
ACTA ARITHMETICA

170.4 (2015)

Some new evaluations of the Legendre symbol (
a+b
√
q

p
)

by

Lerna Pehlivan (Halifax) and Kenneth S. Williams (Ottawa)

1. Introduction. The principal positive-definite integral binary quadra-
tic form of discriminant d (< 0) is

pd(x, y) :=

{
x2 − d

4y
2 if d ≡ 0 (mod 4),

x2 + xy + 1−d
4 y2 if d ≡ 1 (mod 4).

It is well-known that if d ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163} and

p is an odd prime such that
(
d
p

)
= 1 then there are integers x and y such

that p = pd(x, y). Moreover the number of such pairs of integers (x, y) is
12 if d = −3,

8 if d = −4,

4 if d = −7,−8,−11,−19,−43,−67,−163,

by a theorem of Dirichlet (see [7]). Knowing the number of such pairs
enables us to specify a unique solution (x, y) to p = pd(x, y) for each
d ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163}. For these d, if A is an inte-
ger such that pd(A, 1) (resp. p−28(A, 1)) if d 6= −7 (resp. d = −7) is an odd
prime q, we show that for odd primes p satisfying

(
d
p

)
=
( q
p

)
= 1 there are

integers r ≡ r(A) and s ≡ s(A) such that the Legendre symbol
( r+s√q

p

)
is

well-defined and nonzero whatever square root of q is taken modulo p, and
we give its value explicitly. We prove nine theorems of this type, one for
each of the nine values of d.

The central element in each of the proofs of our theorems is the law of
quadratic reciprocity in the imaginary quadratic field{

Q(
√
d) if d = −3,−7,−11,−19,−43,−67,−163,

Q(
√
d/4) if d = −4,−8,

of class number 1. This law is due to Dörrie [4] and is stated in Section 2.
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We prove the following theorems in Sections 3–7. In Theorems 1.1–1.9,√
q denotes any solution of the congruence w2 ≡ q (mod p).

Theorem 1.1. (d = −3) Let q = A2 + A + 1 (A ∈ Z) be a prime.
Replacing A by −A − 1 if necessary we may suppose that A ≡ 0 (mod 2).
Let p be an odd prime such that(

−3

p

)
=

(
q

p

)
= 1.

Then there is a unique solution (x, y) ∈ Z2 to p = x2 + xy + y2 satisfying

(1.1) x ≡ 1 (mod 4), y ≡ 3(p−1) (mod 8), (1−(−1)(p−1)/2)x+y > 0.

Further x − Ay 6≡ 0 (mod q), the Legendre symbol
(−2A−1−2√q

p

)
is well-

defined and nonzero, and(
−2A− 1− 2

√
q

p

)
=

(
x−Ay
q

)
.

We remark that A → −A − 1 leaves A2 + A + 1 invariant and changes
2A+ 1→ −(2A+ 1) so that(

−2A− 1− 2
√
q

p

)
→
(

(2A+ 1)− 2
√
q

p

)
=

(
2A+ 1 + 2

√
q

p

)
=

(
−1

p

)(
−2A− 1− 2

√
q

p

)
.

The special case A = −2 of Theorem 1.1 is:

Corollary 1.1.1. (A=−2) Let p be an odd prime with
(−3
p

)
=
(
3
p

)
= 1,

equivalently p ≡ 1 (mod 12). Let (x, y) ∈ Z2 be the unique solution to
p = x2 + xy + y2 satisfying (1.1). Then(

3 + 2
√

3

p

)
=

{
+1 if x− y ≡ 1 (mod 3),

−1 if x− y ≡ 2 (mod 3).

For a prime p ≡ 1 (mod 12) the classical criterion for −3 to be a quartic
residue modulo p is(

−3

p

)
4

= 1 if and only if b ≡ 0 (mod 3),

where p = a2+b2, a odd, b even (see for example [1, Theorem 7.2.1, p. 216]).
Corollary 1.1.1 enables us to give a new criterion for −3 to be a quartic
residue modulo a prime p ≡ 1 (mod 12). As 2(2 +

√
3) = (1 +

√
3)2 we
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have (
3 + 2

√
3

p

)
=

(√
3

p

)(
2 +
√

3

p

)
=

(
3

p

)
4

(
2

p

)
=

(
3

p

)
4

(
−1

p

)
4

=

(
−3

p

)
4

,

so that (
−3

p

)
4

= 1 if and only if x− y ≡ 1 (mod 3).

We can use this result to give another proof of the criterion of Hudson
and Williams [5, Theorem 2, p. 135] for 3 to be a fourth power modulo p,
which was originally proved using cyclotomic numbers of order 6. We define
integers c, d, u and v uniquely by{

p = c2 + 3d2, c ≡ 1 (mod 3), d > 0,

p = u2 + 3v2, u ≡ 1 (mod 4), v > 0.

Clearly, we have

c =

(
−3

u

)
u, u =

(
−4

c

)
c, d = v,

and

u = (−1)(p−1)/4(x+ y/2), v = y/2.

Then (
3

p

)
4

= 1 ⇔
(
−1

p

)
4

=

(
−3

p

)
4

⇔ p ≡ 1 (mod 8), x− y ≡ 1 (mod 3)

or

p ≡ 5 (mod 8), x− y ≡ 2 (mod 3)

⇔ u ≡ 1 (mod 3) ⇔ c = u ⇔ c ≡ 1 (mod 4),

which is the Hudson–Williams criterion.

Our second corollary to Theorem 1.1 evaluates the symbol
(−2A−1−2√q

p

)
when q ≡ 1 (mod 4) in terms of a and b, where p = a2 + 3b2.

Corollary 1.1.2. Let q = A2+A+1 be a prime, where A ≡ 0 (mod 4),
so that q ≡ 1 (mod 4). Let p be an odd prime such that

(−3
p

)
=
( q
p

)
= 1.

