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1. Introduction. Let k ≥ 2 be a fixed integer and M be a large integer
(say, once for all, M ≥ 10). Let f : [1,M ] → R be a Ck function which
satisfies van der Corput’s hypothesis:

(1) λk ≤ |f (k)(x)| � λk for 1 ≤ x ≤M,

where λk is a small positive number (say, once for all, λk ≤ 1/10).
In order to bound the exponential sum

(2) S =
M∑

m=1

e(f(m))

with the notation e(x) = e2iπx, van der Corput’s method consists in applying
the Ak−2-process, that is, the A-process iterated k−2 times, combined with
van der Corput’s inequality (that we shall denote by ξ), to get the following
well-known kth derivative test for exponential sums:

(3) S �Mλ
1/(2k−2)
k provided that M � λ

−2k−2/(2k−1−1)
k .

For all details concerning this bound, the reader should refer to [2, Chap-
ter 2]. To be brief, we shall say that the proof is obtained by the Ak−2ξ-
process.

The aim of this paper is to provide an alternative to the A4-process and
to give applications in the case k = 8 and k = 9. This new inequality, which
we shall denote by A4, is the content of our Theorem 1 in Section 3. The
A4 and A4 inequalities are quite similar; the former yields a saving with
exponent 1/16 and the latter yields a worse saving, but with exponent 1/12.

For k ≥ 6, we can compare the kth derivative test obtained by the
A4A

k−6ξ with the above bound (3). We have to point out that the applica-
tions of our A4 inequality are not as straightforward as in the case of van
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der Corput’s A-process, because of the term u(m) in Theorem 1. However,
we easily obtain the following results.

In the case k = 6, the A4ξ-process provides a worse bound than A4ξ
does. In the case k = 7, A4Aξ yields a barely better result than A5ξ does.
But for k = 8 and mainly for k ≥ 9, A4A

k−6ξ is noticeably stronger than
Ak−2ξ. In the case k = 8, we get

(4) S �ε M
1+ελ

1/216
8 for M � λ

−4/9
8 ,

instead of van der Corput’s bound (3): S � Mλ
1/254
8 for M � λ

−64/127
8 .

Similarly, in the case k = 9, the process A4A
3ξ yields

(5) S �ε M
1+ελ

1/420
9 for M � λ

−48/105
9 ,

while van der Corput’s A7ξ gives: S �Mλ
1/510
9 for M � λ

−128/255
9 .

The scheme of our paper is as follows. In Section 2, we recall two lemmas
which are essential in the proof of Theorem 1. In Section 3, we state and
prove Theorem 1. The proof of Lemma 3 is somewhat similar to that of
formula (35) on page 79 of [4]. A more precise version of the A4 inequality,
extended to exponential sums with a parameter, is stated in Theorem 2,
although we shall not use it in this paper.

In Section 4, we study the eighth derivative test deduced from the A4ξ4
inequality (where ξ4 denotes the fourth derivative test of [6]). This may be
written as

(6) S �ε M
1+ελ

1/204
8 for M � λ

−8/17
8 ,

and this bound improves on (4).
In Section 5, we study similarly A4ξ5 (where ξ5 denotes the fifth deriva-

tive test of [7]), which yields

(7) S �ε M
1+ελ

7/2640
9 for M � λ

−21/55
9

with 7/2640 = 1/377.1 . . . ; the condition in (7), on the relative size of M
and λ, shows that this bound is valid for “very short exponential sums”.

Finally, in Section 6, we show that the A4-process may be used as a
transformation of exponent pairs in the sense of [2, Chapter 3].

Application to the order of ζ(σ + it). Let σ ∈ [1/2, 1]. The order of
growth of the Riemann zeta function in the critical strip is characterized by
the function

µ(σ) = inf{α > 0 | ζ(σ + it)�σ,α t
α}.

Our exponent pair (1/204, 1 − 7/204 + ε) (for each ε > 0) implies at once
that

µ(1− 8/204) ≤ 1/204



Van der Corput’s A4-process for exponential sums 221

while our exponent pair (1/370, 1− 8/370), given in Section 6, implies that

µ(1− 9/370) ≤ 1/370.

