogonality
of additive characters (as usual eq(k) := e2πik/q)

1
q

∑

j≤q
eq(j(n− a)) =

{
1 if n ≡ a (mod q),

0 otherwise

(see [14, Chapter 1, Lemma 5]) to write it as an exponential sum; in fact

χq(x) =
∑

|r|≤h
r≡−x (mod q)

sgn(r) =
∑

j<q

cj,qeq(jx),

whereas this function is defined by fractional parts in [2], while now

cj,q :=
1
q

∑

|r|≤h
sgn(r)eq(rj) (⇒ cq,q = 0).

When x is an integer mod q the functions χq(x) depend on the sign of x in
the residue classes, and they have absolute value 1, otherwise they vanish;
this implies, by the already quoted orthogonality,

∑

j<q

|cj,q|2 = 2
∥∥∥∥
h

q

∥∥∥∥.

In order to eliminate the dependence of S±(x) on x in its range of sum-
mation, we split it as (the remainder being negligible)

S±(x) = S±0 (x) + S±1 (x) +O(1),
where

S±0 (x) := 2
∑

q≤
√
N

χq(x), S±1 (x) := 2
∑

√
N<q≤√x

χq(x).

We will apply the Large Sieve to both their mean squares: Lemma 1 to
S±0 (x) and Lemma 3 to S±1 (x); first, we introduce the (reduced) fractions
j/d and then we isolate the main term.

We are not yet ready to apply the Large Sieve, because j < q does not
mean (j, q) = 1 (as is the case when q is prime); we need the following
property of cj,q:

cdj′,dq′ =
1
d
cj′,q′ ∀d, j′, q′ ∈ N,

to get

S±0 (x) = 2
∑

q≤
√
N

∑

j<q

cj,qeq(jx) = 2
∑

q≤
√
N

∑

d|q

∑

j<q
(j,q)=d

cj,qeq(jx)

= 2
∑

q≤
√
N

∑

d|q
q′=q/d

1
d

∑∗

j′<q′

cj′,q′eq′(j′x)
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= 2
∑

q≤
√
N

∑

d|q
q′=q/d

1
q′
∑∗

j<d

cj,ded(jx)

= 2
∑

d≤
√
N

∑∗

j<d

( ∑

q′≤
√
N/d

1
q′

)
cj,ded(jx) =

∑

d≤
√
N

αd
∑∗

j<d

cj,ded(jx),

where αd :=
∑
n≤
√
N/d 2/n, and in the same way

S±1 (x) =
∑

√
N<q≤√x

∑

j<q

cj,qeq(jx) =
∑

d≤
√

2N

∑∗

j<d

αj,d(x)cj,ded(jx),

where
αj,d(x) :=

∑
√
N/d<n≤√x/d

2
n
.

Before applying the lemmas, we need to calculate (in the diagonals)

f∗(d) :=
∑∗

j<d

|cj,d|2 =
∑

j<d
(j,d)=1

|cj,d|2,

for which we have the trivial bound O(min(1, h/d)); we will accomplish this
by Möbius inversion, since (by the already quoted properties of cj,q)

2
∥∥∥∥
h

q

∥∥∥∥ =
∑

j<q

|cj,q|2 =
∑

d|q

1
d2

∑∗

j′<q/d

|cj′,q/d|2 =
(

1
N2 ∗ f

∗
)

(q),

where 1
N2 (n) := 1

n2 is completely multiplicative, whence its (Dirichlet) in-

verse is µ
N2 (n) := µ(n)

n2 . This gives

f∗(d) =
∑∗

j<d

|cj,d|2 = 2
∑

t|d

µ(t)
t2

∥∥∥∥
ht

d

∥∥∥∥.

We will use this to calculate the diagonal of the mean square of first S±0 (x)
and then S±1 (x).

The first terms on the right-hand side of both lemmas, 1 and 3, come
from the diagonal parts, and the second terms from the off-diagonal parts.
In fact, by Lemma 1, the mean-square diagonal of S±0 (x) is

N
∑

d≤
√
N

( ∑

q′≤
√
N/d

2
q′

)2∑∗

j<d

|cj,d|2 = 2N
∑

d≤
√
N

α2
d

∑

t|d

µ(t)
t2

∥∥∥∥
ht

d

∥∥∥∥,

where by the elementary estimate (see [13, p. 6])
∑

n≤B

1
n

= logB +O(1),
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we have

αd :=
∑

n≤
√
N/d

2
n

= 2 log

√
N

d
+O(1);

hence the diagonal is

8N
∑

d≤
√
N

log2

√
N

d

∑

t|d

µ(t)
t2

∥∥∥∥
ht

d

∥∥∥∥+O
(
NL

∑

d≤
√
N

min
(

1,
h

d

))
,

by the above estimates for αd and f∗(d)� min(1, h/d); if we exchange the
sums, this is

8N
∑

t≤
√
N

µ(t)
t2

∑

k≤
√
N/t

∥∥∥∥
h

k

∥∥∥∥ log2

√
N

tk
+O(NhL2) = D(N,h) +O(NhL2).

Since this is the main term in Theorem 1 (and O(NhL2) is a negligible
remainder), we still have to show that all the other terms belong to the
remainder O(NhL5/2(logL)1/2).