Then there are integers a and b such that p = a2 + 3b2 and for any such
pair (a, b) we have(

−2A− 1− 2
√
q

p

)
=

(
a− (2A+ 1)b

q

)
.
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Thus for example with A = 8 we see that if p is an odd prime with(−3
p

)
=
(
73
p

)
= 1 then (

−17− 2
√

73

p

)
=

(
a− 17b

73

)
for any integers a and b with p = a2 + 3b2.

Theorem 1.2. (d = −4) Let q = A2 + 1 (A ∈ N) be an odd prime so
that A ≡ 0 (mod 2) and q ≡ 1 (mod 4). Let p be an odd prime such that(

−4

p

)
=

(
q

p

)
= 1.

Then there are unique integers x and y such that

(1.2) p = x2 + y2, x ≡ 1 (mod 4), y ≡ 1
2(p− 1) (mod 4), y > 0.

Further x − Ay 6≡ 0 (mod q), the Legendre symbol
(A+√q

p

)
is well-defined

and nonzero, and (
A+
√
q

p

)
=

(
x−Ay
q

)
.

Theorem 1.2 is a simple consequence of the rational reciprocity laws of
Burde [3] and Scholz [10]. As p = x2 + y2 (x odd) and q = 12 +A2 (A even),
Burde’s law [9, p. 167] gives(

p

q

)
4

(
q

p

)
4

=

(
x−Ay
q

)
.

As A+
√
q is the fundamental integral unit of Q(

√
q), Scholz’s law [9, p. 167]

gives (
p

q

)
4

(
q

p

)
4

=

(
A+
√
q

p

)
.

Equating these two expressions, we obtain Theorem 1.2.

The special case A = 2 of Theorem 1.2 is:

Corollary 1.2.1. (A = 2) Let p be an odd prime such that
(−4
p

)
=(

5
p

)
= 1, equivalently p ≡ 1, 9 (mod 20). Let (x, y) ∈ Z2 be the unique

solution to p = x2 + y2 satisfying (1.2). Then(
2 +
√

5

p

)
=

(
x− 2y

5

)
.

Corollary 1.2.1 is a theorem of E. Lehmer [8]. The fundamental unit of
the real quadratic field Q(

√
5) is ε5 = (1 +

√
5)/2. We note that ε35 = 2+

√
5
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so that
(
2+
√
5

p

)
=
(
ε5
p

)
. Also{

p ≡ 1 (mod 5) ⇔ (x, y) ≡ (0,±1) or (±1, 0) (mod 5),

p ≡ 4 (mod 5) ⇔ (x, y) ≡ (0,±2) or (±2, 0) (mod 5).

Hence, we have

p ≡ 1 (mod 5), y ≡ 0 (mod 5) or p ≡ 4 (mod 5), x ≡ 0 (mod 5)

⇒ x ≡ ±1 (mod 5), y ≡ 0 (mod 5) or x ≡ 0 (mod 5), y ≡ ±2 (mod 5)

⇒ x− 2y ≡ ±1 (mod 5) ⇒
(
x− 2y

5

)
= 1 ⇒

(
ε5
p

)
= 1,

and similarly

p ≡ 1 (mod 5), x ≡ 0 (mod 5) or p ≡ 4 (mod 5), y ≡ 0 (mod 5)

⇒
(
ε5
p

)
= −1.

These two assertions comprise Lehmer’s theorem.
Since p−7(A, 1) = A2 +A+ 2 is always even, it cannot represent an odd

prime. Thus in Theorem 1.3 we use p−28(A, 1) = A2+7 in place of p−7(A, 1).

Theorem 1.3. (d = −7) Let q = A2 + 7 (A ∈ N ∪ {0}) be a prime (so
that A ≡ 0 (mod 2) and q ≡ 3 (mod 4)). Let p be an odd prime such that(

−7

p

)
=

(
q

p

)
= 1.

If p ≡ 1 (mod 4) there is a unique solution (x, y) ∈ Z2 to p = x2 + 7y2

satisfying

x ≡ 1 (mod 4), y ≡ 1
2(p− 1) (mod 4), y > 0.(1.3)

If p ≡ 3 (mod 4) there is a unique solution (x, y) ∈ Z2 to p = x2 + 7y2

satisfying

x ≡ 1
2(p− 7) (mod 4), x > 0, y ≡ 1 (mod 4).(1.4)

Further x − Ay 6≡ 0 (mod q), the Legendre symbol
(A+√q

p

)
is well-defined

and nonzero, and(
A+
√
q

p

)
= (−1)(p−1)(q−3)/8

(
x−Ay
q

)
.

The special case A = 0 gives a criterion for 7 to be a quartic residue
modulo p in terms of the residue of x (mod 7) where p = x2+7y2. Criteria for
the quartic reciprocity of 7 modulo a prime p were first given by Bickmore [2].
These were in terms of the representation p = a2 + b2 (see [1, pp. 230–231]).
Another criterion for 7 to be a fourth power modulo a prime p ≡ 1 (mod 28)
was given by Hudson and Williams [6].



366 L. Pehlivan and K. S. Williams

The special case A = 2 is:

Corollary 1.3.1. (A = 2) Let p be an odd prime such that
(−7
p

)
=(

11
p

)
= 1. Let (x, y) ∈ Z2 be the unique solution to p = x2 + 7y2 specified

in (1.3) if p ≡ 1 (mod 4) and in (1.4) if p ≡ 3 (mod 4). Then(
2 +
√

11

p

)
=

{
+1 if x− 2y ≡ 1, 3, 4, 5, 9 (mod 11),

−1 if x− 2y ≡ 2, 6, 7, 8, 10 (mod 11).

