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On the Dirichlet characters of polynomials
in several variables

by

WENPENG ZHANG and ZHEFENG XU (Xi’an)

1. Introduction. Let ¢ > 3 be an integer and x a Dirichlet character
modulo ¢. It is a very important problem in analytic number theory to
obtain a sharp upper bound for the character sum

N+H

> x(f@),

r=N+1

where f(x) is a polynomial. If ¢ = p is an odd prime, it is a well known
consequence of the theorem, due to Weil (see [2]), stating that the Riemann
Hypothesis is true for the zeta-function of an algebraic function field over a
finite field, that if x is a gth-order character to a prime modulus p, and if
f(z) is not a perfect gth power (mod p), then

N+H
(1) > x(f(x)) < p'/*logp,

r=N+1
where A < B denotes |A| < kB for some constant & which in this case
depends on the degree of f. The estimate (1) is the best possible. In fact,
the first author [8] proved the following:

Let ¢ > 3 be an integer, x a primitive character modulo ¢, and m and

n two positive integers such that x™, x" and x™ " are also primitive char-
acters modulo ¢. Then for any integers r and s with (r — s,q) = 1, we have
the identity

2) > xla=n"(a =) = va.
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It is clear that the character sums in (2) can be viewed as Jacobi sums
with Dirichlet characters. So the identity (2) provided a new evaluation for
the absolute value of some Jacobi sums. In [7], the first author obtained an
interesting evaluation formula for this Jacobi sum, by proving the following
identity:

q

> x((a=r)"(a—s)")
a=1
= Vax((sm —rm)™(rn —sn)")xX((m +n)™").

For the character sums of polynomials in several variables, Katz [3] stud-
ied the similar problem in finite fields, and obtained some sharper estimates
for it.

In this paper, as a complement to [7], we will use the properties of Dirich-
let character and Gauss sums to study the Dirichlet character sums of poly-
nomials in several variables, and give some more general identities for it. We
shall prove the following conclusions:

THEOREM 1. Let ¢ > 3 be a positive integer with the prime power de-

composition
o= [ »
e
2ta,a>1
X a primitive character modulo q, k > 2, ni,...,n, positive odd numbers
such that x™,...,x™ and x™ T are all primitive characters modulo q,

and u=mny + -+ ng. If (n1---ngu,q) = 1, then we have the identity

q q
Z Z X(a?l...aZiEl(l_al_..._ak_l)nk)

a;=1 ap_1=1

" n _ uni -+ n .
q(k_l)/2Y(uu)X(n11"‘nkk)H5lg 1(%) if 21q,
plg
_ 9 ung---n

(k=1)/2% (") (p - [ ot Lk

q X(u)x(ny ny, )<n1nku> H €p < D >
ZL%
b if 2|4q,

where ¢, = 1 if p = 1 (mod4), e, = ¢ if p = 3 (mod4), and (%) s the
Jacobi symbol.

THEOREM 2. Let q > 3 be a perfect square, x a primitive character
modulo q, k > 2, ny,...,ng positive integers such that x™,...,x" and
X" gre all primitive characters modulo q, and w = ny + - - + ny. If
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(nq1---ngu,q) = 1, then we have the identity

q q
Z Z x(af' a7 (1 — a1 — - — ap_1)"™)

a1:1 ak_lzl
D 2R () ().

In particular, for m = ny = - - - = ny, from our theorems we immediately
deduce two nice formulas for calculating generalized Jacobi sums:

=4q

COROLLARY 1. Let ¢ > 3 with the prime power decomposition

o= I »

p*lq
2ta, a>1

k > 2 an odd integer, x a primitive character modulo q, and m any positive
integer such that x™ and x*™ are also primitive characters modulo q. If
(km,q) = 1, then we have the identity

q

Z Z X(arin"'agil(l—al—..._ak_l)m)

a1:1 ak,1:1
q(k 1)/2 ]Ckm ( ) HEk 1 Zf qu7

plg
k=125 (km) ( )( )Hgk Ui 20
plg
p#2

COROLLARY 2. Let g > 3 be a perfect square, k > 2 an integer, x any
primitive character modulo q, and m any positive integer such that x™ and
X*™ are also primitive characters modulo q. If (km,q) = 1, then we have

the identity
q q
Z Z (@ a (1—ay — - —ap_1)™) = ¢F D 2 (k).
a1=1 ag—1=1

From our theorems, we can see that the estimate in Katz [3] is the best
possible. For general modulus ¢, whether there exists a similar formula is an
open problem.

2. Some lemmas. To prove the theorems, we need some lemmas. For
convenience, we define the Gauss sums G(m, x) as follows:

Zx e(am/q),
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where e(y) = €>™. For m = 1, we write 7(x) = >.¢_; x(a)e(a/q). The
various properties and applications of 7(x) can be found in many analytic
number theory books (see [1] and [4]). Here we first use the properties of
Gauss sums to prove the following:

LEMMA 1. Let p be a prime, o a positive integer, and x a primitive
character modulo p®. Then for any positive integers ni,...,ny (k> 2) such
that x™,...,X™ and X" Tt qre all primitive characters modulo p%, we
have the identity

T(X™) - T(X™)
pe 2
_ 7_( n1+4..+nk) Z . Z 1_ - ng
=7(x x(ay' a1 —ay — ar—1)"*).
a1:1 ak_lzl

Proof. Using the properties of the trigonometric sums and Gauss sums,
we can write

p< p*
ST Y et gt U —a = = ap)™)
a1=1 ap_1=1

pa
. Z x(ap - a*)

ap 1
a1+-+ar=1(mod p%)

I
S
1=
A

Q

(e3

1 & L (a1 +-+ap—1)
= 20 ) Yo (M)
1=1 ap=1 u=1
1 ni Nk ni+---+n
ZZ;T(X )T ()T (Y™ k).

