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1. Introduction and statement of results. Let G = (Gj)j≥0 be
a strictly increasing sequence of integers with G0 = 1. Then every non-
negative integer N has a unique G-ary expansion N =

∑
j≥0 bj(N)Gj with

integer digits bj(N) provided that
∑

j<k bj(N)Gj < Gk. The sum-of-digits
function tG(N) is given by

tG(N) =
∑

j≥0

bj(N).

There are several papers concerning the distribution of tG(N) for fixed G,
e.g. [1] and [2]. In [3] this function is studied by fixing N and considering
the average values of H−1∑H

g=2 tG(N) with G = (gj)j≥0.
Let Ω be the set of all irrational numbers in the interval [0, 1]. Then every

α ∈ Ω has a unique continued fraction expansion α = [0, a1(α), a2(α), . . .]
with convergents pn(α)/qn(α). Given N , using the sequence G = (qj(α))j≥0,
we can obtain uniquely determined integers m(N,α) and bi(N,α) (if it is
clear from the context we omit the dependence on α in qi,m and bi and the
dependence on N in m and bi), 0 ≤ i ≤ m, with the following properties:

(1) N =
∑m

i=0 biqi.
(2) bm > 0 and 0 ≤ bi ≤ ai+1 for 0 ≤ i ≤ m.
(3) If 0 < i ≤ m and bi = ai+1 then bi−1 = 0. Furthermore b0 < a1.

The expansion N =
∑m

i=0 biqi is called the Ostrowski expansion of N to
base α. In analogy with the classical situation in [3] we study, for fixed N ,
the sum-of-digits function sN (α) defined by sN (α) =

∑m
i=0 bi and the corre-

sponding mean
� 1
0 sN (α) dα. More precisely, our main goal is to prove, using

some techniques and ideas from [5], the following theorem.
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Theorem. For N ∈ N,

1�

0

sN (α) dα =
3
π2 log2N +O((logN)3/2 log logN).

For the proof of the Theorem we proceed as follows: We start by prov-
ing, for bi > 0, the formulas bi = ai+1{Nqiα} + O(1) for 2 | i, and bi =
ai+1(1 − {Nqiα}) + O(1) for 2 - i. As bi = 0 only for α in a small set AN,i,
by integrating these formulas we get the relation

1�

0

bi(α) dα =
1
2

1�

0

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα+O(1).

Note that in contrast to
� 1
0 ai+1(α) dα = ∞ the corresponding integral over

bi(α) is finite. Finally we calculate
� 1
0 sN (α) dα using the asymptotic relation

∑

i≥0

1�

0

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα

=
6
π2 log2N +O((logN)3/2 log logN).

2. Definitions and notations. For a = (an)n∈N ∈ NN define se-
quences (Pn(a))n∈Z+ and (Qn(a))n∈Z+ by P0(a) = 0, Q0(a) = 1, P1(a) = 1,
Q1(a) = a1, and

Pk+1(a) = ak+1Pk(a)+Pk−1(a), Qk+1(a) = ak+1Qk(a)+Qk−1(a), k ≥ 1.

Then Pk(a) and Qk(a) depend at most on a1, . . . , ak; hence we may write
Pk(a1, . . . , ak) for Pk(a) and Qk(a1, . . . , ak) for Qk(a). If α = [0; a1, . . .], then
for k ≥ 0, pk(α) = Pk(a1, . . . , ak) and qk(α) = Qk(a1, . . . , ak).

For k ∈Z+ and a∈Nk+1 let J(a) := {α∈Ω : 1≤ j ≤ k+1⇒ aj(α) = aj}.
Then

J(a) =





(
Pk+1(a) + Pk(a)
Qk+1(a) +Qk(a)

,
Pk+1(a)
Qk+1(a)

)
if k is even,

(
Pk+1(a)
Qk+1(a)

,
Pk+1(a) + Pk(a)
Qk+1(a) +Qk(a)

)
if k is odd,

but in any case, if λ denotes the Lebesgue measure on Ω,

λ(J(a)) =
1

Qk+1(a)(Qk+1(a) +Qk(a))
.

For x > 0 we define log+ x = max{log x, 0}. For a real number x let
{x} := x− [x] be the fractional part of x.
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3. Auxiliary results. We start by proving, for bi > 0, the formulas

bi =
{
ai+1{Nqiα}+O(1) if 2 | i,
ai+1(1− {Nqiα}) +O(1) if 2 - i.

These formulas are valid for α ∈ Ω except for α ∈ AN,i = {α ∈ Ω : Ai < 0}
if i is even, and except for α ∈ AN,i = {α ∈ Ω : Ai > 0} if i is odd. Then we
calculate the integral of ai+1{Nqiα} and ai+1(1 − {Nqiα}) over [0, 1]. The
rest of the section is devoted to obtaining an upper bound of the integral of
ai+1(α) over AN,i.

For i, j ∈ N, we define

si,j := qmin(i,j)(qmax(i,j)α− pmax(i,j)), Ai :=
∞∑

j=0

bjsi,j .

Noting that ai+1si,j = si+1,j − si−1,j + (−1)iδi,j for i, j ≥ 0, we get

ai+1Ai = Ai+1 − Ai−1 + (−1)ibi for all i ≥ 0.(1)

Lemma 1. For 1 ≤ i ≤ m we have:

(i)
∑i−1

j=0 bjqj < qi.

(ii) |∑m
j=i bj(qjα− pj)| ≤ 1/qi, and if bi 6= 0, then

sgn(
∑m

j=i bj(qjα− pj)) = (−1)i.
(iii) |Ai| < 1.
(iv) If 2 | i and bi > 0, then Ai > 0.
(v) If 2 - i and bi > 0, then Ai < 0.