Theorem 1.4. (d = −8) Let q = A2 + 2 (A ∈ N) be an odd prime (so
that A ≡ 1 (mod 2) and q ≡ 3 (mod 8)). Replace A by −A if necessary so
that A ≡ 1 (mod 4). Let p be an odd prime such that(

−8

p

)
=

(
q

p

)
= 1.

Then there is a unique solution (x, y) ∈ Z2 to p = x2 + 2y2 satisfying

(1.5) x ≡ 1 (mod 4), y ≡
{

0 (mod 2), y > 0, if p ≡ 1 (mod 8),

3 (mod 4) if p ≡ 3 (mod 8).

Further x − Ay 6≡ 0 (mod q), the Legendre symbol
(A+√q

p

)
is well-defined

and nonzero, and (
A+
√
q

p

)
= (−1)(p+1)y/4

(
x−Ay
q

)
.

The special case A = 1 is:

Corollary 1.4.1. (A = 1) Let p be an odd prime such that
(−8
p

)
=(

3
p

)
= 1, equivalently p ≡ 1, 11 (mod 24). Let (x, y) ∈ Z2 be the unique

solution to p = x2 + 2y2 satisfying (1.5). If p ≡ 1 (mod 24) then(
1 +
√

3

p

)
=

{
+1 if x− y ≡ 1, 11 (mod 12),

−1 i f x− y ≡ 5, 7 (mod 12),

and if p ≡ 11 (mod 24) then(
1 +
√

3

p

)
=

{
+1 if y ≡ 1 (mod 3),

−1 if y ≡ 2 (mod 3).

Theorem 1.5. (d = −11) Let q = A2 + A + 3 (A ∈ Z) be a prime.
Replace A by −A − 1 if necessary so that A ≡ 0 (mod 2). Let p be an odd
prime such that (

−11

p

)
=

(
q

p

)
= 1.

Then there is a unique solution (x, y) ∈ Z2 of p = x2 + xy + 3y2 satisfying

(1.6) x ≡ 1 (mod 4), y ≡ 1− p (mod 8), (1− (−1)(p−1)/2)x+ y > 0,
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or

x ≡ 3− p (mod 8), y ≡ 1 (mod 4).(1.7)

Further x−Ay 6≡ 0 (mod q), the Legendre symbol
(2A+1+2

√
q

p

)
is well-defined

and nonzero, and(
2A+ 1 + 2

√
q

p

)
=

{
(−1)(p−1)/2

(x−Ay
q

)
if (1.6) holds,

(−1)(p+1)(q+1)/4−1(x−Ay
q

)
if (1.7) holds.

The next corollary is the special case A = −2.

Corollary 1.5.1. (A = −2) Let p be an odd prime such that
(−11

p

)
=(

5
p

)
= 1. Let (x, y) ∈ Z2 be the unique solution of p = x2 + xy + 3y2 given

by (1.6) or (1.7). Then(
3 + 2

√
5

p

)
=

(
x+ 2y

5

)
=

{
+1 if x+ 2y ≡ ±1 (mod 5),

−1 if x+ 2y ≡ ±2 (mod 5).

If we impose the requirement that q ≡ 1 (mod 4) then (−1)(p+1)(q+1)/4−1

= (−1)(p−1)/2 and Theorem 1.5 gives the following result.

Corollary 1.5.2. Let q = A2 +A+ 3 be a prime where A ≡ 2 (mod 4)
so that q ≡ 1 (mod 4). Let p be an odd prime such that

(−11
p

)
=
( q
p

)
= 1.

Then there are integers a and b such that 4p = a2 + 11b2 and for any such
pair (a, b) we have(

−2A− 1 + 2
√
q

p

)
=

(
(a− (2A+ 1)b)/2

q

)
.

In particular with A = −2 we have(
3 + 2

√
5

p

)
= −

(
a− 2b

5

)
for any integers a and b with 4p = a2 + 11b2.

Theorem 1.6. (d = −19) Let q = A2 + A + 5 be a prime (A ∈ Z).
Replace A by −A− 1 if necessary so that A ≡ 0 (mod 2). Let p be an odd
prime such that (

−19

p

)
=

(
q

p

)
= 1.

Then there is a unique solution (x, y) ∈ Z2 of p = x2 + xy + 5y2 satisfying

(1.8) x ≡ 1 (mod 4), y ≡ 1− p (mod 8), (1− (−1)(p−1)/2)x+ y > 0,

or

x ≡ 5− p (mod 8), y ≡ 1 (mod 4).(1.9)
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Further x−Ay 6≡ 0 (mod q), the Legendre symbol
(2A+1+2

√
q

p

)
is well-defined

and nonzero, and(
2A+ 1 + 2

√
q

p

)
=

{
(−1)(p−1)/2

(x−Ay
q

)
if (1.8) holds,

(−1)(p+1)(q+1)/4−1(x−Ay
q

)
if (1.9) holds.

The next corollary results from imposing the condition q ≡ 1 (mod 4)
in Theorem 1.6.

Corollary 1.6.1. Let q = A2 +A+ 5 be a prime where A ≡ 0 (mod 4)
so that q ≡ 1 (mod 4). Let p be an odd prime such that

(−19
p

)
=
( q
p

)
= 1.

Then there are integers a and b such that 4p = a2 + 19b2 and for any such
pair (a, b) we have(

−2A− 1 + 2
√
q

p

)
=

(
(a− (2A+ 1)b)/2

q

)
.

In particular with A = −4 we have(
7 + 2

√
17

p

)
=

(
a+ 7b

17

)
,

for any integers a and b with 4p = a2 + 19b2.

Theorem 1.7. (d = −43) Let q = A2 + A + 11 (A ∈ Z) be a prime.
Replace A by −A− 1 if necessary so that A ≡ 0 (mod 2). Let p be an odd
prime such that (

−43

p

)
=

(
q

p

)
= 1.

