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The mantissa distribution of the primorial numbers
by

BRUNO MASSE and DOMINIQUE SCHNEIDER (Calais and Lille)

1. Introduction. Fix a numeration base b and define the mantissa of the
positive real number = as the unique number M;(x) in [1, b such that x =
My (2)b" for some integer k. We will use the following notations: log is the
natural logarithm, log is the logarithm in base b, p,, is the nth prime number
and P, is the product of the first n prime numbers (P, is sometimes denoted
pn#). We are interested in the distribution of the sequence (My(P,,)), and,
secondarily, of some sequences defined in a like manner.

1.1. Benford sequences. Benford’s law in base b is the probability
measure fp, on [1, b defined by

wp([1,t]) =logpt (1 <t <b).

When u,, is the nth Fibonacci number or u, = n", u, = n!, u, = a™
and u, = aP (with log, a irrational), the sequence (uy), is known to have
a mantissa distributed following Benford’s law in the sense of the natural
density [T, 5], 11, 12]. That is,

N
. 1
(1.1) Jim N;H[Lt[(/\/lb(un)) =log,t (1<t<b).

The sequences (uy, ), satisfying will be called natural-Benford. In partic-
ular, about 30.1 percent of the terms of a natural-Benford sequence have first
digit 1, in the sense of , when b = 10. This kind of property is known
as the first digit phenomenon and holds, more or less for many real-life data
sets.

The sequences (n),, and (py), are considered in particular in [2], [4], [5],
[6], [16] and [18]. They are not natural-Benford and their mantissa does not
admit any distribution in the sense of the natural density. However, they
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exhibit Benford behavior in a weaker sense: if u,, = n or w,, = p,, then
iy}

) 1
Jim e N > L (My(un)) =logyt (1<t <b).

n=1
Such sequences (uy,), will be called log-Benford.

The sequence (logn),, is neither natural-Benford nor log-Benford [§]. But
it can be called loglog-Benford because

N
1 1
Nl—%ologlog]\f;nlogn n(My(logn)) =log,t (1<t <b)

All the natural-Benford sequences are log-Benford and all the log-Benford
sequences are loglog-Benford. The converses are false [§].

More generally, let (wy,), be a sequence of positive real numbers summing
to infinity and, for each N > 1, let Wy = w1 + - - - + wn. The w,,-density of
a set A of positive integers is the number

N
. 1
M 7 2 e Laln)

provided that it exists. This is the limit of the weighted frequency of the
elements of A among the positive integers. We shall say that the sequence
(un)n is Benford in the sense of the w,-density when, for all ¢t € [1, [, the set
A ={n: My(u,) <t} has wy-density log, t. See [§] for a general treatment
of this kind of densities and their connection with Benford sequences.

As pointed out by an anonymous referee, many references on Benford’s
law and special sequences are available in [3] (Schatte’s contributions should
be mentioned), and [6], [16], [I5] and [10] contain quantitative theorems, with
respect to weighted means, closely related to those featuring in the present

paper.

1.2. Content. In Section [2 we present some useful properties of the
theory of uniform distribution. In particular, we pay a lot of attention to
van der Corput’s Difference Theorem and to some of its generalizations.

In Section [3] we show that the sequence (P,), of primorial numbers is
natural-Benford (while (p,,), is not). We provide an estimate of the conver-
gence rate in depending only on the numeration base b. This is done
by proving the uniform distribution of (a¥(py)),, where ¢ denotes the first
Chebyshev function and a any nonzero real, with convergence rate depending
only on a.

In order to illustrate by a second example the utility of van der Corput’s
methods, we provide in Section 4| a brief discussion of the sequence (log2 x
.-+ X logn),. We show that it is log-Benford (while (logn),, is not).
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2. Preliminaries. We collect here the main tools we use. They are all
connected with the theory of uniform distribution modulo 1. Most of them
are known results.

The fractional part of a real number z will be denoted by {z}. For every
real \, we set ey(z) = exp(2imAx) with 2 = —1. All along this section,
(wp)n is a sequence of positive numbers summing to infinity. Recall that
Wy =wi+- -+ wn.

2.1. Basic properties. A sequence (z,,), of real numbers is said to be
uniformly distributed modulo 1 (u.d. mod 1) in the sense of the wy,-density
when, for all t € [0,1],

lim — an]l[o " ({zn}) =t.

