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How many points contain arithmetic progressions in their
continued fraction expansion?

by

Xin Tong and Baowei Wang (Wuhan)

1. Introduction. Continued fraction expansion is induced by the Gauss
transformation T : [0, 1)→ [0, 1) given by

T (0) := 0, T (x) :=
1
x

(mod 1), 0 < x < 1,

in the sense that every irrational x ∈ [0, 1) has a unique infinite expansion

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

= [a1(x), a2(x), a3(x), . . .],(1.1)

where an(x) ∈ N, for all n ≥ 1, are called the partial quotients of x.
Namely, the Gauss transformation supplies a mechanism attaching to

each irrational x ∈ [0, 1) an infinite integer sequence {an(x)}∞n=1. Further-
more, if the sequence {an(x)}∞n=1 is strictly increasing, there is a one-to-one
correspondence between such irrational numbers and an integer subset. Sze-
merédi [6] showed that an integer subset contains arbitrarily long arithmetic
progressions if it is of positive density in N. Inspired by Szemerédi’s theo-
rem, we are led to ask naturally whether a point is a Szemerédi point (see
definition below) and how large the set of such points is.

To make the statement precise, we introduce the following definitions.

Definition 1.1. An irrational x ∈ [0, 1) is called a Szemerédi point
if the sequence of its partial quotients is strictly increasing and contains
arbitrarily long arithmetic progressions.
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Definition 1.2. An irrational x ∈ [0, 1) is called an absolute Szemerédi
point if it is a Szemerédi point and the sequence of its partial quotients con-
tains arbitrarily long arithmetic progressions with arbitrary common differ-
ence.

Denote by Sz and ASz the sets of Szemerédi points and absolute Sze-
merédi points respectively. In this note, we show

Theorem 1.3. dimH Sz = dimH ASz = 1/2, where dimH denotes the
Hausdorff dimension.

2. Preliminaries. This section is devoted to collecting some elementary
properties enjoyed by continued fractions, and recalling some known results,
which will be used later.

We begin with some notation. For any n ≥ 1 and (a1, . . . , an) ∈ Nn, call

In(a1, . . . , an) =


[
pn
qn
,
pn + pn−1

qn + qn−1

)
when n is even,(

pn + pn−1

qn + qn−1
,
pn
qn

]
when n is odd,

an nth order interval , where pn, qn are defined recursively by

p−1 = 1, p0 = 0, pk = akpk−1 + pk−2, 1 ≤ k ≤ n,(2.1)
q−1 = 0, q0 = 1, qk = akqk−1 + qk−2, 1 ≤ k ≤ n.(2.2)

In fact, In(a1, . . . , an) just represents the set of numbers in [0, 1) which have
a continued fraction expansion beginning with a1, . . . , an, i.e.

In(a1, . . . , an) = {x ∈ [0, 1) : a1(x) = a1, . . . , an(x) = an}.
For each irrational x ∈ [0, 1) and n ≥ 1, let pn(x) = pn, qn(x) = qn be
defined recursively by (2.1) and (2.2). Then pn(x)/qn(x) is called the nth
convergent of x.

Proposition 2.1 ([4, 5]). For any n ≥ 1 and (a1, . . . , an) ∈ Nn, let qn
be given by (2.2). Then

qn≥ 2(n−1)/2,

n∏
k=1

ak ≤ qn≤
n∏
k=1

(ak+1), |In(a1, . . . , an)|= 1
qn(qn+qn−1)

.

For any n ≥ 1 and 1 ≤ k ≤ n,

1 ≤ qn(a1, . . . , ak, ak+1, . . . , an)
qk(a1, . . . , ak) · qn−k(ak+1, . . . , an)

≤ 2.

Lemma 2.2 ([7]). For any n ≥ 1 and 1 ≤ k ≤ n,
ak + 1

2
≤ qn(a1, . . . , ak, ak+1, . . . , an)
qn−1(a1, . . . , ak−1, ak+1, . . . , an)

≤ ak + 1.
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Lemma 2.3 ([3]). dimH{x ∈ [0, 1) : an(x)→∞ as n→∞} = 1/2.