Then there is a unique solution (x, y) ∈ Z2 of p = x2 + xy+ 11y2 satisfying

(1.10) x ≡ 1 (mod 4), y ≡ 1−p (mod 8), (1−(−1)(p−1)/2)x+y > 0,

or

x ≡ 3− p (mod 8), y ≡ 1 (mod 4).(1.11)

Further x−Ay 6≡ 0 (mod q), the Legendre symbol
(2A+1+2

√
q

p

)
is well-defined

and nonzero, and(
2A+ 1 + 2

√
q

p

)
=

{
(−1)(p−1)/2

(x−Ay
q

)
if (1.10) holds,

(−1)(p+1)(q+1)/4−1(x−Ay
q

)
if (1.11) holds.

Corollary 1.7.1. Let q = A2+A+11 be a prime where A ≡ 2 (mod 4)
so that q ≡ 1 (mod 4). Let p be an odd prime such that

(−43
p

)
=
( q
p

)
= 1.
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Then there are integers a and b such that 4p = a2 + 43b2 and for any such
pair (a, b) we have(

−2A− 1 + 2
√
q

p

)
=

(
(a− (2A+ 1)b)/2

q

)
.

In particular with A = −2 we have(
3 + 2

√
13

p

)
= −

(
a+ 3b

13

)
,

for any integers a and b with 4p = a2 + 43b2.

Theorem 1.8. (d = −67) Let q = A2 + A + 17 (A ∈ Z) be a prime.
Replace A by −A− 1 if necessary so that A ≡ 0 (mod 2). Let p be an odd
prime such that (

−67

p

)
=

(
q

p

)
= 1.

Then there is a unique solution (x, y) ∈ Z2 of p = x2 + xy + 17y2 satisfy-
ing

(1.12) x ≡ 1 (mod 4), y ≡ 1−p (mod 8), (1−(−1)(p−1)/2)x+y > 0,

or

x ≡ 1− p (mod 8), y ≡ 1 (mod 4).(1.13)

Further x−Ay 6≡ 0 (mod q), the Legendre symbol
(2A+1+2

√
q

p

)
is well-defined

and nonzero, and(
2A+ 1 + 2

√
q

p

)
=

{
(−1)(p−1)/2

(x−Ay
q

)
if (1.12) holds,

(−1)(p+1)(q+1)/4−1(x−Ay
q

)
if (1.13) holds.

For q ≡ 1 (mod 4), Theorem 1.8 yields the following corollary.

Corollary 1.8.1. Let q = A2+A+17 be a prime where A ≡ 0 (mod 4)

so that q ≡ 1 (mod 4). Let p be an odd prime such that
(−67

p

)
=
( q
p

)
= 1.

Then there are integers a and b such that 4p = a2 + 67b2 and for any such
pair (a, b) we have(

−2A− 1 + 2
√
q

p

)
=

(
(a− (2A+ 1)b)/2

q

)
.

In particular with A = −4 we have(
7 + 2

√
29

p

)
= −

(
a+ 7b

29

)
for any integers a and b with 4p = a2 + 67b2.
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Theorem 1.9. (d = −163) Let q = A2 + A + 41 (A ∈ Z) be a prime.
Replace A by −A− 1 if necessary so that A ≡ 0 (mod 2). Let p be an odd
prime such that (

−163

p

)
=

(
q

p

)
= 1.

Then there is a unique solution (x, y) ∈ Z2 of p = x2 + xy+ 41y2 satisfying

(1.14) x ≡ 1 (mod 4), y ≡ 1− p (mod 8), (1− (−1)(p−1)/2)x+ y > 0,

or

x ≡ 1− p (mod 8), y ≡ 1 (mod 4).(1.15)

Further x−Ay 6≡ 0 (mod q), the Legendre symbol
(2A+1+2

√
q

p

)
is well-defined

and nonzero, and(
2A+ 1 + 2

√
q

p

)
=

{
(−1)(p−1)/2

(x−Ay
q

)
if (1.14) holds,

(−1)(p+1)(q+1)/4−1(x−Ay
q

)
if (1.15) holds.

We impose the condition q ≡ 1 (mod 4) in Theorem 1.9 to obtain our
final corollary.

Corollary 1.9.1. Let q = A2+A+41 be a prime where A ≡ 0 (mod 4)
so that q ≡ 1 (mod 4). Let p be an odd prime such that

(−163
p

)
=
( q
p

)
= 1.

Then there are integers a and b such that 4p = a2 + 163b2 and for any such
pair (a, b) we have(

−2A− 1 + 2
√
q

p

)
=

(
(a− (2A+ 1)b)/2

q

)
.

In particular with A = −4 we have(
7 + 2

√
53

p

)
= −

(
a+ 7b

53

)
for any integers a and b with 4p = a2 + 163b2.

For an overview of evaluations of the Legendre symbol
(a+b√q

p

)
, see [1]

and [9].

2. Dörrie’s law of quadratic reciprocity. Let K denote an imagi-
nary quadratic field. Let OK denote the ring of integers of K. We assume
that OK is a unique factorization domain. Stark [11], [12] has shown that
this occurs only for the nine imaginary quadratic fields K = Q(

√
−1),

Q(
√
−2), Q(

√
−3), Q(

√
−7), Q(

√
−11), Q(

√
−19), Q(

√
−43), Q(

√
−67) and

Q(
√
−163). We have OK = Z + Zω, where

ω =

{√
m if m = −1,−2,

1+
√
m

2 if m = −3,−7,−11,−19,−43,−67,−163.
(2.1)
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Let π be a prime of OK with (π, 2) = 1. For α ∈ OK with (π, α) = 1 we
define the symbol

[
α
π

]
of quadratic reciprocity (mod π) in OK by[

α

π

]
=


1 if the congruence β2 ≡ α (mod π)

is solvable for some β ∈ OK ,

−1 otherwise.

