On a problem of Erdős regarding binomial coefficients

by

Yossi Moshe (Wien)

1. Introduction and main result. Arithmetical properties of binomial coefficients have been studied by many authors (cf. [1], [3], [4], [5]). Of particular interest is the sequence of middle binomial coefficients $d_n = \binom{2n}{n}$. Moser [7] proved that no d_n is a product of two others. That is, the equation

$$\binom{2n}{n} = \binom{2a}{a}\binom{2b}{b}$$

has no solutions with $a, b \ge 1$. Erdős [2] proved that $\binom{2a}{a} \nmid \binom{2n}{n}$ for each $a \in (n/2, n)$. This enabled him to show that

$$\binom{2n}{n} = \prod_{i=1}^r \binom{2a_i}{a_i}, \quad a_i \ge 1,$$

has no solutions for any $r \ge 2$. In the same paper he raised the following

QUESTION 1 ([2]). Do there exist distinct finite sets $A, B \subseteq \mathbb{N}$ with

$$\prod_{a \in A} \binom{2a}{a} = \prod_{b \in B} \binom{2b}{b}?$$

Our main result is

THEOREM 2. For each positive rational number d there exist infinitely many pairs (A, B) of disjoint finite subsets of \mathbb{N} with

$$\prod_{a \in A} \binom{2a}{a} = d \prod_{b \in B} \binom{2b}{b}.$$

In particular, taking d = 1 we provide a positive answer for Question 1.

2000 Mathematics Subject Classification: Primary 11B65, 11D99; Secondary 11A99.

 $Key\ words\ and\ phrases:$ binomial coefficients, middle binomial coefficients, diophantine equations.

This research was supported in part by the FWF Project P16004–N05.

Y. Moshe

2. Proof of Theorem 2. In this section, all subsets of \mathbb{N} are assumed to be finite (unless explicitly specified otherwise). Given a pair (A, B) of (finite) subsets of \mathbb{N} , define

$$F(A,B) = \frac{\prod_{a \in A} {\binom{2a}{a}}}{\prod_{b \in B} {\binom{2b}{b}}}.$$

The main component of our proof is

PROPOSITION 3. Let

$$\mathcal{G} = \{ d \in \mathbb{Q} : \exists A, B \subseteq \mathbb{N}, F(A, B) = d \}.$$

Then \mathcal{G} is closed under multiplication and division by 2 (i.e., $\{2^l d_0 : l \in \mathbb{Z}\}$ $\subseteq \mathcal{G}$ for each $d_0 \in \mathcal{G}$). Moreover, for each $d_0 \in \mathcal{G}$ there are infinitely many pairs (A, B) of disjoint subsets of \mathbb{N} with $F(A, B) = d_0$.

Since $1 = F(\emptyset, \emptyset) \in \mathcal{G}$, this already solves Question 1.

LEMMA 4. For every $M \ge 0$ there exist disjoint sets $A, B \subseteq \mathbb{N}$, with |A| = |B| = 3 and $\min(A \cup B) > M$, such that F(A, B) = 4.

Proof. Let n, m, r be positive integers and assume that n, m, r, n-1, m-1, r-1 are distinct. Take

$$A = \{n, m, r - 1\}, \quad B = \{n - 1, m - 1, r\}.$$

Observing that $\binom{2t}{t} = 4\left(1 - \frac{1}{2t}\right)\binom{2(t-1)}{t-1}$ for each t > 0, we obtain

$$F(A,B) = \frac{4(1-1/2n)(1-1/2m)}{1-1/2r}$$

Thus, F(A, B) = 4 if and only if (1 - 1/2n)(1 - 1/2m) = 1 - 1/2r, that is, r(2m + 2n - 1) = 2mn.

Let k be an odd integer and put

$$n = \frac{k(k-1)^2}{4}, \quad m = \frac{k^2+1}{2}, \quad r = \frac{(k-1)^2}{2}.$$

Taking a large enough k, we see that r, r-1, n, n-1, m, m-1 are distinct integers larger than M. Note that $2m + 2n - 1 = k(k^2 + 1)/2$. Thus we get r(2m + 2n - 1) = 2mn and so F(A, B) = 4.