To end this section, we state a mass distribution principle (also known as
the Billingsley Theorem), which is a classical tool to obtain a lower bound
on the Hausdorff dimension of a fractal set.

Theorem 2.4 ([1, 2]). Let E ⊂ [0, 1] be a Borel set and µ a measure
with µ(E) > 0. If for any x ∈ E,

lim
r→∞

logµ(B(x, r))
log r

= s,

where B(x, r) is the ball with center x and radius r, then dimHE = s.

3. Proof of Theorem 1.3. Lemma 2.3 supplies the desired upper
bound on dimH Sz and dimH ASz, i.e.,

dimH Sz ≤ 1/2, dimH ASz ≤ 1/2.

Consequently, we only need to prove the lower bound. Our strategy is:

Step 1. Construct a subset EASz of ASz.

Step 2. Establish a connection between EASz and some regularly defined
set E by means of a (1− ε)-Hölder function.

If these two procedures are done properly, then

dimH ASz ≥ (1− ε) dimHE.

So, we are led to the last step.

Step 3. Estimate dimHE.

3.1. Subset of ASz. For any k ≥ 1 and d ≥ 1, let Ldk = {d, 2d, . . . , kd}
be an arithmetic progression with length k and common difference d. We
arrange {Ldk : k, d ≥ 1} in the following order.

L1
1 L1

2 → L1
3 L1

4 → L5
1 · · ·

↓ ↗ ↙ ↗ ↙
L2

1 L2
2 L2

3 L2
4 L5

2 · · ·
↙ ↗ ↙

L3
1 L3

2 L3
3 L3

4 L5
3 · · ·

↓ ↗ ↙
L4

1 L4
2 L4

3 L4
4 L5

4 · · ·
...

...
...

We denote the new sequence by {Lk : k ≥ 1}. It is easy to observe that, for
any k ≥ 1,

|Lk| ≤ k and maxLk ≤ k2,(3.1)
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where |L| denotes the cardinality of L. Without any confusion, sometimes
Lk is considered as a vector with its elements arranged in increasing order.

Let α ≥ 2 be some integer and set

E(α) = {x ∈ [0, 1) : (2n)α ≤ an(x) < (2n+ 1)α for all n ≥ 1}.
For every x ∈ E(α), we will construct an absolute Szemerédi point y. This
is achieved by inserting the vectors {Lk : k ≥ 1} in the continued fraction
expansion of x at appropriate positions.

Let {nk : k ≥ 0} be a sequence such that n0 = 0 and for all k ≥ 1,

(2nk + 1)α + k2 < (2nk + 2)α and lim
k→∞

k2 log nk
nk

= 0.(3.2)

For each x ∈ E(α), an absolute Szemerédi point y is constructed as follows.
For n ≤ n1 + |L1|, set

an(y) = an(x), 1 ≤ n ≤ n1, (an1+1(y), . . . , an1+|L1|(y)) = an1(x) + L1.

For n > n1 + |L1|, let k ≥ 1 be the integer such that nk + |L1|+ · · ·+ |Lk| <
n ≤ nk+1 + |L1|+ · · ·+ |Lk|+ |Lk+1|.

(i) When nk + |L1|+ · · ·+ |Lk| < n ≤ nk+1 + |L1|+ · · ·+ |Lk|, set

an(y) = an−(|L1|+···+|Lk|)(x).

(ii) When nk+1 + |L1|+ · · ·+ |Lk| < n ≤ nk+1 + |L1|+ · · ·+ |Lk|+ |Lk+1|,
set

(ank+1+|L1|+···+|Lk|+1(y), . . . , ank+1+|L1|+···+|Lk|+|Lk+1|(y))
= ank+1

(x) + Lk+1.

By the above construction, we conclude that y ∈ ASz. This is because, on
the one hand, all arithmetic progressions occur in the sequence {an(y)}n≥1,
and on the other hand, the large gaps between ank(x) and ank+1(x) (see
formula (3.2)), for each k ≥ 1, guarantee that the sequence {an(y)}n≥1 is
still strictly increasing.