(2.2)

Now let π = a + bω (a, b ∈ Z) and κ = c + dω (c, d ∈ Z) be two primes
in OK with ππ̄ = p and κκ̄ = q, where p and q are distinct odd rational
primes.

Define nonnegative integers B,D andH, and odd integers b′, d′ and h′, by

b = 2Bb′, d = 2Dd′, ad− bc = 2Hh′.(2.3)

Dörrie’s law of quadratic reciprocity for OK [4] states that[
π

κ

][
κ

π

]
= π1κ1,(2.4)

where

π1 = (−1)(B+H) p
2−1
8

+( b
′−1
2

+−h′−1
2

) p−1
2 ,(2.5)

κ1 = (−1)(D+H) q
2−1
8

+( d
′−1
2

+h′−1
2

) q−1
2 .(2.6)

Since (p2 − 1)/8, (p− 1)/2, (q2 − 1)/8 and (q − 1)/2 are specified mod-
ulo 2, if p and q are known modulo 8, we can simplify the expression for
π1κ1 given by multiplying (2.5) and (2.6) together (see Table 1).

Table 1. Values of π1κ1

p q π1κ1 p q π1κ1

(mod 8) (mod 8) (mod 8) (mod 8)

1 1 1 5 1 (−1)B+H

1 3 (−1)D+H+ d′−1
2

+h′−1
2 5 3 (−1)B+D+ d′−1

2
+h′−1

2

1 5 (−1)D+H 5 5 (−1)B+D

1 7 (−1)
d′−1

2
+h′−1

2 5 7 (−1)B+H+ d′−1
2

+h′−1
2

3 1 (−1)B+H+ b′−1
2

+h′+1
2 7 1 (−1)

b′−1
2

+h′+1
2

3 3 (−1)B+D+ b′−1
2

+ d′+1
2 7 3 (−1)D+H+ b′−1

2
+ d′+1

2

3 5 (−1)B+D+ b′−1
2

+h′+1
2 7 5 (−1)D+H+ b′−1

2
+h′+1

2

3 7 (−1)B+H+ b′−1
2

+ d′+1
2 7 7 (−1)

b′−1
2

+ d′+1
2

3. Proof of Theorem 1.1. As p ≡ 1 (mod 3), there are integers x and
y such that p = x2 + xy + y2. By Dirichlet’s theorem [7] there are 12 such
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pairs (x, y). If (x, y) is one of these solutions, all of them are
(x, y), (x+ y,−x), (y,−x− y),

(−x,−y), (−x− y, x), (−y, x+ y),

(y, x), (x+ y,−y), (x,−x− y),

(−y,−x), (−x− y, y), (−x, x+ y).

(3.1)

As p is odd, at least one of x and y is odd. Replacing (x, y) by (y, x)
if necessary we may take x to be odd. Replacing (x, y) by (x,−x − y) if
necessary we may suppose that y is even. Replacing (x, y) by (−x,−y) if
necessary we may suppose that x ≡ 1 (mod 4). If p ≡ 1 (mod 4) then y ≡ 0
(mod 4) so replacing (x, y) by (x+ y,−y) if necessary we may suppose that
y > 0. If p ≡ 3 (mod 4) then y ≡ 2 (mod 4) so replacing (x, y) by (−x−y, y)
if necessary we may suppose that 2x+ y > 0. Thus p = x2 + xy + y2 has a
solution (x, y) ∈ Z2 satisfying

x ≡ 1 (mod 4), y ≡ p− 1 (mod 4),

(
1−

(
−1

p

))
x+ y > 0.

Reducing p = x2 + xy + y2 modulo 8, we obtain p ≡ 1 + 3y (mod 8),
so that y ≡ 3(p − 1) (mod 8). It is easily seen from (3.1) that the solution
(x, y) determined in this manner is unique. This proves (1.1).

Let (x, y) be the unique solution of p = x2 + xy + y2 satisfying (1.1).
Suppose x − Ay ≡ 0 (mod q). Then p = x2 + xy + y2 ≡ (A2 + A + 1)y2 =
qy2 ≡ 0 (mod q), so, as p and q are both primes, we have p = q. This
contradicts

( q
p

)
= 1. Hence x−Ay 6≡ 0 (mod q).

As
( q
p

)
= 1, the congruence w2 ≡ q (mod p) is solvable and has exactly

two solutions modulo p, namely w and −w. Since we are writing
√
q for one

of these solutions, the other solution is −√q. As(
2A+ 1 + 2

√
q

p

)(
2A+ 1− 2

√
q

p

)
=

(
(2A+ 1)2 − 4q

p

)
=

(
−3

p

)
= 1,

we see that 2A+ 1± 2
√
q 6≡ 0 (mod p) and(

2A+ 1 + 2
√
q

p

)
=

(
2A+ 1− 2

√
q

p

)
.

Hence
(2A+1+2

√
q

p

)
is well-defined and nonzero.

We now work in the ring of integers of the imaginary quadratic field

Q(
√
−3). This ring is OQ(

√
−3) = Z + Zω, where ω = 1+

√
−3

2 . It is a unique
factorization domain. Let π = x + yω ∈ Z + Zω and κ = A + ω ∈ Z + Zω.
Then N(π) = N(x + yω) = x2 + xy + y2 = p and N(κ) = N(A + ω) =
A2 + A + 1 = q. By Dörrie’s law of quadratic reciprocity in Z + Zω, we
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have [
π

κ

][
κ

π

]
= π1κ1,

where π1κ1 is given in Table 1. Here in the notation of (2.3) we have

a = x, b = y, c = A, d = 1, ad− bc = x−Ay,
so

2B ‖ y, b′ = y/2B, D = 0, d′ = 1, H = 0, h′ = x−Ay ≡ 1 (mod 4).