N—oo W,

Due to Dini’s Theorem, this is equivalent to

lim —— sup ’ wp 1 Tnt) —t| =0.
NI Ty S 2 Z 0.4({zn})

The simple fact that log, 2 and log,(My(x)) are equal modulo 1 yields the
following.

LEMMA 2.1. A sequence (uy)n of positive numbers is Benford in the sense
of the wy-density if and only if (log, up)n s u.d. mod 1 in the sense of the
same Wy, -density.

The next statement is known as the Weyl Criterion. A simple proof in the
case wy, = 1 is available in |7, p. 7]. The proof in the general case proceeds
along the same lines.

LEMMA 2.2. A sequence (xy,), of real numbers is u.d. mod 1 in the sense
of the wy-density if and only z'ffor all integers k # 0,

As a direct consequence of this lemma, if a sequence (u,), of positive
numbers is Benford in the sense of the w,,-density, then so is (Au]"),, for all
integer m # 0 and positive A.

Lemma is elementary but crucial and we did not find any reference
for it.

LEMMA 2.3. Let (an)n and (by)n be two bounded equivalent sequences of
complex numbers, and let (w))), be a sequence of positive numbers summing
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to infinity and equivalent to (wy),. Set W = w) + --- + wly (N > 1).
Then

lim =0.

N.—>oo‘WN anan_ W]/V ;w nbn| =

Proof. Set b, = ap+ane, and w], = w,+wyel, with lim, &, = lim,, &, =0.

Then, for all N > 1,

|
’VVNanan Zwb

n=1

N
wn Qn

< |y =Wy L

! E Wnan(En + &) + Enl)
/ n“n n n n<n .
N n=1

By the Stolz—Cesaro Theorem, the sequences (Wy)n and (W))n are equiv-
alent. So the first term in the above sum tends to 0 as N tends to infinity
because the sequence ((1/Wy) Z _1 Wnap)N is bounded. Moreover, by the
classical generalization of the Cesaro Theorem, the second term tends to 0
too, because (Wy)n and (W) )n are equivalent and limy, a,, (&, + &}, + €n),)
=0. =

If two sequences of positive numbers (uy, ), and (vy,), are equivalent, then
for every integer k the sequences of complex numbers (eg(log,(uy))), and
(ex(logy(vn)))n are equivalent too. This and Lemmas [2.1] and prove
Lemma [2.4] below.

LEMMA 2.4. Two equivalent sequences of positive numbers are simulta-
neously natural-Benford (respectively log-Benford, loglog-Benford).

2.2. Van der Corput’s Difference Theorem. Van der Corput’s Dif-
ference Theorem [7), p. 26| says that, in the context of the natural density, a
sequence (), is u.d. mod 1 when, for every positive integer h, the sequence
(Tpth — Tp)n is u.d. mod 1. It derives from Lemma below. We present
here three generalizations of this theorem. The first one is due to Tsuji [17]
and extends van der Corput’s Difference Theorem to the general context of
weighted densities. The second and the third say that, again in the context
of weighted densities, (x,), is u.d. mod 1 if (2,1 — ,)y tends to be u.d.
mod 1 as h tends to infinity in a sense made precise in the statements of
Lemmas [2.9] and To the best of our knowledge, Lemmas [2.8H2.10] are
new results.

Lemma [2.7] is a direct consequence of van der Corput’s Fundamental
Inequality [7, p. 25] and is crucial in the proof of Theorem below.

LEMMA 2.5. Let N be a positive integer greater than 1, and aq,...,an
be N complex numbers of modulus 1. Then there exists an absolute constant
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C such that for all positive integers H < N,

N—h
<G |wn X e
n=1

Lemma [2.6] is Tsuji’s extension of the above lemma to the case of general
weighted densities. The real part of a complex number z is denoted by R(z2).

2

'Nzl

LEMMA 2.6. Let N be a positive integer greater than 1, and ai,...,an
be N complexr numbers. Then for all posz’twe integers H < N,

N
|Zn:1 wnan| 2
H2 Zw"‘a"’ Z

WNi+H-1

wn—l—j

H-1N-h

+ 2R( Z Z WnWn4-hAnGp+th Z Wit )
i—n Wn j

h=1 n=1

Tsuji [I7, Theorem 10] used this lemma to prove the following general-
ization of van der Corput’s Difference Theorem.

