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On a problem of Erdds regarding binomial coefficients
by

Yosst MOSHE (Wien)

1. Introduction and main result. Arithmetical properties of bino-
mial coefficients have been studied by many authors (cf. [1], [3], [4], [5]). Of
particular interest is the sequence of middle binomial coefficients d,, = 2: .
Moser [7] proved that no d,, is a product of two others. That is, the equation

2n\ _ (2a\ (20

n) \a b
has no solutions with a,b > 1. Erdés [2] proved that (°*)f(*") for each
a € (n/2,n). This enabled him to show that

r
<2n) = H <2al)7 a; > 17
n . a;
=1

has no solutions for any r» > 2. In the same paper he raised the following

QUESTION 1 ([2]). Do there ezist distinct finite sets A, B C N with
acA a beB b
Our main result is

THEOREM 2. For each positive rational number d there exist infinitely
many pairs (A, B) of disjoint finite subsets of N with

2a 2b
=d .
I (%) =411 (3)
acA beB
In particular, taking d = 1 we provide a positive answer for Question 1.
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2. Proof of Theorem 2. In this section, all subsets of N are assumed
to be finite (unless explicitly specified otherwise). Given a pair (A, B) of
(finite) subsets of N, define

2a
F(A,B) = 71;[662 EQJ’;

The main component of our proof is
PROPOSITION 3. Let
G={deQ:3A,BCN, F(A,B) =d}.

Then G is closed under multiplication and division by 2 (i.e., {2'dy : | € Z}
C G for each dy € G). Moreover, for each dy € G there are infinitely many
pairs (A, B) of disjoint subsets of N with F(A, B) = dj.

Since 1 = F(0,0) € G, this already solves Question 1.

LEMMA 4. For every M > 0 there exist disjoint sets A, B C N, with
|A| = |B| =3 and min(AU B) > M, such that F(A, B) = 4.

Proof. Let n,m,r be positive integers and assume that n, m, r, n — 1,
m — 1, r — 1 are distinct. Take

A={n,m,r—1}, B={n—-1,m—1,r}.

Observing that (Qtt) = 4(1 — Qlt) (2?_—11)) for each t > 0, we obtain

4(1—1/2n)(1 — 1/2m)
1—-1/2r '

Thus, F(A,B) =4 if and only if (1 —1/2n)(1 —1/2m) =1 — 1/2r, that is,
r(2m +2n —1) = 2mn.

Let k£ be an odd integer and put
k(k —1)2 k241 (k—1)2

0 "t 2
Taking a large enough k, we see that r,r — 1,n,n — 1, m, m — 1 are distinct
integers larger than M. Note that 2m + 2n — 1 = k(k? + 1)/2. Thus we get
r(2m+2n—1) =2mn and so F(A,B) =4. »

F(A,B) =

Proof of Proposition 8. We begin by proving that for each [ € Z, M € N
there are infinitely many pairs ((Ay, By))52, of disjoint subsets of N with
F(A,,B,) =2"and (A, UB,)N[0,M] C {1}.

Since F(B,A) = F(A,B)™!, we may assume without loss of generality
that [ > 0. Write [ = 2¢t+s with s € {0, 1}. Assume first that s = 0. Lemma 4
enables us to construct an infinite sequence of pairs ((X;,Y;))ro;, with

X;,Y; CN, F(X;,Y;) =4, min(X; UY;) > M, such that X1,Y7, Xs,Ys,. ..
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are pairwise disjoint. If £ > 0 then put
n+t—1 n+t—1
A= |J Xi, Bo= |J Y n=12...
=n =n

Otherwise t = 0 and put
An:XnUYTL+17 Bn:Xn+1UYn, 7’L:1,2,....

We conclude that F(A,, B,) = 4* = 2!, A,NB,, = ( and min(4,UB,) > M.
The proof for the case s = 1 is obtained by replacing A,, with A, U {1}.