We call x the generator of y and denote by EASz(α) the collection of y’s
given by the above procedure. Evidently, we have

Fact 1. dimH ASz ≥ dimHEASz(α).

3.2. (1 − ε)-Hölder function. For any ε > 0, choose nk0 large enough
such that for every n ≥ nk0 and k ≥ k0,

32(2n+ 3)2α≤ 2(n−1)ε/2, 22k+1
k∏
j=1

((2nj +1)α+ j2)j ≤ 2(nk−1)ε/2.(3.3)

Fix a1, . . . , ank0 with (2j)α ≤ aj < (2j + 1)α for 1 ≤ j ≤ nk0 . Define

E(a1, . . . , ank0 ) := E(α) ∩ I(a1, . . . , ank0 )
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and denote by EASz(a1, . . . , ank0 ) the corresponding set of absolute Sze-
merédi points.

Now we define a map

f : EASz(a1, . . . , ank0 )→ E(a1, . . . , ank0 ), y 7→ x,

where x is the generator of y.

Claim. f is 1/(1 + ε)2-Hölder.

For any pair y1, y2 ∈ EASz(a1, . . . , ank0 ), let x1, x2 be the generators of
y1 and y2 respectively. Denote by n the smallest integer such that an+1(y1)
6= an+1(y2). Then n ≥ nk0 + |L1|+ · · ·+ |Lk0 |. Assume that

nk + |L1|+ · · ·+ |Lk| ≤ n < nk+1 + |L1|+ · · ·+ |Lk|+ |Lk+1|
for some k ≥ k0.

First, we establish a relationship between qnk+|L1|+···+|Lk|(y1) and qnk(x1).
By Proposition 2.1 and Lemma 2.2, we can see that

(3.4) qnk+|L1|+···+|Lk|(y1) ≤ 2q|Lk|(ank(x1) + Lk)qnk+|L1|+···+|Lk−1|(y1)

≤ 2((2nk + 1)α + k2)kqnk+|L1|+···+|Lk−1|(y1)

≤ 22((2nk + 1)α + k2)kqnk−1+|L1|+···+|Lk−1|(y1)

× qnk−nk−1
(ank−1+1(x1), . . . , ank(x1))

...

≤ 22k
k∏
j=1

((2nj + 1)α + j2)jqnj−nj−1(anj−1+1(x1), . . . , anj (x1))

≤ 22k
k∏
j=1

((2nj + 1)α + j2)jqnk(x1) ≤ 1
2
q1+ε
nk

(x1).

Secondly, we estimate the gap between y1 and y2. Note that

an+2(y1) ≥ ank+|L1|+···+|Lk|(y1) ≥ ank(x1) ≥ (2nk)α,

and the same for y2. So,

y1 ∈
⋃

an+2≥(2nk)α

In+2(a1(y1), . . . , an+1(y1), an+2)⊂ In+1(a1(y1), . . . , an+1(y1)),

y2 ∈
⋃

an+2≥(2nk)α

In+2(a1(y2), . . . , an+1(y2), an+2)⊂ In+1(a1(y2), . . . , an+1(y2)).

Assume that n is even and an+1(y1) < an+1(y2) (the other cases can be
handled in the same manner). So, the gap between y1 and y2 is no less than
the distance between the left endpoint of In+1(a1(y1), . . . , an+1(y1)) and the
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left endpoint of In+2(a1(y1), . . . , an+1(y1), (2nk)α). Hence,

|y1 − y2| ≥
(2nk)αpn+1(y1) + pn(y1)
(2nk)αqn+1(y1) + qn(y1)

− pn+1(y1) + pn(y1)
qn+1(y1) + qn(y1)

=
(2nk)α − 1

((2nk)αqn+1(y1) + qn(y1))(qn+1(y1) + qn(y1))

≥ 1
32a2

n+1(y1)q2n(y1)
.

Since an+1(y1) ≤ an+1(x1) < (2n+ 3)α, by (3.3) we get

|y1 − y2| ≥
1

q
2(1+ε)
n (y1)

.(3.5)

Thirdly, we estimate the gap between x1 and x2. We will distinguish two
cases.