LEMMA 2.7. Let (xz,,)n be a sequence of real numbers. Suppose that, for
all positive integers h, (wpn/Wpin)n is decreasing and (Tpip — Tp)n is u.d.
mod 1 in the sense of the wy-density. Then (z,)y is u.d. mod 1 in the sense
of the wy,-density.

We now present the second generalization. The next lemma uses the
bound in Lemma [2.6) more precisely than Lemma

LEMMA 2.8. Let (an)n be a sequence of complex numbers bounded in
modulus by 1. Assume that (wy,), and (Wp41)n are equivalent. For h > 1, set

N
1 _
— E W, G Q-1 |-
N —
n=1

I, = lim sup

N—o0
Then N
1
lim — - lim |—— — 0.
Hf;oHZlh 0 = Jim, |y 2 tman| =0

Proof. Note that the hypothebeb on (wp), and the Stolz—Cesaro Theorem
imply that for all j > 1 the sequences (Wy)n and (Wpn4;)n are equivalent.
Since Wy > Wx_j, and H > H — h, Lemma [2.6]leads to

N H-1
| waan)? Wy o ! Z% Wy,
2 —
WX Wipnor - HWy = H Swny
H-1 N—h H-1
2 1 Wn, _ Wn4-h
> D TR e D
T nUn—+
H el Wth ot H h — Wn 45
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Fix h and H. Then Wy and Wy1g—1 are equivalent as N — 0o. More-

over Z]H:_Ol wfi converges to H and Zj ol ;”U”i? converges to H — h as

n — 00, since (wy,), and (wp11)n are supposed to be equivalent.
Hence, by Lemma [2.3] for all H,

2 g il

< = 4 = l
_H+H hs

limsup‘ g Wi Oy,
h=1

N—o0

which implies

2

1 H-1
< 2lim sup [H Z lh]. "

H—o0

1
lim sup ‘ Z Wn, O,

N—oo

Lemmas [2.8] and [2.2] prove the following generalization of Tsuji’s Theo-
rem. The condltlon “(Tpth — Tn)n is u.d. mod 1 for all A" is replaced by
a weaker one which may be interpreted as “(x,4p — Tpn)n tends to be u.d.
mod 1 as h — o0

LEMMA 2.9. Let (xn)n be a sequence of real numbers. For integers h > 1
and k # 0, set

I, —hmsup‘ Wnek(Tpin — Tn)
N—o00 Z " " "
and suppose that, for all k, (Inx)n converges to 0 as h — oo or, more gener-
ally, that
1 H-1
lim — e =
H—oo H ; ok

Then (xy)p is u.d. mod 1 in the sense of the wy,-density.

Lemma [2:10] is a kind of Paul Lévy’s Theorem for arrays of distribution
functions and is essential in the proof of Theorem

LEMMA 2.10. Let (yhn)h>1n>1 be an array of numbers in [0,1[. For
positive integers N and h, for integers k different from zero and t € [0, 1],
set

ap(k) = limsup ’ Z Wnek(Ynn)
N—oo =1
FNh an]l[(]t[ yhn

B (t) = hmsup\FN,h( ) —tl.

N—oo
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Then
(Vt lim B (t) = o) = (\m lim (k) = 0).

Proof. We first apply classical methods used in the proof of Dini’s Theo-
rem. For a positive integer h and ¢ € [0, 1], set v, =lim sup y sup; |Fn p(t)—t],
and let M be a positive integer. Fix ¢ € [0,1] and m € {0,..., M — 1} such
that m/M <t < (m+ 1)/M, and positive integers N and h. Then

m+1 m+1 1
Fypt)—t<F - —
u(t) =t < N’h< M ) M I
m m 1
Fxa) —t>Fynl— ) — = — —
Nalt) =tz N’h<M> M M
because all the functions considered here are nondecreasing. Hence
m m 1
Fnn(t) —t] < Fvnl =) - 24 =,
Sup [Fvoalt) =il < max, N’h<M> M|