For these deductions, the reader should refer to [3, Chapter 21.2]. These
bounds are not covered by Huxley’s formula (21.2.5) of [3]. To see this, we
set γ = 0.026958 . . . , so that formula (21.2.5) of [3] in the case R = 5 may
be written as

µ(1− γ) ≤ 0.00373 . . .

Using the convexity of the function µ(σ) and our two bounds above, we get
the slightly better bound

µ(1− γ) ≤ 0.00309 . . .

Notations. The symbol u� v means that u is a complex number and v a
positive real number and that there exists an absolute constant C > 0 which
depends at most on previous absolute constants, such that |u| ≤ Cv. The
symbol �s means that the constant may also depend on the parameter s.
The symbol �ε means furthermore that the bound holds for each fixed
ε > 0. Finally, u � v means that both u� v and v � u.

2. Two preliminary lemmas. The starting point of this paper is a
kind of Weyl–van der Corput’s inequality, which is Lemma 1 of [7] and which
we recall now.

Lemma 1. Let Φ : Z → C be zero outside the set {1, . . . ,M}, where
M ≥ 10 is an integer. Let N be an integer with 1 ≤ N ≤M . Then

(8)
∣∣∣
∑

m

Φ(m)
∣∣∣
2
� M

N
max

0≤N1,N2≤N

∑

m

(∣∣∣
∑

|n|≤2N1

Φ(m+ n)Φ(m− n)
∣∣∣

+
∣∣∣
∑

|n|≤N2

Φ(m+ 2n)Φ(m− 2n)
∣∣∣
)
.

For the proof, the reader should refer to [7].

Our second lemma deals with a Diophantine system which is treated in
[5] with the method of [1]. To recall it, we introduce some notations.

Let N be a positive integer. For n = (n1, n2, n3) ∈ {1, . . . , N}3, and for
any positive integer p, we set

(9) sp(n) = np1 + np2 + np3.

Let c be any real number. We denote by Y = Y (N, c) the number of pairs
(n,n′) ∈ {1, . . . , N}6 such that

(10) s2(n) = s2(n′), c ≤ s4(n)− s4(n′) ≤ c+N3.
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Lemma 2. With the above notations,

Y �ε N
3+ε.

Proof. When c = 0, this is Theorem 1′ of [5]. For c 6= 0, the proof reduces
to the case c = 0 by Lemma 1 of [5].

3. The A4 inequality

3.1. Statement of the result. As in the introduction, let f : [1,M ] → R
be a Ck function. Here we suppose k ≥ 6.

Theorem 1. Let N ≤ M be a positive integer. Then there exists an
integer M ′ (1 ≤M ′ ≤M), a real number τ with N3 ≤ τ ≤ N4 and a Ck−6

function u : [1,M ]→ R such that

(11) |u(j)(x)| ≤ N6 sup
1≤x≤M

|f (j+6)(x)| for 1 ≤ x ≤M and 0 ≤ j ≤ k−6

and

(12) S �ε M
1+ε
(

1
N

+
τ

MN4

∣∣∣
M ′∑

m=1

e(τf (4)(m) + u(m))
∣∣∣
)1/12

.

3.2. A lemma. The first part of the proof can be stated as a lemma that
involves only Lemma 1. For this we introduce some notations.

Let Φ : Z→ C be an arithmetic function which is zero outside the finite
set {1, . . . ,M}. Let N be a positive integer, N ≤ M . For n = (n1, n2, n3)
and n′ = (n′1, n

′
2, n
′
3) both in {1, . . . , N}3, we set

Ψn,n′(m) =
∏

1≤i≤3

Φ(m+ ni)Φ(m− ni)Φ(m+ n′i)Φ(m− n′i).

Lemma 3. With the above notations, let S=
∑M

m=1 Φ(m)=
∑
m∈Z Φ(m)

=
∑
m Φ(m). Then

S �M

{
1

MN4

∑

s2(n)=s2(n′)

∣∣∣
∑

m

Ψn,n′(m)
∣∣∣
}1/12

(13)

+
(
M

N

∑

m

|Φ(m)|2
)1/2

.

