On a problem of Erdős regarding binomial coefficients

by

Yossi Moshe (Wien)

1. Introduction and main result. Arithmetical properties of binomial coefficients have been studied by many authors (cf. [1], [3], [4], [5]). Of particular interest is the sequence of middle binomial coefficients $d_{n}=\binom{2 n}{n}$. Moser [7] proved that no d_{n} is a product of two others. That is, the equation

$$
\binom{2 n}{n}=\binom{2 a}{a}\binom{2 b}{b}
$$

has no solutions with $a, b \geq 1$. Erdős [2] proved that $\binom{2 a}{a} \nmid\binom{2 n}{n}$ for each $a \in(n / 2, n)$. This enabled him to show that

$$
\binom{2 n}{n}=\prod_{i=1}^{r}\binom{2 a_{i}}{a_{i}}, \quad a_{i} \geq 1
$$

has no solutions for any $r \geq 2$. In the same paper he raised the following
Question 1 ([2]). Do there exist distinct finite sets $A, B \subseteq \mathbb{N}$ with

$$
\prod_{a \in A}\binom{2 a}{a}=\prod_{b \in B}\binom{2 b}{b} ?
$$

Our main result is
Theorem 2. For each positive rational number d there exist infinitely many pairs (A, B) of disjoint finite subsets of \mathbb{N} with

$$
\prod_{a \in A}\binom{2 a}{a}=d \prod_{b \in B}\binom{2 b}{b}
$$

In particular, taking $d=1$ we provide a positive answer for Question 1.

[^0]2. Proof of Theorem 2. In this section, all subsets of \mathbb{N} are assumed to be finite (unless explicitly specified otherwise). Given a pair (A, B) of (finite) subsets of \mathbb{N}, define
$$
F(A, B)=\frac{\prod_{a \in A}\binom{2 a}{a}}{\prod_{b \in B}\binom{2 b}{b}}
$$

The main component of our proof is
Proposition 3. Let

$$
\mathcal{G}=\{d \in \mathbb{Q}: \exists A, B \subseteq \mathbb{N}, F(A, B)=d\}
$$

Then \mathcal{G} is closed under multiplication and division by 2 (i.e., $\left\{2^{l} d_{0}: l \in \mathbb{Z}\right\}$ $\subseteq \mathcal{G}$ for each $\left.d_{0} \in \mathcal{G}\right)$. Moreover, for each $d_{0} \in \mathcal{G}$ there are infinitely many pairs (A, B) of disjoint subsets of \mathbb{N} with $F(A, B)=d_{0}$.

Since $1=F(\emptyset, \emptyset) \in \mathcal{G}$, this already solves Question 1 .
Lemma 4. For every $M \geq 0$ there exist disjoint sets $A, B \subseteq \mathbb{N}$, with $|A|=|B|=3$ and $\min (A \cup B)>M$, such that $F(A, B)=4$.

Proof. Let n, m, r be positive integers and assume that $n, m, r, n-1$, $m-1, r-1$ are distinct. Take

$$
A=\{n, m, r-1\}, \quad B=\{n-1, m-1, r\}
$$

Observing that $\binom{2 t}{t}=4\left(1-\frac{1}{2 t}\right)\binom{2(t-1)}{t-1}$ for each $t>0$, we obtain

$$
F(A, B)=\frac{4(1-1 / 2 n)(1-1 / 2 m)}{1-1 / 2 r}
$$

Thus, $F(A, B)=4$ if and only if $(1-1 / 2 n)(1-1 / 2 m)=1-1 / 2 r$, that is, $r(2 m+2 n-1)=2 m n$.

Let k be an odd integer and put

$$
n=\frac{k(k-1)^{2}}{4}, \quad m=\frac{k^{2}+1}{2}, \quad r=\frac{(k-1)^{2}}{2}
$$

Taking a large enough k, we see that $r, r-1, n, n-1, m, m-1$ are distinct integers larger than M. Note that $2 m+2 n-1=k\left(k^{2}+1\right) / 2$. Thus we get $r(2 m+2 n-1)=2 m n$ and so $F(A, B)=4$.

Proof of Proposition 3. We begin by proving that for each $l \in \mathbb{Z}, M \in \mathbb{N}$ there are infinitely many pairs $\left(\left(A_{n}, B_{n}\right)\right)_{n=1}^{\infty}$ of disjoint subsets of \mathbb{N} with $F\left(A_{n}, B_{n}\right)=2^{l}$ and $\left(A_{n} \cup B_{n}\right) \cap[0, M] \subseteq\{1\}$.