Proof of Proposition 3. We begin by proving that for each $l \in \mathbb{Z}$, $M \in \mathbb{N}$ there are infinitely many pairs $((A_n, B_n))_{n=1}^{\infty}$ of disjoint subsets of \mathbb{N} with $F(A_n, B_n) = 2^l$ and $(A_n \cup B_n) \cap [0, M] \subseteq \{1\}$.

Since $F(B, A) = F(A, B)^{-1}$, we may assume without loss of generality that $l \ge 0$. Write l = 2t+s with $s \in \{0, 1\}$. Assume first that s = 0. Lemma 4 enables us to construct an infinite sequence of pairs $((X_i, Y_i))_{i=1}^{\infty}$, with $X_i, Y_i \subseteq \mathbb{N}, F(X_i, Y_i) = 4, \min(X_i \cup Y_i) > M$, such that $X_1, Y_1, X_2, Y_2, \ldots$ are pairwise disjoint. If t > 0 then put

$$A_n = \bigcup_{i=n}^{n+t-1} X_i, \quad B_n = \bigcup_{i=n}^{n+t-1} Y_i, \quad n = 1, 2, \dots$$

Otherwise t = 0 and put

$$A_n = X_n \cup Y_{n+1}, \quad B_n = X_{n+1} \cup Y_n, \quad n = 1, 2, \dots$$

We conclude that $F(A_n, B_n) = 4^t = 2^l$, $A_n \cap B_n = \emptyset$ and $\min(A_n \cup B_n) > M$. The proof for the case s = 1 is obtained by replacing A_n with $A_n \cup \{1\}$.

Now let $d_0 \in \mathcal{G}$, and write $d_0 = F(A, B)$ with disjoint $A, B \subseteq \mathbb{N}$. Assume first that $1 \notin A \cup B$. Taking $M > \max(A, B)$, we see that $A_n \cup B_n, A \cup B$ are disjoint, and thus $F(A \cup A_n, B \cup B_n) = 2^l d_0$ for each n. This completes the proof for this case.

If $1 \in A \cup B$, then the proof is obtained by repeating the same arguments on the triple (A', B', d'_0) where $A' = A \setminus \{1\}, B' = B \setminus \{1\}$ and $d'_0 = F(A', B')$. (Observe that $d'_0 \in \{2d_0, d_0/2\}$.)

LEMMA 5. For each $c \in \{1, 3, \ldots, 15\}$, $t \in \{1, 3\}$ there exist $A, B \subseteq \{1, \ldots, 7\}$ such that $F(A, B) = 2^l c/t$ for some $l \in \mathbb{Z}$.

Proof. Table 1 provides for each $c \in \{1, 3, ..., 15\}$ a pair (A, B) with $F(A, B) = 2^l c$ and a pair (A', B') with $F(A', B') = 2^{l'} c/3$ for some $l, l' \in \mathbb{Z}$.

c	(A, B)	(A',B')
1	(\emptyset, \emptyset)	$(\emptyset, \{2\})$
3	$(\{2\}, \emptyset)$	(\emptyset, \emptyset)
5	$(\{3\}, \emptyset)$	$(\{3\},\{2\})$
7	$(\{4\},\{3\})$	$(\{4\},\{3,2\})$
9	$(\{3,5\},\{4\})$	$(\{2\}, \emptyset)$
11	$(\{2,6\},\{5\})$	$(\{6\}, \{5\})$
13	$(\{4,7\},\{3,6\})$	$(\{4,7\},\{2,3,6\})$
15	$(\{2,3\},\emptyset)$	$(\{3\}, \emptyset)$

Table 1. A solution for $F(A, B) = 2^{l}c/t$ when $c \in \{1, 3, ..., 15\}, t \in \{1, 3\}$

Given a positive integer n, let $[n]_2$ denote the binary representation of n. Thus, $[n]_2 = \varepsilon_t \dots \varepsilon_0$ is a binary word, with $n = \sum_{k=0}^t \varepsilon_k 2^k$ and $\varepsilon_t = 1$. Let $\nu(n)$ denote the 2-adic valuation of n (that is, $2^{\nu(n)}$ is the exact power of 2 dividing n).