In the above formula, the sum
∑
s2(n)=s2(n′) runs over all n,n′ ∈

{1, . . . , N}3 which satisfy s2(n) = s2(n′) in the sense of (9).

Proof of Lemma 3. We apply Lemma 1 to the sum S to get

S2 � M

N

∑

m

∣∣∣
∑

|n1|≤N1

Φ(m+n)Φ(m−n)
∣∣∣+M

N

∑

m

∣∣∣
∑

|n2|≤N2

Φ(m+2n)Φ(m−2n)
∣∣∣
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for some N1 ≤ N and some N2 ≤ N/2. Thus

S2 � M

N

∑

m

|Φ(m)|2 +
M

N
S1 +

M

N
S2

with

S1 =
∑

m

∣∣∣
N1∑

n=1

Φ(m+ n)Φ(m− n)
∣∣∣, S2 =

∑

m

∣∣∣
N2∑

n=1

Φ(m+ 2n)Φ(m− 2n)
∣∣∣.

These two sums are quite similar, so that we may restrict our proof to the
bound of S1. By Hölder’s inequality, we have

S3
1 ≤M2

∑

m

∣∣∣
N1∑

n=1

Φ(m+ n)Φ(m− n)
∣∣∣
3

≤M2
∑

m

∣∣∣
∑

n

∏

1≤i≤3

Φ(m+ ni)Φ(m− ni)
∣∣∣

where the inner sum runs over all n ∈ {1, . . . , N1}3. We introduce the pa-
rameter a = s2(n):

S3
1 ≤M2

∑

m

3N2
1∑

a=3

∣∣∣
∑

s2(n)=a

∏

1≤i≤3

Φ(m+ ni)Φ(m− ni)
∣∣∣.

By Cauchy’s inequality, we have

S6
1 ≤M5N2

∑

m

∑

a

∑

s2(n)=a

∑

s2(n′)=a

×
( ∏

1≤i≤3

Φ(m+ ni)Φ(m− ni)Φ(m+ n′i)Φ(m− n′i)
)
,

from which we deduce Lemma 3 at once.

3.3. Proof of Theorem 1. In Lemma 3, we have to take Φ(m) =
χ(m)e(f(m)), where χ is the characteristic function of the interval [1,M ].

1) First, we want to detail the expression Pn,n′ = |∑m Ψn,n′(m)| for
n,n′ ∈ {1, . . . , N}3 such that s2(n) = s2(n′). By Taylor’s formula up to the
sixth order, we can write

f(m+ n) + f(m− n) = 2f(m) + f ′′(m)n2 +
1
12
f (4)(m)n4 + vn(m)

with

vn(m) =
1
5!

n�

0

(f (6)(m+ t) + f (6)(m− t))(n− t)5 dt.
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On the other hand, the function m 7→ χ(m+n)χ(m−n) is the characteristic
function of the interval [n+ 1,M − n], so that

(14) Pn,n′ =
∣∣∣∣
∑

m∈In,n′
e

(
f ′′(m)(s2(n)− s2(n′))

+
1
12
f (4)(m)(s4(n)− s4(n′)) + un,n′(m)

)∣∣∣∣

with

un,n′(m) =
3∑

i=1

vni(m)−
3∑

i=1

vn′i(m),

where In,n′ ⊂ [1,M ] is an interval. Furthermore

|u(j)
n,n′(m)| ≤ 1

60
N6 max

1≤x≤M
|f (6+j)(x)|.

2) We set V = 12N3 and we split up the sum over (n,n′) according to
the value of σ := s4(n)− s4(n′):

(15)
∑

s2(n)=s2(n′)

Pn,n′ =
∑

(n,n′)∈X
Pn,n′ +

L∑

l=0

∑

(n,n′)∈Xl
Pn,n′ ,

where we have set X = {(n,n′) ∈ {1, . . . , N}6 : s2(n) = s2(n′) and |σ| ≤ V }
and Xl = {(n,n′) ∈ {1, . . . , N}6 : s2(n) = s2(n′) and 2lV < |σ| ≤ 2l+1V }.
We have L � logM ; the number of elements of X is cardX �ε N

3+ε,
according to Lemma 2, and similarly cardXl �ε 2lN3+ε.