Since $F(B, A)=F(A, B)^{-1}$, we may assume without loss of generality that $l \geq 0$. Write $l=2 t+s$ with $s \in\{0,1\}$. Assume first that $s=0$. Lemma 4 enables us to construct an infinite sequence of pairs $\left(\left(X_{i}, Y_{i}\right)\right)_{i=1}^{\infty}$, with $X_{i}, Y_{i} \subseteq \mathbb{N}, F\left(X_{i}, Y_{i}\right)=4, \min \left(X_{i} \cup Y_{i}\right)>M$, such that $X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots$
are pairwise disjoint. If $t>0$ then put

$$
A_{n}=\bigcup_{i=n}^{n+t-1} X_{i}, \quad B_{n}=\bigcup_{i=n}^{n+t-1} Y_{i}, \quad n=1,2, \ldots
$$

Otherwise $t=0$ and put

$$
A_{n}=X_{n} \cup Y_{n+1}, \quad B_{n}=X_{n+1} \cup Y_{n}, \quad n=1,2, \ldots
$$

We conclude that $F\left(A_{n}, B_{n}\right)=4^{t}=2^{l}, A_{n} \cap B_{n}=\emptyset$ and $\min \left(A_{n} \cup B_{n}\right)>M$. The proof for the case $s=1$ is obtained by replacing A_{n} with $A_{n} \cup\{1\}$.

Now let $d_{0} \in \mathcal{G}$, and write $d_{0}=F(A, B)$ with disjoint $A, B \subseteq \mathbb{N}$. Assume first that $1 \notin A \cup B$. Taking $M>\max (A, B)$, we see that $A_{n} \cup B_{n}, A \cup B$ are disjoint, and thus $F\left(A \cup A_{n}, B \cup B_{n}\right)=2^{l} d_{0}$ for each n. This completes the proof for this case.

If $1 \in A \cup B$, then the proof is obtained by repeating the same arguments on the triple $\left(A^{\prime}, B^{\prime}, d_{0}^{\prime}\right)$ where $A^{\prime}=A \backslash\{1\}, B^{\prime}=B \backslash\{1\}$ and $d_{0}^{\prime}=F\left(A^{\prime}, B^{\prime}\right)$. (Observe that $d_{0}^{\prime} \in\left\{2 d_{0}, d_{0} / 2\right\}$.)

Lemma 5. For each $c \in\{1,3, \ldots, 15\}, t \in\{1,3\}$ there exist $A, B \subseteq$ $\{1, \ldots, 7\}$ such that $F(A, B)=2^{l} c / t$ for some $l \in \mathbb{Z}$.

Proof. Table 1 provides for each $c \in\{1,3, \ldots, 15\}$ a pair (A, B) with $F(A, B)=2^{l} c$ and a pair $\left(A^{\prime}, B^{\prime}\right)$ with $F\left(A^{\prime}, B^{\prime}\right)=2^{l^{\prime}} c / 3$ for some $l, l^{\prime} \in \mathbb{Z}$.

Table 1. A solution for $F(A, B)=2^{l} c / t$ when $c \in\{1,3, \ldots, 15\}, t \in\{1,3\}$

c	(A, B)	$\left(A^{\prime}, B^{\prime}\right)$
1	(\emptyset, \emptyset)	$(\emptyset,\{2\})$
3	$(\{2\}, \emptyset)$	(\emptyset, \emptyset)
5	$(\{3\}, \emptyset)$	$(\{3\},\{2\})$
7	$(\{4\},\{3\})$	$(\{4\},\{3,2\})$
9	$(\{3,5\},\{4\})$	$(\{2\}, \emptyset)$
11	$(\{2,6\},\{5\})$	$(\{6\},\{5\})$
13	$(\{4,7\},\{3,6\})$	$(\{4,7\},\{2,3,6\})$
15	$(\{2,3\}, \emptyset)$	$(\{3\}, \emptyset)$

Given a positive integer n, let $[n]_{2}$ denote the binary representation of n. Thus, $[n]_{2}=\varepsilon_{t} \ldots \varepsilon_{0}$ is a binary word, with $n=\sum_{k=0}^{t} \varepsilon_{k} 2^{k}$ and $\varepsilon_{t}=1$. Let $\nu(n)$ denote the 2 -adic valuation of n (that is, $2^{\nu(n)}$ is the exact power of 2 dividing n).