Now let dy € G, and write dy = F(A, B) with disjoint A, B C N. Assume
first that 1 ¢ AU B. Taking M > max(A, B), we see that A, UB,,, AUB
are disjoint, and thus F(AU A,, BU B,,) = 2!dy for each n. This completes
the proof for this case.

If 1 € AUB, then the proof is obtained by repeating the same arguments
on the triple (A", B', d{)) where A’ = A\{1}, B = B\{1} and d{, = F(4', B).
(Observe that djy € {2do,dy/2}.) =

LEMMA 5. For each ¢ € {1,3,...,15}, t € {1,3} there exist A,B C
{1,...,7} such that F(A, B) = 2'c/t for somel € 7.

Proof. Table 1 provides for each ¢ € {1,3,...,15} a pair (A, B) with
F(A, B) = 2'c and a pair (A’, B') with F(A’, B') = 2"¢/3 for some I, I’ € Z. m

Table 1. A solution for F(A, B) = 2'¢/t when c € {1,3,...,15}, ¢t € {1,3}

c (A, B) (A", B")

1 ©,9) ©,{2})

3 ({2},0) ©,0)

5 ({34,0) ({3}, {2}
T ({453 ({4},{3,2})
9 ({35} {4}) ({240

1 ({2,6}{5}) ({63, {5})
1B ({47} {3,6}) ({47}{2,3,6})
15 ({2,340 {3},9)

Given a positive integer n, let [n]2 denote the binary representation of n.
Thus, [n]2 = &¢...g¢ is a binary word, with n = ZZ:O £12F and e, = 1. Let
v(n) denote the 2-adic valuation of n (that is, 2“(™) is the exact power of 2
dividing n).

Proof of Theorem 2. Write d = z/y with z,y € N. A theorem of Kum-
mer [6] implies that for most numbers & (i.e., for a set of density 1) we have
v (Qkk) Thus, we may take a kg > 8 such that (Qéf)o)ﬁ/y € N. (In fact, any
ko > 8 with kg = —1 (mod y) is such.) A simple calculation shows that for
any integer n > 0, the base 2 representations of n and 3n cannot begin with
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the same three letters. In particular, we may take a K = t(QkIZO)ac /y with
t € {1,3} so that [ko]2 is not a prefix of [K]2. The main part of the proof
will be a construction of sets Ay, By such that min(Ag U By) > 8, ko ¢ By
and F(Ag, By) = 2'K/c for some | € Z and ¢ € {1,3,5,...,15}. Lemma
5 provides sets A’, B' C {1,...,7} such that F(A’,B") = 2"¢/t for some
" € Z. Thus we will get

K ,
F(AgU A", ByU B'U {ko}) = 2+ —— — o+'T

(%)

and the theorem will then follow by Proposition 3.

€ g,

Construct by induction a sequence of odd positive integers (K)o
given by
K K,+1
Kl = 2V(K)’ KTH—l = 2V(Kn+l)’
If Ky < 15 then the pair (Ag, By) = (0, 0) satisfies the required properties
(take ¢ = K3, | = —v(K)). Thus, we may assume that K; > 15. Note that
K41 < Ky, unless K,, =1 (in which case K, 11 = 1 as well). Let m denote
the maximal index with K,, > 15. Put

Ko+l K1
2 9 n — 2 I

n=12....

ap = n=1...,m,

and
Ao ={a1,...,an}, Bo={b1,....,bm}, c=Kpy1.

Thus ¢ < 15. Since K, > 15 we obtain min(Ay U By) = b, > 8.
Note that a,, = b, + 1 and thus

2an
(a") = 2(2an — 1) = 92~ v(Kn+l) Hn n=1...,m.
(2bn) an Kpit i
bn,
Since ay,by,a2,be, ..., anm, by, are distinct, we conclude that F(Ap, By) =

2K /Ky = 2l/K/c for some [,I’ € 7Z. It can be easily observed that
[bn]2 is a prefix of [K]s for each n < m. Thus, our assumptions ensure that
ko ¢ By. This completes the proof. =
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