The first term on the right hand side of (15) is trivially�ε MN3+ε. Now,
among the O(logM) terms

∑
(n,n′)∈Xl Pn,n′ , there is at least one which

dominates and which corresponds to some l that we fix. Similarly, there
exists some (n,n′) ∈ Xl such that the second term on the right hand side
of (15) is � (cardXl)Pn,n′ logM �ε M

ε|σ|Pn,n′ . But, according to (14),

Pn,n′ =
∣∣∣∣
∑

m∈In,n′
e

(
σf (4)(m)

12
+ un,n′(m)

)∣∣∣∣.

We insert the above equality and inequalities into (15) and then into Lem-
ma 3. This yields a result that, with some obvious modifications, is precisely
(12). The proof of Theorem 1 is complete.

3.4. The A4 inequality for exponential sums with a parameter

Theorem 2. Let H ≥ 1 and M ≥ 10 be integers. Let k ≥ 6 be a fixed
integer. For each h = 1, . . . ,H, let Mh (1 ≤ Mh ≤ M) be an integer and
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fh : [1,M ]→ R be a Ck function. Set

S̃ =
1
H

H∑

h=1

∣∣∣
Mh∑

m=1

e(fh(m))
∣∣∣.

Let N (1 ≤ N ≤ M) be an integer. Then there exist an integer M ′ (1 ≤
M ′ ≤M) and a sextuplet (n1, n2, n3, n

′
1, n
′
2, n
′
3) ∈ {1, . . . , N}6 such that

S̃ �ε M
1+ε
{

1
N

+
τ

HMN4

∣∣∣
H∑

h=1

M ′∑

m=1

e(τf (4)
h (m) + uh(m))

∣∣∣
}1/12

,

where we have set τ = 1
12 (n4

1 + n4
2 + n4

3 − n′41 − n′42 − n′43 ) and

uh(m) =
3∑

i=1

ni�

0

(ni − t)5

5!
(f (6)
h (m+ t) + f

(6)
h (m− t)) dt

−
3∑

i=1

n′i�

0

(n′i − t)5

5!
(f (6)
h (m+ t) + f

(6)
h (m− t)) dt.

Proof. We write
Mh∑

m=1

e(fh(m)) =
1/2�

−1/2

( M∑

m=1

e(fh(m)− θm)
)( Mh∑

j=1

e(θj)
)
dθ,

so that

S̃ � 1
H

1/2�

−1/2

( H∑

h=1

∣∣∣
M∑

m=1

e(fh(m)− θm)
∣∣∣min(M, |θ−1|)

)
dθ

� 1
H

max
θ∈R

( H∑

h=1

∣∣∣
M∑

m=1

e(fh(m)− θm)
∣∣∣
)

logM.

The rest of the proof can be obtained by adjusting the proof of Theorem 1.

4. An eighth derivative test for exponential sums

4.1. Statement of the result. As in the introduction, let f : [1,M ] → R
be a C8 function whose eighth derivative satisfies

(16) λ8 ≤ f (8)(x)� λ8.

Theorem 3. With the above hypothesis,

(17)
M∑

m=1

e(f(m))�ε M
ε(Mλ

1/204
8 + λ

−95/204
8 ).

We notice that this formulation is equivalent to (6), the proof of this
assertion being similar to step 0 in §4 of [6].
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4.2. A fourth derivative test. The fourth derivative test for exponential
sums of [6] does not apply directly here because of the term u(m) in Theo-
rem 1. However, some slight modifications yield the following statement.

Lemma 4. Let g, u : [1,M ]→ R be respectively C4 and C2 with

λ4 ≤ g(4)(x)� λ4 and u′′(x)� λ
9/13
4 for 1 ≤ x ≤M.

Then
M∑

m=1

e(g(m) + u(m))�ε M
ε(Mλ

1/13
4 + λ

−7/13
4 ).