This implies, for all A and M,

1
vp < limsup max ‘FNh<m> _m + =
N—oo m=0,..., T\ M

< max f m + i
=m0 M\ ) T M
since the set {0,..., M} is finite. It follows that
(w lim Sy (t) = 0) = ( lim ~y, = 0).
h—o00 h—o0

Fix now k € Z*. For each h € N*, let Nj, be an integer such that

1 O 1
2.1 Wp € | —apk)] < —
(2.1) ‘ ’WNh ;:1 k(Yn,n) K )‘ .

and large enough to ensure that

sup |Fn, n(t) —t| <y, +1/h.
te[0,1]

The integer N}, exists because at least one subsequence of

(e Smein),

converges to ayp (k) and every subsequence of

sup |Fnp(t) —t
<te[0,1[’ N (t) |>N

has upper limit lower than or equal to .
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If we suppose limp, v, = 0 and denote the Dirac measure at yp, ,, by 0
then the sequence of probability measures

(s S,

Nhnl

Yh,n?

converges weakly to the uniform distribution on [0, 1[. So Paul Lévy’s Theo-
rem, characterizing weak convergence by means of Fourier transform, implies
1

lim Wn €L (yhm)

= 0.
h—o0 WNh f—t

The proof is completed by using (2.1)). =

REMARK 2.11. The converse of Lemma[2.10]is true and is a consequence
of the Erdgs—Turéan inequality (see Lemma @ for the version of this inequal-
ity involving the natural density and [3] for the versions involving Weighted

densities). Applying Lemma [2.9 E and Lemma [2 h Yhon = Tpth —
2.9

leads to a new criterion, more telhng than Lemma if for all ¢ € [0, 1[

1
lim limsup |— wy 1 Tpah —Tpn) —t =0,
p’ W nZ::l 04(Tnth ) '

h—oo N0

then (z,), is u.d. mod 1 in the sense of the w,-density.

3. The primorial numbers. Throughout this section we set, for n > 2,
P, = p1 X -+ X p,, where p, denotes the nth prime number, and @, =
2log?2 x --- X nlogn.

Recall that the sequence (py, )y, is log-Benford and is not natural-Benford.
We shall now prove that (P,), is natural-Benford and provide a convergence
rate estimate. We shall make use of Lemma [2.5] above and of Lemmas [3.1]
and 3.3 below.

Lemma is available, among many other references, in [14] and known
as the Erdés—Turan inequality. Let (z,,), be a real sequence in [0, 1] and N
be a positive integer. The number Dy(x,,), defined by

1 N
i > je(n) = (d—c)
n=1

N
n=1

Dy(x,) = sup
0<e<d<1

is called the discrepancy of (z,,) (see [3] for more information on this

subject).

LEMMA 3.1. For every positive z'nteger K,

1 1

|2 vt

??‘
w\
Z\H
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We point out that, in the above inequality, the choice of the integer K > 1
is free. Lemma is known as van der Corput’s Theorem [7], p. 17].

LEMMA 3.2. Leta andb be two integers with a < b, let p > 0, and let f be
twice differentiable in [a,b] and such that f"(x) > p >0 or —f"(x) > p >0
for all z € [a,b] and some positive real p. Then

b
4
exp (2i7f(n ‘g f'(a) — f'(b)] +2 <+3>.
\nz; Qinfm)] < (@) - £6)+2)( -
Lemma [3.3] is a direct consequence of Lemma, [3.2

LEMMA 3.3. There exists an absolute constant C' such that for all 8 > 0
and all positive integers L, M and h with L < M and h < M,

M MvRO M hé
];ee(log(th/Qn))‘gC( f++L+1>.

Vho
Proof. Let L, M, 6 and h satisfy the hypothesis. If

h
flx) = QZIOg ((z + 7)log(z + 7)),
=1
then for all x € [L, M],
0<r@ <0< wmd @)z -ponz

Thus, by Lemma (3.2

éeeaog@n%/a)n))] < () (S5 +3)

The next theorem is stated in terms of mantissa distribution of (P,)y.
It could have been equivalently stated in terms of distribution modulo 1 of
(a¥(pn))n where ¥ denotes the first Chebyshev function and a any nonzero
real.