Proof of Theorem 2. Write d = x/y with $x, y \in \mathbb{N}$. A theorem of Kummer [6] implies that for most numbers k (i.e., for a set of density 1) we have $y \mid \binom{2k}{k}$. Thus, we may take a $k_0 \geq 8$ such that $\binom{2k_0}{k_0}x/y \in \mathbb{N}$. (In fact, any $k_0 \geq 8$ with $k_0 \equiv -1 \pmod{y}$ is such.) A simple calculation shows that for any integer n > 0, the base 2 representations of n and 3n cannot begin with

the same three letters. In particular, we may take a $K = t \binom{2k_0}{k_0} x/y$ with $t \in \{1,3\}$ so that $[k_0]_2$ is not a prefix of $[K]_2$. The main part of the proof will be a construction of sets A_0, B_0 such that $\min(A_0 \cup B_0) \ge 8, k_0 \notin B_0$ and $F(A_0, B_0) = 2^l K/c$ for some $l \in \mathbb{Z}$ and $c \in \{1, 3, 5, \ldots, 15\}$. Lemma 5 provides sets $A', B' \subseteq \{1, \ldots, 7\}$ such that $F(A', B') = 2^{l'}c/t$ for some $l' \in \mathbb{Z}$. Thus we will get

$$F(A_0 \cup A', B_0 \cup B' \cup \{k_0\}) = 2^{l+l'} \frac{K}{t\binom{2k_0}{k_0}} = 2^{l+l'} \frac{x}{y} \in \mathcal{G},$$

and the theorem will then follow by Proposition 3.

Construct by induction a sequence of odd positive integers $(K_n)_{n=1}^{\infty}$ given by

$$K_1 = \frac{K}{2^{\nu(K)}}, \quad K_{n+1} = \frac{K_n + 1}{2^{\nu(K_n + 1)}}, \quad n = 1, 2, \dots$$

If $K_1 \leq 15$ then the pair $(A_0, B_0) = (\emptyset, \emptyset)$ satisfies the required properties (take $c = K_1, l = -\nu(K)$). Thus, we may assume that $K_1 > 15$. Note that $K_{n+1} < K_n$, unless $K_n = 1$ (in which case $K_{n+1} = 1$ as well). Let *m* denote the maximal index with $K_m > 15$. Put

$$a_n = \frac{K_n + 1}{2}, \quad b_n = \frac{K_n - 1}{2}, \quad n = 1, \dots, m,$$

and

$$A_0 = \{a_1, \dots, a_m\}, \quad B_0 = \{b_1, \dots, b_m\}, \quad c = K_{m+1}.$$

Thus $c \leq 15$. Since $K_m > 15$ we obtain $\min(A_0 \cup B_0) = b_m \geq 8$. Note that $a_n = b_n + 1$ and thus

$$\frac{\binom{2a_n}{a_n}}{\binom{2b_n}{b_n}} = \frac{2(2a_n - 1)}{a_n} = 2^{2-\nu(K_n + 1)} \frac{K_n}{K_{n+1}}, \quad n = 1, \dots, m.$$

Since $a_1, b_1, a_2, b_2, \ldots, a_m, b_m$ are distinct, we conclude that $F(A_0, B_0) = 2^l K_1/K_{m+1} = 2^{l'} K/c$ for some $l, l' \in \mathbb{Z}$. It can be easily observed that $[b_n]_2$ is a prefix of $[K]_2$ for each $n \leq m$. Thus, our assumptions ensure that $k_0 \notin B_0$. This completes the proof.

Acknowledgments. I would like to thank Daniel Berend for introduction to the subject and many useful suggestions.

References

- D. Berend and J. E. Harmse, On some arithmetical properties of middle binomial coefficients, Acta Arith. 84 (1998), 31–41.
- P. Erdős, On some divisibility properties of ⁽²ⁿ⁾_n, Canad. Math. Bull. 7 (1964), 513–518.

- [3] A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, in: Organic Mathematics (Burnaby, BC, 1995), CMS Conf. Proc. 20, Amer. Math. Soc., Providence, RI, 1997, 253–276.
- [4] A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of square-free binomial coefficients, Mathematika 43 (1996), 73–107.
- [5] N. Kriger, Arithmetical properties of some sequences of binomial coefficients, preprint.
- [6] E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93–146.
- [7] L. Moser, Notes on number theory. V. Insolvability of $\binom{2n}{n} = \binom{2a}{a}\binom{2b}{b}$, Canad. Math. Bull. 6 (1963), 167–169.

Erwin Schrödinger Institute Boltzmanngasse 9 A-1090 Vienna, Austria E-mail: ymoshe@esi.ac.at

Received on 24.6.2005

(5018)