Proof. In the proof of Theorem 1 of [6], set f(m) = g(m) + u(m). The
first change occurs in step 1 of that proof, where we have to ensure that, for
h ≤ H1, the hypotheses of Lemma 3 of [6] are satisfied. But, for this point,
the above rough condition u′′(x)� λ

9/13
4 is widely sufficient.

The main change occurs in formula (4.16) of [6], where we have to remove
the term z = ∆hu(m+n+q)−∆h+ru(m). As we are in a triple exponential
sum with variables h, q, n, a summation by parts according to Lemma 2
of [6] should involve higher derivatives for u.

Thus, we proceed as follows. We write

z = ∆hu(m+ n+ q)−∆hu(m) +∆hu(m)−∆h+ru(m)

= ∆n+q∆hu(m)−∆ru(m+ h) = z1 − z2(h),

say. Now, in the triple exponential sum of formula (4.12) of [6] we remove
the term e(−z2(h)) by a summation on the variable h (this only requires
u′′(x) � λ

3/13
4 ), while for the term e(z1), we write roughly e(z1) = 1 +

O(|z1|). The term O(|z1|) yields the desired saving when u′′(x)�λ
9/13
4 .

4.3. Proof of Theorem 3. Let S =
∑M
m=1 e(f(m)). According to Theo-

rem 1, we have

S �ε M
1+ε
{

1
N

+
τ

MN4

∣∣∣
M ′∑

m=1

e(τf (4)(m) + u(m))
∣∣∣
}1/12

with N3 ≤ τ ≤ N4 and where u is a C2 function such that |u′′(x)| � N6λ8

for 1 ≤ x ≤M ′. We want to bound the sum

S(τ) :=
1
N

+
τ

MN4

∣∣∣
M ′∑

m=1

e(τf (4)(m) + u(m))
∣∣∣

with the use of Lemma 3. This will be possible if u′′(x)� (τλ8)9/13 and in
particular if N6λ8 � (τλ8)9/13. Thus, the restrictions on N are

N � τ9/78λ
−4/78
8 , N �M.
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We deduce that

S(τ)� 1
N

+
τ14/13

N4 λ
1/13
8 +

τ6/13

MN4λ
7/18
8

,

provided that the above restrictions on N hold. For fixed τ , we could opti-
mize the parameterN as in Srinivasan’s Lemma (cf. [2, Lemma 2.4]), but this
would involve intricate calculations which are not necessary for the simpli-
fied bound (6). We only introduce the inequality N 3≤τ≤N4, which yields

S(τ)� 1
N

+N4/13λ
1/13
8 +

1

MN28/13λ
7/13
8

,

provided that N � λ
−4/51
8 and N ≤M .

To prove Theorem 3, we may assume that

(∗) M � λ−8/17
8 .

Indeed, we set M0 = [λ−8/17
8 ]. If M ≥ M0, we divide the sum SM into

O(Mλ
−8/17
8 ) shorter sums and the problem reduces to (∗). We may also

choose N � λ
−1/17
8 , so that the three terms on the right hand side of the

above inequality are � λ1/17
8 . This yields the desired result (6).

5. A ninth derivative test for exponential sums

5.1. A fifth derivative test

Lemma 5. Let g, u : [1,M ]→ R be respectively C5 and C3 with

λ5 ≤ g(5)(x)� λ5 and u′′′(x)� λ
3/8
5 /M for 1 ≤ x ≤M.

Then
M∑

m=1

e(g(m) + u(m))�ε M
ε(Mλ

7/192
5 + λ

−77/192
5 ).

Proof. The only change to be done in the proof of [7, Theorem 1] occurs
in [7, (3.3)]. Set f(x) = g(x) + u(x). Then, by Taylor’s formula,

f(m+ n) + f(m− n) = 2g(m) + g′′(m)n2 +
1
12
g(4)(m)n4

+
1
4!

n�

0

(n− t)4(g(5)(m+ t)− g(5)(m− t)) dt

+ 2u(m) + u′′(m)n2

+
1
2

n�

0

(n− t)2(u′′′(m+ t)− u′′′(m− t)) dt

= (u′′(1) + g′′(m))n2 +
1
12
g(4)(m)n4 + vm(n)
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with

vm(n) = 2g(m) + 2u(m) + (u′′(m)− u′′(1))n2

+
1
4!

n�

0

(n− t)4(g(5)(m+ t)− g(5)(m− t)) dt

+
1
2

n�

0

(n− t)2(u′′′(m+ t)− u′′′(m− t)) dt.