THEOREM 3.4. There exists a positive constant Cy, depending only on
the numeration base b, such that for every positive integer N,

N
1 (loglog N)'/2
sup —E 1y f(Mp(Pn)) —logyt| < Cp————F—
terro[ 14V T (M) ’ ’ (log N)1/9

In particular the sequence (Py), is natural-Benford.

Proof. In what follows, C' denotes an absolute positive constant which
may vary from line to line. It is written C} when it depends on b. Recall that
for all n > 1, nlogn < p, < nlogn + Cnloglogn [13].
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Fix N > 1. By Lemma for every positive integer K,

(3.1) sup[ E 11[1 ({((My(Py)) —logyt| < Dn({log, P })
te[L,b
K N
1 11
SErL T kzl EN nzzl ek (logy Fu)

and by Lemma for all positive integers h, k and H < N,

2
§H+HZ\N hzek 84 Pusn /P

By the Triangular Inequality and the Mean Value Theorem, for all h, k
and M,

M
(3.3) \ggwﬂ%dﬂwﬂp )| < E:%“b&<dixgj

ex(log, Py,

1
P>
n=1

+| Z ex(108(Qn 1/ Q)|
n=2

We are going to calculate a bound for each term of (3.3)) and then choose
the best possible H in (3.2)) and the best possible K in (3.1)).
FixM>3andh>1 For n > 3,

| < Poen/Pn <H (n+j)log(n +j) + C(n + j)loglog(n + j)
= Qnin/Qn T i (n + j) log(n + j)

loglogn h
< (1+c< )) .
logn

If we set 8 = k/logb, this leads to

(3.4) ZZkﬂlogb< i/ P ) < Chez loglogn

+h/Qn o— logn

< Ché(loglog M)

M
log M
by the classical properties of the logarithmic integral function. On the other
hand, by Lemma [3.3] if h < M,

‘Zek log;, Qn+h/Qn))‘ < VM + ‘ 10g(Qn+h/Qn))‘
n=|vM]

gm+c<¢MM+%+j%+1).
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Combining (3.3)—(3.5) gives

M
M loglog M M hk
10g; (P, /P ‘ < M log log M M
|3 euton(Pucn/ 7o) < (e EER L RRVAT 4 S T,
Since N — (log N)?/% and N are equivalent, since log(N — (log N)?/%) and
log N are equivalent, and so on, we get, for all A < (log N)2/3,

N—-h
1 loglog N Vh 1 hk
<
N — h‘ nz::l ek(logb(Pn-‘rh/Pn))‘ = Cb(hk log N + 'N + 'h N3/2>

Hence, if H = L(log N)2/3J then

loglog N
72 N — h) Z ex(logy(Pruyn/ P ))‘ < Cbk(loggogél/?”

and so, by (3 ,

1 loglog N\ /2
ek(logbpn) 08 )

< C
- b<(logN)2/3 (log N)1/3

Ep)

(loglog N')'/2
<Gy —-
Y log Ny

Thus, for every positive integer K,

K
Z Z er(logy, P
k=1

The proof is completed by taking K = |(log N)¥/?] in (3.1)). =

(loglog N)1/2
<CyWK—7"—="—"——.
(log N)1/6

4. Product of the first n logarithms. Recall that the sequence
(logn), is loglog-Benford and is not log-Benford [8]. We shall now prove
that the sequence (log2 x --- x logn), is log-Benford. Lemma is ineffi-
cient in dealing with log2 x --- X logn because of the value of the second
derivative of z — loglog x. Fortunately, we can use direct calculations which
are themselves fruitless for sequences like (P,)y.

THEOREM 4.1. The sequence (log2 x --- x logn), is log-Benford.
Proof. Set u, =log2 x --- x logn and, for N > 2 and s € [1,],

Fnn(s) =

logN Z 11, (My((logn)")).

For all h, w4 /uy, is equivalent to (log n)" as n — 0o, and this implies that,
for all integers k, eg(logy(tnin/un)) is equivalent to ex(log,((logn)™)). So,
using Lemma with wy, = w), = 1/n, for all k and all h we obtain
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N
. 1 1 Un+h
A1) 1 Y el
(4.1) Nféo<1ogNn ne’“<og”< Un >>

=1

N

N lo;N 2 %ek(logb((log n)h))) —0,
n=1

If we prove that for all s € [1, ],

(4.2) lim limsup Fy(s) = lim liminf Fy p(s) = logy s,
h—00 N_o0 ’ h—sc0 N—voo ’

this will imply
1 1
i s |5 3 o o0 "))) oy s

h—=oo N 1

Then Lemma will prove that, for all k,

Y1

> ~eullos((logn)"))
n=1

and , Lemma with w, = 1/n, and Lemmas and will conclude
the proof.