Then Lemma 1 follows from the identity |7 (™ ") = p©.

LEMMA 2. Let ¢ = qiq2 with (q1,q2) = 1. Then for any character x
modulo q, there exists a unique character x; modulo q; (i = 1,2) such that

X = X1X2 and

S (@l @ (1 = e = — g )™)
:(Z Z xi(ayt - a1 —ay — —ak—l)"’“))

(D D xabl B (= b= = b))
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Proof. From the properties of the reduced residue system modulo ¢ we
have

q q
Z X(a?l...aziil(l_al __ak_l)nk)
a1:1 ak,1:1

q1 q2

Y Y Y

a;=1 ap—1=1b1=1 brp_1=1

X ((a1g2 + b1g1)™ -+ - (ag—192 + br—1q1)"*!
X [1—(a1g2 +b1gq1) — -+ — (ag—1q2 + br—1q1)]™*)

q1 q1
:(Z Z Xl(a?l-”ar]si}l(l—al—"'_ak—l)nk)>

a;=1 ap_1=1
a2 2
% (Z O IR 2 Ry e e _..._bk_l)nk)).
b1:1 bk_lil
This proves Lemma 2.
LEMMA 3. Let p be a prime, o a positive integer, ¢ = p%, and x a

primitive character modulo q. Then for any positive integer m with (m,p)
= 1, we have the identity

(=027 (™)X (m™) if 2],
(X)) = q<m1>/2€?1(%>7<xm>y<mm if 2fma and p > 2,
o2\ omve .
e WQ(E)T(X X (m™) if p=2 and 2ta.
\

Proof. We first introduce the hyper-Kloosterman sum by

Kamiige X o(mrtmetme

T1,...,Tm mod q
(z1,p)="=(xm,p)=1

for ¢ = p*, m > 1, and ptz. Define an exponential sum by

I(gm,2)= ) e(M).

x mod q
(z,p)=1

From R. A. Smith [5] or Yangbo Ye [6] we know that
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(3) K(gm+1,2)

q(m—l)/2[(q7 m,z) if 2|a and p > 2,
2m—1 m—1
B q(m—l)/%gl—l (#)I(q,m, z) if 2fma and p > 2,
m-ns2( 2)" £ —
q — | I(g,m,z) if p = 2.
m

Now for any primitive character y modulo ¢ = p>®, note that

(257)- ()~

if 2¢m and p > 2 with (p, z) = 1. From (3), the definition and properties of
Gauss sums we have

4 D x()E(gm+1,2)
z=1

q(m_l)/2zx(z)1(q’m7z) if 2|a and p > 2,
z=1
q
_ ] qmnrzgmen (%) S x(:)I(g,m,z) if 2fma and p > 2,
CEVTEANS -
m—1)/2 _ 1 =
\ q <m> Zz::lx(z)l(q, m,z) if p=2.

and
S x(=)g,m, 2) =TT Rm™).
z=1

Combining this with (4) we immediately get Lemma 3.

3. Proof of the theorems. From the three lemmas above, we can
easily prove the theorems. First we prove Theorem 1. Let ¢ = p® with 2{a,
and let x be a primitive character modulo ¢. If p > 2, then for any positive
odd number k£ > 2 and positive integers nq,...,n; with (nq---ng(ng + - --
+ng),q) =1, from Lemma 3 we have

W&Zl+"-+nk*k (nl = nk’)
p

T (X) T (X) = ¢
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and
TM(x) TR (x) = TR (x)
_ q%egl+...+nk,1 (nl + .+ 7’Lk>
p

X TR (g - 4 ),
Therefore, by Lemma 1 we get

(5) qnﬁm;n‘kil’g§1+---+nk71 (”1 +--t ”k:>
p

XT(X”H_ +nk) ((n1_|_ +nk)n1+-~~+nk)

_ qwgnﬁ...mrk <n1 .. nk)
P p

pe p*
Z Z et (L= ay == apg)™).

Noting that T(X"1+"'+”k) # 0, from (5) we obtain

(e (e

p p
n
Z Z x(@ - a1 —ag — - — ag_1)"™)

1=1 ap—1=1

s)

ez k1 (it mg)ng - ny
p
xx((ng + -+ nk)n1+~-+nk)x(n?1 .. nZ’“)
For the case of p = 2, by the same argument we can also get
P P

Q

X(af a5 (1= an = - = ax1)™)

_ q(k—1>/2< 2 )
(ul++uk)n1nk

X X((na + - )T X ().
This proves Theorem 1 for the case ¢ = p®; then from Lemma 2 we easily
get the general conclusion. This proves Theorem 1.

Using the same methods we can also prove Theorem 2. This completes
the proof of the theorems.
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