In the situation of Theorem 1 of [7], the hypothesis on the size of u′′ is
precisely what is needed to ensure that v′m(n) � N−1. In the exponential
sum |∑n∼N e(f(m + n) + f(m − n))|, the term e(vm(n)) can be removed
by partial summation, while the term u′′(1)n2 in the principal part of the
phase does not cause any problem. The proof of Lemma 5 is complete.

5.2. Application to a ninth derivative test

Theorem 4. Let f : [1,M ]→ R be a C9 function such that

λ9 ≤ f (9)(x)� λ9 for 1 ≤ x ≤M,

for some positive small number λ9. Then

(18)
M∑

m=1

e(f(m))�ε M
ε(Mλ

7/2640
9 + λ

−1001/2640
9 ).

Proof. The theorem is stated in a different way than in the introduc-
tion, but in fact, (18) is equivalent to (7). We are thus going to prove (7).
Analogously to our proof of Theorem 3, we may assume that M � λ−21/55

9 .
We introduce the parameter N � λ−7/220

9 . Now, we apply Theorem 1:

S =
M∑

m=1

e(f(m))�ε M
1+ε
{

1
N

+
τ

MN4

∣∣∣
M ′∑

m=1

e(τf (4)(m) + u(m))
∣∣∣
}1/12

,

where M ′ is a positive integer at most equal to M and where u is a C3

function such that u′′′ � N6λ9. To apply Lemma 5, we have to ensure that
N6λ9 � (τλ9)3/8M−1. As τ � N3 and according to the choice of M and
N , this condition is widely satisfied. We may now apply Lemma 5:

1
N

+
τ

MN4

∣∣∣
M ′∑

m=1

e(τf (4)(m) + u(m))
∣∣∣

�ε
1
N

+
τMε

MN4 (M(τλ9)7/192 + (τλ9)−77/192)

�ε M
ε

(
1
N

+
τ

N4 (τλ9)7/192 +
τ

N4M(τλ9)77/192

)
.
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We see that, in the above bound, τ appears only with positive exponents,
so that we may replace τ by its maximum value, which is N 4. But for this
value of τ and for the above choice of M and N , the three terms in the latter
bound above are of the same size. The final saving has thus size N−1/12 or
λ

7/2640
9 . We have proved (7).

6. A transformation of exponent pairs. In this section, we show
that Theorem 1 yields a transformation of exponent pairs. For the definition
of exponent pairs, the reader should refer to [2, Chapter 3].

Theorem 5. Let (µ, ν) ∈ [0, 1/2]× [1/2, 1]. Suppose that , for any small
enough positive ε, the pair (µ, ν+ε) is an exponent pair. Then, for any small
enough positive ε, the pair

(µ′, ν′ + ε) =
(

µ

12 + 48µ
,

11 + 44µ+ ν

12 + 48µ
+ ε

)

is also an exponent pair.

Proof. Step 1. We first recall what is to be proved. Let s < 1 be a fixed
real number, and ε be a fixed small enough positive real number. We have
to prove that there exist a positive real number η = η(s, ε, µ, ν) ≤ 1/2 small
enough, and a positive integer l = l(s, ε, µ, ν) large enough such that, for any
integer M ≥ 10 and any positive real number T , for any “semi-monomial”
function f : [M, 2M ]→ R which can be written as f(x) = φ(x) + v(x), with

(19) φ(x) = Txs/Ms if s 6= 0 and φ(x) = T log x if s = 0

and where v : [M, 2M ]→ R is a C l function such that

(20) |v(j)(x)| ≤ η|φ(j)(x)| for M ≤ x ≤ 2M and 1 ≤ j ≤ l
and for any interval I ⊂ [M, 2M ], we have

(21)
∣∣∣
∑

m∈I∩N
e(f(m))

∣∣∣ ≤ CM2εP (µ, ν) +M/T

where we have set P (µ, ν) = T µ
′
Mν′−µ′ and where C = C(s, ε, µ, ν, η, l) is

a constant which does not depend on M and T .