But direct calculations, using Fuchs’ and Letta’s methods (see [5] and [9]
p. 11]), show that

=0.

lim lim sup =0,

h—o0 N0

log N

Sl/h -1 ) bl/h(sl/h _ 1)
Y] and h]{/n_il,lop Fnp(s) = SRR = 1)

These two limits tend to log, s as h — oco. This proves (4.2). m

liminf Fiy 5(s) =
N—o0 ’

5. Concluding remarks. Van der Corput’s methods, described in Sec-
tion can also be used to prove that the product sequence (U,),, = (u1 X
-+ X Up)n and the corresponding iterated product sequence (Uy X - -+ X Uy, )y,
are log-Benford or natural-Benford when u, = log2 x --- x logn, u, = n!,
u, = n" and u, = P,. When w,, = n! (respectively u,, = n™), the num-
bers U, are called superfactorials (respectively hyperfactorials). A detailed
discussion of this subject is in preparation.

It is known that

P, = €(1+6n)nlogn

with lim,, €, = 0. But this does not provide an equivalent of P,,. In contrast,
the hyperfactorial sequence is equivalent to

Ann2/2+n/2+1/12 x 6—n2/4

where A is a constant, and this can be used together with Lemma to
prove that the hyperfactorial sequence is natural-Benford.
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We do not know if the sequence (n#),, defined by n# = Hpr<npr,
is Benford or not because of the irregularity of the prime gaps. So we do
not know if the values ¥(n) of the first Chebyshev function at integers are
u.d. mod 1 or not. Of course, since they are respectively equivalent to n
and n logn, the sequences (¥(n)), and (¥(p,))n are log-Benford and are not
natural-Benford. But this is off topic.

The fact that the sequence (P,),, is natural-Benford can be proved quickly
by combining Lemmas and Indeed, Lemma [3.3] shows that

N

o 1
lim limsup | > ex(Qn+n/Qn)| =0

h—oo N0 ne1

where @, = 2log 2x---xnlogn. Since Qp+1n/@n and P,/ P, are equivalent
as n — 0o, Lemma shows that this is also true when we replace Q,,+1/Qn
by Pyin/Py,. Lemma with w, = 1 concludes the proof.

The main term in the calculations in the proof of Theorem [3.4] comes
from the term Cnloglogn in the formula p, < nlogn 4+ Cnloglogn. If we
replace p, by nlogn in Theorem [3.4] we obtain a far better convergence
rate:

sup
te[1,b]

N

1 _

N D L (Mo(Qu)) — logyt| < CuN 110
n=2

where C}, is a positive constant depending only on b. The proof proceeds along
the same lines as the proof of Theorem it suffices to replace P, by @,
in and (3.2)), to use and to choose H = [V/N| and K = |[N'/10],

The numbers P, — 1 and P, 4+ 1 have few divisors and many of them are
prime numbers (in this case they are called primorial primes). Yet (P, — 1),
and (P, + 1), are natural-Benford since they are equivalent to (P, ).

We cannot prove or disprove that (log2x - - - xlogn), is actually natural-
Benford with our methods. Indeed, if we replace 1/n by 1 in the proof of
Theorem we get liminfx Fiv p(s) = 0 and limsupy Fnp(s) = 1 for all s
and all h. So (x,, — Zp4n)n does not tend to be u.d. mod 1 as h — oo when
Tp =log2 x --- x logn (see the remark at the end of Section .

Fuchs’ and Letta’s methods (see [5] and [9, p. 11]) and direct calcu-
lations prove that the sequence (loglogn), is not loglog-Benford. The ar-
guments used in the proof of Theorem show that the sequence (u; x

- X Up)p is loglog-Benford when w, = loglogn. Of course we can also
consider (logloglogn), with the weights 1/(nlognloglogn) and so on.
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