(i) nk + |L1|+ · · ·+ |Lk| ≤ n < nk+1 + |L1|+ · · ·+ |Lk|. In this case,

at(x1) = at(x2) for 1 ≤ t ≤ t0 = n− (|L1|+ · · ·+ |Lk|).
So,

|x1 − x2| ≤
1
q2t0
.(3.6)

Note that, by (3.4),

qn(y1) ≤ 2qt0−nk(ank+1(x1), . . . , at0(x1))qnk+|L1|+···+|Lk|(y1)(3.7)

≤ qt0−nk(ank+1(x1), . . . , at0(x1))q1+ε
nk

(x1) ≤ q1+ε
t0

(x1).

Combining (3.5), (3.6) and (3.7), we have

|f(y1)− f(y2)| = |x1 − x2| ≤ |y1 − y2|1/(1+ε)2 .(3.8)

(ii) nk+1 + |L1| + · · · + |Lk| ≤ n < nk+1 + |L1| + · · · + |Lk| + |Lk+1|. In
this case,

at(x1) = at(x2) for 1 ≤ t ≤ nk+1.

So,

|x1 − x2| ≤
1

q2nk+1

.(3.9)

On the other hand,

qn(y1) ≤ qnk+1+|L1|+···+|Lk+1|(y1) ≤ q1+ε
nk+1

(x1).

Thus,

|f(y1)− f(y2)| = |x1 − x2| ≤ |y1 − y2|1/(1+ε)2 .(3.10)

So, as f is 1/(1 + ε)2-Hölder and ε is arbitrary, we get

Fact 2. dimHEASz(α) ≥ dimHE(α).
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3.3. Hausdorff dimension of E(α). For any n ≥ 1, define

Dn = {(a1, . . . , an) ∈ Nn : (2k)α ≤ ak < (2k + 1)α, 1 ≤ k ≤ n}.
For each n ≥ 1 and (a1, . . . , an) ∈ Dn, we call In(a1, . . . , an) an admissible
cylinder of order n with respect to E(α). Then it is evident that

E(α) =
∞⋂
n=1

⋃
(a1,...,an)∈Dn

cl In(a1, . . . , an),

where “cl” denotes closure. Now we define a set function on all admissible
cylinders by setting

µ(In(a1, . . . , an)) =
1
]Dn

for all n ≥ 1.

By the Carathéodory extension theorem, µ can be extended to a probability
measure supported on E(α).

We will apply the Billingsley Theorem 2.4 to estimate dimHE(α). So
we are led to estimate the µ-measure of arbitrary balls B(x, r) with center
x ∈ E(α) and radius r > 0 small enough.

For each x ∈ E(α), there exists a sequence (a1, a2, . . .) such that for each
n ≥ 1, x ∈ In(a1, . . . , an) and (a1, . . . , an) ∈ Dn. For any 0 < r < 1/9α,
there exists n ≥ 1 such that

|In+1(a1, . . . , an+1)| < r ≤ |In(a1, . . . , an)|.
Then B(x, r) can intersect at most five nth order admissible cylinders and
at least one (n+ 1)th order admissible cylinder. So

log 5µ(In(a1, . . . , an))
log |In+1(a1, . . . , an+1)|

≤ logµ(B(x, r))
log r

≤ logµ(In+1(a1, . . . , an+1))
log |In(a1, . . . , an)|

.

Since

lim
n→∞

log 5µ(In(a1, . . . , an))
log |In+1(a1, . . . , an+1)|

= lim
n→∞

logµ(In+1(a1, . . . , an+1))
log |In(a1, . . . , an)|

=
α− 1

2α
,

it follows that, for each x ∈ E(α),

lim
r→0

logµ(B(x, r))
log r

=
α− 1

2α
.(3.11)

So, by the Billingsley Theorem 2.4, we obtain

Fact 3. dimHE(α) = α−1
2α .

Proof of Theorem 1.3. Facts 1–3 give directly dimH ASz ≥ α−1
2α . Letting

α→∞, we get dimH ASz ≥ 1/2.
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