Step 2. We now treat the main part of the proof, where we suppose

(22) T ≥M (1+µ+3ν+ε)/(1+µ).

We bound the sum S =
∑
m∈I∩N e(f(m)) by means of Theorem 1:

(23) S �M1+ε
(

1
N

+
τ

MN4

∣∣∣
∑

m∈I′∩N
e(τf (4)(m) + u(m))

∣∣∣
)1/12

where τ and u are as in Theorem 1 and where I ′ ⊂ I is an interval.
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Our aim is to apply the exponent pair (µ, ν + ε) to the inner sum in
(23). For this, we need the function g(x) = τf (4)(x) + u(x) to satisfy some
“semi-monomiality” properties. But if we suppose for example s 6= 0, we
have g(x) = ±φ1(x) + v1(x) with

φ1(x) =
T1

Ms−4 x
s−4, T1 = |s(s− 1)(s− 2)(s− 3)| τT

M4 ,

v1(x) = τv(4)(x) + u(x).

By definition of the exponent pair (µ, ν + ε), there exist η1 > 0 and an
integer l1 such that the condition

(24) |v1(x)| ≤ η1|φ(j)
1 (x)| for M ≤ x ≤ 2M and 1 ≤ j ≤ l1

is sufficient to guarantee that the bound

(25) S1 :=
∑

m∈I′∩N
e(g(m))� Tµ1 M

ν−µ+ε +M/T1

holds uniformly in M and T , recalling that µ, ν, ε and s− 4 are fixed.
We choose η = η1/2 and l = l1 + 6. Using formulas (11) and (20), we

get, for M ≤ x ≤ 2M and 1 ≤ j ≤ l − 6,

|v1(x)| ≤ η|φ(j)
1 (x)|+O

(
TN6

M j+6

)

≤ |φ(j)
1 (x)|

(
η +O

(
N6

τM2

))
≤ |φ(j)

1 (x)|
(
η +O

(
N3

M2

))
.

Suppose now that there exists δ = δ(µ, ν, s, ε) > 0 such that

(26) N �M2/3−δ .

Then, for M large enough, condition (24) is satisfied and we may insert (25)
into (23) to get

S �M1+ε
(

1
N

+N4µTµMν−1−5µ+ε +
M4

TN4

)1/12

.

The first two terms in the bracket are of the same size if we choose

(27) N � M (1+5µ−ν−ε)/(1+4µ)

Tµ/(1+4µ)
.

With this choice of N , we may take δ = ε(1 + µ)/(1 + 4µ) in (26). On the
other hand, we shall have the bound

(28) S � M1+ε

N1/12

whenever we can assume that M 4(TM3)−1 � 1; but this last condition is
precisely (22), so that (27) and (28) imply (21) in this case.
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Step 3. We now suppose that T < M (1+µ+3ν+3ε)/(1+µ). For these rel-
ative sizes of T and M , the bound (21) is not relevant and may be de-
duced from some known result; here we use the classical exponent pair
(1/30, 26/30) = A3B(0, 1) which, in the range considered, is widely suffi-
cient to recover (21), providing that ε is small enough. The details are left
to the reader.

Examples. Theorems 3 and 4 give rise to exponent pairs. Indeed, both
theorems rely on kth derivative tests (with k = 4, 5) which correspond in
fact to exponent pairs. Thus, (1/204, 1−7/204+ε) and (1/378, 1−8/378) are
exponent pairs for each ε > 0. Furthermore, the latter can be improved if we
use Theorem 3 of [7] instead of Theorem 1 of [7], so that (1/370, 1− 8/370)
is an exponent pair.

As a last example, we apply A4A to the exponent pair (17/456, 388/456
+ ε) of Theorem 3 of [7] and we get the exponent pair (1/716, 1− 9/716).
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