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On a problem of Erdős regarding binomial coefficients

by

Yossi Moshe (Wien)

1. Introduction and main result. Arithmetical properties of bino-
mial coefficients have been studied by many authors (cf. [1], [3], [4], [5]). Of
particular interest is the sequence of middle binomial coefficients dn =

(2n

n

)

.
Moser [7] proved that no dn is a product of two others. That is, the equation

(

2n

n

)

=

(

2a

a

)(

2b

b

)

has no solutions with a, b ≥ 1. Erdős [2] proved that
(2a

a

)

∤
(2n

n

)

for each
a ∈ (n/2, n). This enabled him to show that

(

2n

n

)

=
r

∏

i=1

(

2ai

ai

)

, ai ≥ 1,

has no solutions for any r ≥ 2. In the same paper he raised the following

Question 1 ([2]). Do there exist distinct finite sets A, B ⊆ N with

∏

a∈A

(

2a

a

)

=
∏

b∈B

(

2b

b

)

?

Our main result is

Theorem 2. For each positive rational number d there exist infinitely

many pairs (A, B) of disjoint finite subsets of N with

∏

a∈A

(

2a

a

)

= d
∏

b∈B

(

2b

b

)

.

In particular, taking d = 1 we provide a positive answer for Question 1.
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2. Proof of Theorem 2. In this section, all subsets of N are assumed
to be finite (unless explicitly specified otherwise). Given a pair (A, B) of
(finite) subsets of N, define

F (A, B) =

∏

a∈A

(

2a

a

)

∏

b∈B

(2b

b

) .

The main component of our proof is

Proposition 3. Let

G = {d ∈ Q : ∃A, B ⊆ N, F (A, B) = d}.

Then G is closed under multiplication and division by 2 (i.e., {2ld0 : l ∈ Z}
⊆ G for each d0 ∈ G). Moreover , for each d0 ∈ G there are infinitely many

pairs (A, B) of disjoint subsets of N with F (A, B) = d0.

Since 1 = F (∅, ∅) ∈ G, this already solves Question 1.

Lemma 4. For every M ≥ 0 there exist disjoint sets A, B ⊆ N, with

|A| = |B| = 3 and min(A ∪ B) > M , such that F (A, B) = 4.

Proof. Let n, m, r be positive integers and assume that n, m, r, n − 1,
m − 1, r − 1 are distinct. Take

A = {n, m, r − 1}, B = {n − 1, m − 1, r}.

Observing that
(

2t

t

)

= 4
(

1 − 1
2t

)(

2(t−1)
t−1

)

for each t > 0, we obtain

F (A, B) =
4(1 − 1/2n)(1 − 1/2m)

1 − 1/2r
.

Thus, F (A, B) = 4 if and only if (1 − 1/2n)(1 − 1/2m) = 1 − 1/2r, that is,
r(2m + 2n − 1) = 2mn.

Let k be an odd integer and put

n =
k(k − 1)2

4
, m =

k2 + 1

2
, r =

(k − 1)2

2
.

Taking a large enough k, we see that r, r − 1, n, n− 1, m, m− 1 are distinct
integers larger than M . Note that 2m + 2n − 1 = k(k2 + 1)/2. Thus we get
r(2m + 2n − 1) = 2mn and so F (A, B) = 4.

Proof of Proposition 3. We begin by proving that for each l ∈ Z, M ∈ N

there are infinitely many pairs ((An, Bn))∞n=1 of disjoint subsets of N with
F (An, Bn) = 2l and (An ∪ Bn) ∩ [0, M ] ⊆ {1}.

Since F (B, A) = F (A, B)−1, we may assume without loss of generality
that l ≥ 0. Write l = 2t+s with s ∈ {0, 1}. Assume first that s = 0. Lemma 4
enables us to construct an infinite sequence of pairs ((Xi, Yi))

∞

i=1, with
Xi, Yi ⊆ N, F (Xi, Yi) = 4, min(Xi ∪ Yi) > M , such that X1, Y1, X2, Y2, . . .
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are pairwise disjoint. If t > 0 then put

An =
n+t−1
⋃

i=n

Xi, Bn =
n+t−1
⋃

i=n

Yi, n = 1, 2, . . . .

Otherwise t = 0 and put

An = Xn ∪ Yn+1, Bn = Xn+1 ∪ Yn, n = 1, 2, . . . .

We conclude that F (An, Bn) = 4t = 2l, An∩Bn = ∅ and min(An∪Bn) > M .
The proof for the case s = 1 is obtained by replacing An with An ∪ {1}.