Let us evaluate the mean-square diagonal of S±1 (x); by Lemma 3 this is
(using the above bounds and writing, as usual, x ∼ N for N < x ≤ 2N)

4
∑

d≤
√

2N

∑∗

j<d

|cj,d|2
∑

x∼N

∣∣∣∣
∑

√
N/d<q′≤√x/d

1
q′

∣∣∣∣
2

� N
∑

d≤
√

2N

min
(

1,
h

d

)

� NhL;

this is acceptable, as also are the off-diagonal terms of S±1 (x):
∑

x∼N
|S±1 (x)|2 � NhL+NL

∑

d≤
√

2N

min(1, h/d)� NhL2.

(Here it is clear that loosing one logarithm off the diagonal, in Lemma 3,
has no effect.)

Let us estimate the off-diagonal terms in the mean square of S±0 (x).
In this case, we need to distinguish “small” and “large” moduli:

S±0 (x) =
∑

d≤
√
N/L

αd
∑∗

j<d

cj,ded(jx) +
∑

√
N/L<d≤

√
N

αd
∑∗

j<d

cj,ded(jx)

= S±0,1(x) + S±0,2(x),

whence, each sum being real, we get

|S±0 (x)|2 = (S±0,1(x))2 + 2S±0,1(x)S±0,2(x) + (S±0,2(x))2;
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by Lemma 1 the off-diagonal terms of S±0,1(x) give

� N

L2 L
2
∑

d≤
√
N/L

min
(

1,
h

d

)
� NhL,

while the contribution of those of S±0,2(x) to I(N,h) is

� NL2
∑

√
N/L<d≤

√
N

h

d
� NhL2 logL;

by Cauchy’s inequality the off-diagonal terms of S±0 (x) give

� NhL+
√
NhL3

√
NhL2 logL+NhL2 logL� NhL5/2

√
logL,

since we have the trivial estimate

D(N,h)� NL2
∑

t≤
√
N

1
t2

∑

k≤2h

1 +NhL2
∑

t≤
√
N

1
t2

∑

2h<k≤
√
N/t

1
k
� NhL3.

Finally, by Cauchy’s inequality and since each sum is real (we ignore the
previous remainders O(NhL)):

|S±(x)|2 = (S±0 (x))2 + 2S±0 (x)S±1 (x) + (S±1 (x))2,

we get
I(N,h) = D(N,h) +O(NhL5/2(logL)1/2).

This concludes the proof of Theorem 1.

We now prove Corollary 1. We will show that

D(N,h) =
16
π2 Nh log3

√
N

h
+O(NhL2).

We start by splitting the sum over k:

D(N,h) = 8N
∑

t≤
√
N

µ(t)
t2

∑

k≤2h

∥∥∥∥
h

k

∥∥∥∥ log2

√
N

tk

+ 8Nh
∑

t≤
√
N

µ(t)
t2

∑

2h<k≤
√
N/t

1
k

log2

√
N

tk

= 8Nh
∑

t<
√
N/2h

µ(t)
t2

∑

2h<k≤
√
N/t

1
k

(
log2

√
N

k
+O(L log t+ (log t)2)

)

+O(NhL2)

= 8Nh
∑

t<
√
N/2h

µ(t)
t2

∑

2h<k≤
√
N/t

1
k

log2

√
N

k
+O(NhL2),
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where the sum over t is non-empty (even if it can have only the term with
t = 1), by our hypothesis h <

√
N/2.

Thus it will suffice to prove that

∑

t<
√
N/2h

µ(t)
t2

∑

2h<k≤
√
N/t

1
k

log2

√
N

k
=

2
π2 log3

√
N

h
+O(L2).

By exchanging the sums, the left-hand side is

∑

2h<k≤
√
N

1
k

log2

√
N

k

∑

t<
√
N/k

µ(t)
t2

.

Using
∑

t≤T

µ(t)
t2

=
1
ζ(2)

+O
(

1
T

)
,

we get

∑

2h<k≤
√
N

1
k

log2

√
N

k

∑

t<
√
N/k

µ(t)
t2

=
1
ζ(2)

∑

2h<k≤
√
N

1
k

log2

√
N

k
+O(L2).

By partial summation, we have (A < B are natural numbers)

∑

A<k≤B

1
k

log2 B

k
=

B�

A

[t]−A
t2

log
B

t

(
log

B

t
+ 2
)
dt

=
B�

A

1
t

log2 B

t
dt+O(log2 B)

=
B/A�

1

log2 u

u
du+O(log2 B)

=
log3(B/A)

3
+O(log2 B);

letting A = 2h and B = [
√
N ], we get

1
ζ(2)

∑

2h<k≤
√
N

1
k

log2

√
N

k
+O(L2) =

1
3ζ(2)

log3 [
√
N ]

2h
+O(L2);

since

log3 [
√
N ]

2h
= log3

√
N

2h
+O(L2) = log3

√
N

h
+O(L2)

we finally obtain the required estimate:
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∑

t<
√
N/2h

µ(t)
t2

∑

2h<k≤
√
N/t

1
k

log2

√
N

k
=

1
3ζ(2)

log3

√
N

h
+O(L2)

=
2
π2 log3

√
N

h
+O(L2).

This proves Corollary 1.
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