As y ≡ 3(p− 1) (mod 8), we have
B ≥ 3 if p ≡ 1 (mod 8),

B = 2 if p ≡ 5 (mod 8),

B = 1, b′ ≡ 1 (mod 4) if p ≡ 7 (mod 8).

Then from Table 1 we deduce π1κ1 = (−1)(p−1)/2 so that[
π

κ

][
κ

π

]
=

(
−1

p

)
.

As
(−3
p

)
= 1, there is an integer v such that v2 ≡ −3 (mod p). Now

2(2A+ 1 + v)(2A+ 1 + 2w) ≡ (2A+ 1 + v + 2w)2 (mod p)

so (
2

p

)(
2A+ 1 + v

p

)(
2A+ 1 + 2w

p

)
= 1.

Hence(
2A+ 1 + 2

√
q

p

)
=

(
2A+ 1 + 2w

p

)
=

(
2

p

)(
2A+ 1 + v

p

)
=

(
A+ 1+v

2

p

)
=

[
A+ ω

x+ yω

]
=

(
−1

p

)[
x+ yω

A+ ω

]
=

(
−1

p

)[
x−Ay
A+ ω

]
=

(
−1

p

)(
x−Ay
q

)
,

which gives the asserted formula. Theorem 1.1 is proved.

Proof of Corollary 1.1.2. Let (x, y) be the unique solution to p = x2 +
xy + y2 satisfying (1.1). As y ≡ 3(p − 1) (mod 8), we have y ≡ 0 (mod 2).
Define integers a and b by

a = x+ y/2, b = y/2

so that

p = a2 + 3b2.(3.2)
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Now x−Ay = a− b− 2Ab = a− (2A+ 1)b so that by Theorem 1.1 we have(
−2A− 1− 2

√
q

p

)
=

(
a− (2A+ 1)b

q

)
.

As (a, b), (a,−b), (−a, b), (−a,−b) are all the solutions of (3.2), and
(−1
q

)
=(p

q

)
= 1, we have(

a− (2A+ 1)b

q

)
=

(
a+ (2A+ 1)b

q

)
=

(
−a− (2A+ 1)b

q

)
=

(
−a+ (2A+ 1)b

q

)
and the corollary follows.

4. Proof of Theorem 1.2. As p ≡ 1 (mod 4), there are integers x and
y such that p = x2 + y2. By Dirichlet’s theorem there are eight solutions
(x, y) ∈ Z2 of p = x2 + y2. Let (x, y) be one of these solutions. Then all of
them are {

(x, y), (−x, y), (x,−y), (−x,−y),

(y, x), (−y, x), (y,−x), (−y,−x).
(4.1)

As p is odd, exactly one of x and y is odd. Replacing (x, y) by (y, x) if
necessary we may suppose that x is odd and y is even. Replacing (x, y) by
(−x, y) if necessary we may suppose that x ≡ 1 (mod 4). Then replacing
(x, y) by (x,−y) if necessary we may suppose that y > 0, so that the solution
satisfies (1.2). Appealing to (4.1) we easily see that this solution is unique.
Taking p = x2 + y2 modulo 8, as x ≡ 1 (mod 4) and y ≡ 0 (mod 2), we
obtain y ≡ 1

2(p− 1) (mod 4).
Let (x, y) ∈ Z2 be the unique solution to p = x2 + y2 satisfying (1.2).

Suppose x − Ay ≡ 0 (mod q). Then p = x2 + y2 ≡ (A2 + 1)y2 = qy2 ≡ 0
(mod q), so, as p and q are both primes, we have p = q, contradicting( q
p

)
= 1. Hence x−Ay 6≡ 0 (mod q).

As
( q
p

)
= 1, the congruence w2 ≡ q (mod p) is solvable and has precisely

two solutions modulo p, namely w and −w. Since we are writing
√
q for one

of these solutions, the other is −√q. Now(
A+
√
q

p

)(
A−√q

p

)
=

(
A2 − q
p

)
=

(
−1

p

)
= 1,

so that A±√q 6≡ 0 (mod p) and(
A+
√
q

p

)
=

(
A−√q

p

)
.

Hence
(A+√q

p

)
is well-defined and nonzero.
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We now make use of the arithmetic of the ring of integers of the imaginary
quadratic field Q(

√
−1). This ring is OQ(

√
−1) = Z + Zi. It is a unique

factorization domain. Let π = x+yi ∈ Z+Zi and κ = A+ i ∈ Z+Zi. Then

N(π) = x2 + y2 = p, N(π) = A2 + 1 = q.

By Dörrie’s law of quadratic reciprocity in Z + Zi, we have[
π

κ

][
κ

π

]
= π1κ1,

where π1κ1 is given in Table 1.

Here in the notation of (2.3) we have

a = x, b = y, c = A, d = 1, ad− bc = x−Ay,
so

2B ‖ y, b′ = y/2B, D = 0, d′ = 1, H = 0, h′ = x−Ay ≡ 1 (mod 4).

As y ≡ 1
2(p− 1) (mod 4), we have{

B ≥ 2 if p ≡ 1 (mod 8),

B = 1 if p ≡ 5 (mod 8).

Then from Table 1 we deduce

π1κ1 = (−1)(p−1)/4

so that [
π

κ

][
κ

π

]
=

(
2

p

)
.(4.2)

As
(−1
p

)
= 1, there is an integer v such that v2 ≡ −1 (mod p). Recall that

w2 ≡ q (mod p). Now

2(A+ v)(A+ w) ≡ (A+ v + w)2 (mod p),

so (
2

p

)(
A+ v

p

)(
A+ w

p

)
= 1.