Now let d0 ∈ G, and write d0 = F (A, B) with disjoint A, B ⊆ N. Assume
first that 1 /∈ A ∪ B. Taking M > max(A, B), we see that An ∪ Bn, A ∪ B
are disjoint, and thus F (A ∪An, B ∪Bn) = 2ld0 for each n. This completes
the proof for this case.

If 1 ∈ A∪B, then the proof is obtained by repeating the same arguments
on the triple (A′, B′, d′0) where A′ = A\{1}, B′ = B\{1} and d′0 = F (A′, B′).
(Observe that d′0 ∈ {2d0, d0/2}.)

Lemma 5. For each c ∈ {1, 3, . . . , 15}, t ∈ {1, 3} there exist A, B ⊆
{1, . . . , 7} such that F (A, B) = 2lc/t for some l ∈ Z.

Proof. Table 1 provides for each c ∈ {1, 3, . . . , 15} a pair (A, B) with
F (A, B) = 2lc and a pair (A′, B′) with F (A′, B′) = 2l′c/3 for some l, l′ ∈ Z.

Table 1. A solution for F (A, B) = 2lc/t when c ∈ {1, 3, . . . , 15}, t ∈ {1, 3}

c (A, B) (A′, B′)

1 (∅, ∅) (∅, {2})

3 ({2}, ∅) (∅, ∅)

5 ({3}, ∅) ({3}, {2})

7 ({4}, {3}) ({4}, {3, 2})

9 ({3, 5}, {4}) ({2}, ∅)

11 ({2, 6}, {5}) ({6}, {5})

13 ({4, 7}, {3, 6}) ({4, 7}, {2, 3, 6})

15 ({2, 3}, ∅) ({3}, ∅)

Given a positive integer n, let [n]2 denote the binary representation of n.
Thus, [n]2 = εt . . . ε0 is a binary word, with n =

∑

t

k=0 εk2
k and εt = 1. Let

ν(n) denote the 2-adic valuation of n (that is, 2ν(n) is the exact power of 2
dividing n).

Proof of Theorem 2. Write d = x/y with x, y ∈ N. A theorem of Kum-
mer [6] implies that for most numbers k (i.e., for a set of density 1) we have

y |
(2k

k

)

. Thus, we may take a k0 ≥ 8 such that
(2k0

k0

)

x/y ∈ N. (In fact, any
k0 ≥ 8 with k0 ≡ −1 (mod y) is such.) A simple calculation shows that for
any integer n > 0, the base 2 representations of n and 3n cannot begin with
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the same three letters. In particular, we may take a K = t
(

2k0

k0

)

x/y with
t ∈ {1, 3} so that [k0]2 is not a prefix of [K]2. The main part of the proof
will be a construction of sets A0, B0 such that min(A0 ∪ B0) ≥ 8, k0 /∈ B0

and F (A0, B0) = 2lK/c for some l ∈ Z and c ∈ {1, 3, 5, . . . , 15}. Lemma
5 provides sets A′, B′ ⊆ {1, . . . , 7} such that F (A′, B′) = 2l′c/t for some
l′ ∈ Z. Thus we will get

F (A0 ∪ A′, B0 ∪ B′ ∪ {k0}) = 2l+l′ K

t
(2k0

k0

) = 2l+l′ x

y
∈ G,

and the theorem will then follow by Proposition 3.

Construct by induction a sequence of odd positive integers (Kn)∞
n=1

given by

K1 =
K

2ν(K)
, Kn+1 =

Kn + 1

2ν(Kn+1)
, n = 1, 2, . . . .

If K1 ≤ 15 then the pair (A0, B0) = (∅, ∅) satisfies the required properties
(take c = K1, l = −ν(K)). Thus, we may assume that K1 > 15. Note that
Kn+1 < Kn, unless Kn = 1 (in which case Kn+1 = 1 as well). Let m denote
the maximal index with Km > 15. Put

an =
Kn + 1

2
, bn =

Kn − 1

2
, n = 1, . . . , m,

and

A0 = {a1, . . . , am}, B0 = {b1, . . . , bm}, c = Km+1.

Thus c ≤ 15. Since Km > 15 we obtain min(A0 ∪ B0) = bm ≥ 8.

Note that an = bn + 1 and thus
(2an

an

)

(2bn

bn

) =
2(2an − 1)

an

= 22−ν(Kn+1) Kn

Kn+1
, n = 1, . . . , m.

Since a1, b1, a2, b2, . . . , am, bm are distinct, we conclude that F (A0, B0) =
2lK1/Km+1 = 2l′K/c for some l, l′ ∈ Z. It can be easily observed that
[bn]2 is a prefix of [K]2 for each n ≤ m. Thus, our assumptions ensure that
k0 /∈ B0. This completes the proof.
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