Proof of Theorem 2. Write $d=x / y$ with $x, y \in \mathbb{N}$. A theorem of Kummer [6] implies that for most numbers k (i.e., for a set of density 1) we have $y \left\lvert\,\binom{ 2 k}{k}\right.$. Thus, we may take a $k_{0} \geq 8$ such that $\binom{2 k_{0}}{k_{0}} x / y \in \mathbb{N}$. (In fact, any $k_{0} \geq 8$ with $k_{0} \equiv-1(\bmod y)$ is such.) A simple calculation shows that for any integer $n>0$, the base 2 representations of n and $3 n$ cannot begin with
the same three letters. In particular, we may take a $K=t\binom{2 k_{0}}{k_{0}} x / y$ with $t \in\{1,3\}$ so that $\left[k_{0}\right]_{2}$ is not a prefix of $[K]_{2}$. The main part of the proof will be a construction of sets A_{0}, B_{0} such that $\min \left(A_{0} \cup B_{0}\right) \geq 8, k_{0} \notin B_{0}$ and $F\left(A_{0}, B_{0}\right)=2^{l} K / c$ for some $l \in \mathbb{Z}$ and $c \in\{1,3,5, \ldots, 15\}$. Lemma 5 provides sets $A^{\prime}, B^{\prime} \subseteq\{1, \ldots, 7\}$ such that $F\left(A^{\prime}, B^{\prime}\right)=2^{l^{\prime}} c / t$ for some $l^{\prime} \in \mathbb{Z}$. Thus we will get

$$
F\left(A_{0} \cup A^{\prime}, B_{0} \cup B^{\prime} \cup\left\{k_{0}\right\}\right)=2^{l+l^{\prime}} \frac{K}{t\binom{2 k_{0}}{k_{0}}}=2^{l+l^{\prime}} \frac{x}{y} \in \mathcal{G},
$$

and the theorem will then follow by Proposition 3.
Construct by induction a sequence of odd positive integers $\left(K_{n}\right)_{n=1}^{\infty}$ given by

$$
K_{1}=\frac{K}{2^{\nu(K)}}, \quad K_{n+1}=\frac{K_{n}+1}{2^{\nu\left(K_{n}+1\right)}}, \quad n=1,2, \ldots
$$

If $K_{1} \leq 15$ then the pair $\left(A_{0}, B_{0}\right)=(\emptyset, \emptyset)$ satisfies the required properties (take $c=K_{1}, l=-\nu(K)$). Thus, we may assume that $K_{1}>15$. Note that $K_{n+1}<K_{n}$, unless $K_{n}=1$ (in which case $K_{n+1}=1$ as well). Let m denote the maximal index with $K_{m}>15$. Put

$$
a_{n}=\frac{K_{n}+1}{2}, \quad b_{n}=\frac{K_{n}-1}{2}, \quad n=1, \ldots, m,
$$

and

$$
A_{0}=\left\{a_{1}, \ldots, a_{m}\right\}, \quad B_{0}=\left\{b_{1}, \ldots, b_{m}\right\}, \quad c=K_{m+1} .
$$

Thus $c \leq 15$. Since $K_{m}>15$ we obtain $\min \left(A_{0} \cup B_{0}\right)=b_{m} \geq 8$.
Note that $a_{n}=b_{n}+1$ and thus

$$
\frac{\binom{2 a_{n}}{a_{n}}}{\binom{2 b_{n}}{b_{n}}}=\frac{2\left(2 a_{n}-1\right)}{a_{n}}=2^{2-\nu\left(K_{n}+1\right)} \frac{K_{n}}{K_{n+1}}, \quad n=1, \ldots, m .
$$

Since $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{m}, b_{m}$ are distinct, we conclude that $F\left(A_{0}, B_{0}\right)=$ $2^{l} K_{1} / K_{m+1}=2^{l^{\prime}} K / c$ for some $l, l^{\prime} \in \mathbb{Z}$. It can be easily observed that $\left[b_{n}\right]_{2}$ is a prefix of $[K]_{2}$ for each $n \leq m$. Thus, our assumptions ensure that $k_{0} \notin B_{0}$. This completes the proof.

Acknowledgments. I would like to thank Daniel Berend for introduction to the subject and many useful suggestions.

References

[1] D. Berend and J. E. Harmse, On some arithmetical properties of middle binomial coefficients, Acta Arith. 84 (1998), 31-41.
[2] P. Erdős, On some divisibility properties of $\binom{2 n}{n}$, Canad. Math. Bull. 7 (1964), 513518.
[3] A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, in: Organic Mathematics (Burnaby, BC, 1995), CMS Conf. Proc. 20, Amer. Math. Soc., Providence, RI, 1997, 253-276.
[4] A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of square-free binomial coefficients, Mathematika 43 (1996), 73-107.
[5] N. Kriger, Arithmetical properties of some sequences of binomial coefficients, preprint.
[6] E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
[7] L. Moser, Notes on number theory. V. Insolvability of $\binom{2 n}{n}=\binom{2 a}{a}\binom{2 b}{b}$, Canad. Math. Bull. 6 (1963), 167-169.

Erwin Schrödinger Institute
Boltzmanngasse 9
A-1090 Vienna, Austria
E-mail: ymoshe@esi.ac.at

[^0]: 2000 Mathematics Subject Classification: Primary 11B65, 11D99; Secondary 11A99.
 Key words and phrases: binomial coefficients, middle binomial coefficients, diophantine equations.

 This research was supported in part by the FWF Project P16004-N05.