Hence, appealing to (4.2), we obtain(
A+
√
q

p

)
=

(
A+ w

p

)
=

(
2

p

)(
A+ v

p

)
=

(
2

p

)[
A+ i

x+ yi

]
=

(
2

p

)[
κ

π

]
=

[
π

κ

]
=

[
x+ yi

A+ i

]
=

[
x−Ay
A+ i

]
=

(
x−Ay
q

)
,

as asserted.
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5. Proof of Theorem 1.3. As
(−7
p

)
= 1, there are integers u and v

such that p = u2 + uv + 2v2. Set r = 2u + v ∈ Z and s = v ∈ Z so that
4p = r2+7s2. Hence, as p is odd, we have r2+7s2 ≡ 4 (mod 8), so r ≡ s ≡ 0
(mod 2). Set r = 2x and s = 2y, where x, y ∈ Z. Then p = x2 + 7y2. It is
easily checked that the only solutions to p = x2 + 7y2 are

(x, y), (x,−y), (−x, y), (−x,−y).(5.1)

If p ≡ 1 (mod 4) then x ≡ 1 (mod 2) and y ≡ 0 (mod 2) and a unique
solution is given by (1.3). If p ≡ 3 (mod 4) then x ≡ 0 (mod 2) and y ≡ 1
(mod 2) and a unique solution is given by (1.4). Taking p = x2 + 7y2 mod-
ulo 8, we obtain{

y ≡ 1
2(p− 1) (mod 4) if p ≡ 1 (mod 4),

x ≡ 1
2(p− 7) (mod 4) if p ≡ 3 (mod 4).

Let (x, y) be the unique solution of p = x2 + 7y2 given by (1.3) if p ≡ 1
(mod 4) and by (1.4) if p ≡ 3 (mod 4). It is easy to check that x− Ay 6≡ 0

(mod q) and
(A+√q

p

)
=
(A−√q

p

)
6= 0.

We now make use of the arithmetic of the ring of integers of the imag-
inary quadratic field Q(

√
−7). This ring is OQ(

√
−7) = Z + Zω, where

ω = (1 +
√
−7)/2. It is a unique factorization domain. Let π = x+ y

√
−7 =

x− y + 2yω ∈ Z + Zω and κ = A+
√
−7 = A− 1 + 2ω ∈ Z + Zω. We have

N(π) = x2 + 7y2 = p and N(κ) = A2 + 7 = q. In the notation of (2.3) we
have

a = x− y, b = 2y = 2Bb′, c = A− 1, d = 2 = 2Dd′,

ad− bc = 2(x−Ay) = 2Hh′,

so that

2B−1 ‖ y, b′ =
y

2B−1
, D = d′ = 1, 2H−1 ‖x−Ay, h′ =

x−Ay
2H−1

.

Suppose first that p ≡ 1 (mod 4). In this case x ≡ 1 (mod 4) and y ≡ 0
(mod 2), so x−Ay ≡ 1 (mod 4) and thus

H = 1, h′ = x−Ay ≡ 1 (mod 4).

From y ≡ 1
2(p− 1) (mod 4) we deduce that{

B ≥ 3 if p ≡ 1 (mod 8),

B = 2 if p ≡ 5 (mod 8).

Appealing to Table 1 for the cases (p, q) ≡ (1, 3), (1, 7), (5, 3) and (5, 7)



New evaluations of the Legendre symbol 377

(mod 8), we obtain

π1κ1 = (−1)(p−1)/4 if p ≡ 1 (mod 4).(5.2)

Now suppose that p ≡ 3 (mod 4). In this case x ≡ 0 (mod 2) and y ≡ 1
(mod 4), so

B = 1, b′ = y ≡ 1 (mod 4).

Also x− Ay ≡ 0 (mod 2) and thus H ≥ 2. From x ≡ 1
2(p− 7) (mod 4), we

deduce that {
x ≡ 2 (mod 4) if p ≡ 3 (mod 8),

x ≡ 0 (mod 4) if p ≡ 7 (mod 8).

Taking q = A2 + 7 modulo 8, we get{
A ≡ 2 (mod 4) if q ≡ 3 (mod 8),

A ≡ 0 (mod 4) if q ≡ 7 (mod 8).

Thus {
x−Ay ≡ 0 (mod 4) if p ≡ q (mod 8),

x−Ay ≡ 2 (mod 4) if p 6≡ q (mod 8).

Hence {
H ≥ 3 if p ≡ q (mod 8),

H = 2 if p 6≡ q (mod 8).

Appealing to Table 1 for the cases (p, q) = (3, 3), (3, 7), (7, 3) and (7, 7)
(mod 8), we obtain

π1κ1 = (−1)(p+q−2)/4 if p ≡ 3 (mod 4).(5.3)

In view of (5.2) and (5.3) set

ε :=

{
(−1)(p−1)/4 if p ≡ 1 (mod 4),

(−1)(p+q−2)/4 if p ≡ 3 (mod 4),

so that by Dörrie’s law of quadratic reciprocity we have[
π

κ

][
κ

π

]
= ε.(5.4)

An examination of cases yields(
2

p

)
ε = (−1)(p−1)(q−3)/8.(5.5)

As
(−7
p

)
=
( q
p

)
= 1 there are integers v and w such that v2 ≡ −7 (mod p)

and w2 ≡ q (mod p). As

2(A+ v)(A+ w) ≡ (A+ v + w)2 (mod p),
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we have (
2

p

)(
A+ v

p

)(
A+ w

p

)
= 1.

Hence, appealing to (5.4) and (5.5), we deduce(
A+
√
q

p

)
=

(
A+ w

p

)
=

(
2

p

)(
A+ v

p

)
=

(
2

p

)[
A+
√
−7

x+ y
√
−7

]
=

(
2

p

)[
κ

π

]
=

(
2

p

)
ε

[
π

κ

]
= (−1)(p−1)(q−3)/8

[
x+ y

√
−7

A+
√
−7

]
= (−1)(p−1)(q−3)/8

[
x−Ay
A+
√
−7

]
= (−1)(p−1)(q−3)/8

(
x−Ay
q

)
,

as asserted.

6. Proof of Theorem 1.4. As
(−8
p

)
= 1, there are integers x and y

such that p = x2 + 2y2. By Dirichlet’s theorem there are four solutions
(x, y) ∈ Z2 to p = x2 + 2y2. If one of these is (x, y), all four of them are

(x, y), (x,−y), (−x, y), (−x,−y).

Clearly x ≡ 1 (mod 2) and y ≡ 1
2(p − 1) (mod 2). The existence and

uniqueness of the solution satisfying (1.5) now follows easily.

The rest of the proof goes as for Theorems 1.1–1.3. Here we use π =
x + y

√
−2 ∈ Z + Z

√
−2 and κ = A +

√
−2 ∈ Z + Z

√
−2 so that N(π) = p

and N(κ) = q. Dörrie’s law of quadratic reciprocity in Z + Z
√
−2 yields[

π

κ

][
κ

π

]
= π1κ1 =

{
(−1)y/2 if p ≡ 1 (mod 8),

1 if p ≡ 3 (mod 8),

and we continue as before.

7. Proofs of Theorems 1.5–1.9

Proof of Theorem 1.5. As
(−11

p

)
= 1, there are integers x and y such

that p = x2 + xy + 3y2. By Dirichlet’s theorem there are four solutions
(x, y) ∈ Z2 to p = x2 +xy+ 3y2. If one of these is (x, y), all four of them are

(x, y), (−x,−y), (−x− y, y), (x+ y,−y).

Clearly x and y are not both even as p is odd. If x and y are both odd, we can
replace (x, y) by (x+ y,−y) if necessary to obtain x ≡ 0 (mod 2) and y ≡ 1
(mod 2). Then replacing (x, y) by (−x,−y) if necessary we get a solution
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with x ≡ 0 (mod 2) and y ≡ 1 (mod 4). Then, from p = x2 + xy + 3y2

modulo 8, we deduce that x ≡ 3− p (mod 8). If x is odd and y is even, we
can replace (x, y) by (−x,−y) if necessary to ensure that x ≡ 1 (mod 4).
Then, from p = x2 + xy+ 3y2 modulo 8, we deduce that y ≡ 1− p (mod 8).
If p ≡ 1 (mod 4), so that y ≡ 0 (mod 4), we replace (x, y) by (x+ y,−y) if
necessary so that y > 0. If p ≡ 3 (mod 4), so that y ≡ 2 (mod 4), we replace
(x, y) by (−x− y, y) if necessary so that 2x+ y > 0. The uniqueness of the
determined solution follows easily.

The rest of the proof proceeds as in the previous theorems. Here we use
π = x+ yω ∈ Z + Zω and κ = A+ ω ∈ Z + Zω, where ω = (1 +

√
−11)/2,

so that N(π) = p and N(κ) = q. Dörrie’s law of quadratic reciprocity in
Z + Zω yields[

π

κ

][
κ

π

]
=

{
(−1)(p−1)/2 if (1.6) holds,

(−1)(p+1)(q+1)/4−1 if (1.7) holds,

and the remainder of the proof proceeds as in Theorem 1.1.

Proof of Corollary 1.5.2. As
(−11

p

)
= 1, there are integers a and b such

that 4p = a2 + 11b2. Moreover the only such pairs are (a, b), (a,−b), (−a, b)
and (−a,−b). As

( q
p

)
= 1 and q ≡ 1 (mod 4), by the law of quadratic

reciprocity we have
(p
q

)
= 1. Then it is easy to check that(

a− (2A+ 1)b

q

)
=

(
a+ (2A+ 1)b

q

)
=

(
−a+ (2A+ 1)b

q

)
=

(
−a− (2A+ 1)b

q

)
,

so
(a−(2A+1)b

q

)
is independent of the choice of (a, b). Choose a = 2x+ y and

b = y. By Theorem 1.5 we have(
2A+ 1 + 2

√
q

p

)
= (−1)(p−1)/2

(
x−Ay
q

)
,

so as a− (2A+ 1)b = 2(x−Ay) we deduce(
−2A− 1 + 2

√
q

p

)
=

(
(a− (2A+ 1)b)/2

q

)
,

as claimed.

Proofs of Theorems 1.6–1.9 . The proofs are very similar to that of The-
orem 1.5 and we omit them.

Acknowledgments. We thank the referee for his/her helpful sugges-
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[10] A. Scholz, Über die Lösbarkeit der Gleichung t2 −Du2 = −4, Math. Z. 39 (1935),
95–111.

[11] H. M. Stark, A complete determination of the complex quadratic fields of class-
number one, Michigan Math. J. 14 (1967), 1–27.

[12] H. M. Stark, On the “gap” in a theorem of Heegner , J. Number Theory 1 (1969),
16–27.

Lerna Pehlivan
Department of Mathematics and Statistics
Dalhousie University
Halifax, Nova Scotia, Canada B3H 4R2
E-mail: lr608779@dal.ca

Kenneth S. Williams
Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada K1S 5B6
E-mail: kennethwilliams@cunet.carleton.ca

Received on 6.12.2014
and in revised form on 29.7.2015 (8022)

http://dx.doi.org/10.2140/pjm.1980.91.135
http://dx.doi.org/10.1007/BF02760807
http://dx.doi.org/10.1007/BF01201346
http://dx.doi.org/10.1307/mmj/1028999653
http://dx.doi.org/10.1016/0022-314X(69)90023-7

	1 Introduction
	2 Dörrie's law of quadratic reciprocity
	3 Proof of Theorem 1.1
	4 Proof of Theorem 1.2
	5 Proof of Theorem 1.3
	6 Proof of Theorem 1.4
	7 Proofs of Theorems 1.5–1.9
	References