Proof. (i) We omit the simple proof.
(ii) and (iii). For a proof see [4, Section 3, Proposition 1], and note that

the Ai there has to be replaced by Ai/qi.
(iv) We have

Ai =
i−1∑

j=0

bjqj(qiα− pi) + qi

m∑

j=i

bj(qjα− pj).

The first sum is non-negative since qiα−pi ≥ 0 if 2 | i, and using (ii) we find
that the second sum is positive, giving Ai > 0.

(v) Similarly to (iv) noting that qiα− pi ≤ 0 if 2 - i.

Lemma 2. For i ∈ N we have:

(i) If Ai ≥ 0 then Ai = {Nqiα}.
(ii) If Ai < 0 then 1 + Ai = {Nqiα}.
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Proof. We have

Ai −Nqiα =
i∑

j=0

bjqj(qiα− pi) +
m∑

j=i+1

bjqi(qjα− pj)−
m∑

j=0

bjqjqiα

= −
i∑

j=0

bjqjpi −
m∑

j=i+1

bjqipj ∈ Z.

Hence, as |Ai| < 1, we get Ai = {Nqiα} if Ai ≥ 0, and Ai + 1 = {Nqiα} if
Ai < 0.

Proposition 1. (i) If 2 | i and bi > 0 then bi = ai+1{Nqiα}+O(1).
(ii) If 2 - i and bi > 0 then bi = ai+1(1− {Nqiα}) +O(1).

In both cases the O-constants do not depend on α.

Proof. Define αi(α) = [ai(α); ai+1(α), ai+2(α), . . .]. It follows that αi =
ai + 1/αi+1.

(i) For 2 | i, we have
i−1∑

j=0

si,jbj =
i−1∑

j=0

(qiα− pi)qjbj ≤ (qiα− pi)qi ≤
qi
qi+1

≤ 1
ai+1

,

∣∣∣
∞∑

j=i+1

si,jbj

∣∣∣ ≤ qi
qi+1

,

hence
∑∞

j=i+1 si,jbj = O(1/ai+1) and furthermore

si,i = qi(qiα− pi) =
(−1)iqi

qiαi+1 +qi−1
=

qi
qiai+1 + qi/αi+2 +qi−1

=
1

ai+1
+O(1).

So, Ai = bi/ai+1 +O(1/ai+1) +O(1/ai+1) and hence by Lemmas 1 and 2,

bi = ai+1{Nqiα}+O(1).(2)

(ii) Similarly, −Ai = bi/ai+1 + O(1/ai+1), and again from Lemmas 1
and 2,

bi = ai+1(1− {Nqiα}) +O(1).(3)

By Proposition 1 we have explicit formulas for bi except in the case 2 | i
and Ai < 0 and the case 2 - i and Ai > 0. Therefore we define the exceptional
sets

AN,i =
{ {α ∈ Ω : Ai < 0} for 2 | i,
{α ∈ Ω : Ai > 0} for 2 - i.

Note that if 2 | i and Ai < 0, then 1+Ai = {Nqiα}, hence 0 < 1−{Nqiα} =
−Ai < 1/ai+1. Therefore, AN,i ⊆ {α ∈ Ω : 1 − {Nqiα} < 1/ai+1} for 2 | i.
Analogously, AN,i ⊆ {α ∈ Ω : {Nqiα} < 1/ai+1} if 2 - i. For x ∈ R, consider
B(x) = ({x} − {x}2)/2. Then we have
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Lemma 3. If a and i 6= 0 are real numbers, we have:

(i)
a�

0

{iα} dα = a/2− i−1B(ia).

(ii)
a�

0

(1− {iα}) dα = a/2 + i−1B(−ia).

We omit the simple proof.

Lemma 4. (i) For even i, we have
�

J(a)

{Nqi(α)α} dα =
1

2Qi+1(a)(Qi+1(a) +Qi(a))

− 1
NQi(a)

(
B

(
N

Qi+1(a)

)
−B

(
N

Qi+1(a) +Qi(a)

))
.

(ii) For odd i, we have
�

J(a)

(1− {Nqi(α)α}) dα =
1

2Qi+1(a)(Qi+1(a) +Qi(a))

− 1
NQi(a)

(
B

(
N

Qi+1(a)

)
−B

(
N

Qi+1(a) +Qi(a)

))
.

Proof. We note that

(4) NQi(a)
Pi+1(a)
Qi+1(a)

= N
(−1)i + Pi(a)Qi+1(a)

Qi+1(a)
≡ (−1)i

N

Qi+1(a)
(mod 1)

and

NQi(a)
Pi+1(a) + Pi(a)
Qi+1(a) +Qi(a)

= N
(−1)i + Pi(a)Qi+1(a) + Pi(a)Qi(a)

Qi+1(a) +Qi(a)
(5)

≡ (−1)i
N

Qi+1(a) +Qi(a)
(mod 1).

Consider the case of even i. From Lemma 3 we get�

J(a)

{Nqi(α)α} dα

=

Pi+1(a)
Qi+1(a)�

0

{Nqi(α)α} dα−

Pi+1(a)+Pi(a)
Qi+1(a)+Qi(a)�

0

{Nqi(α)α} dα

=
Pi+1(a)

2Qi+1(a)
− 1
NQi(a)

B

(
NQi(a)

Pi+1(a)
Qi+1(a)

)

−
[

Pi+1(a) + Pi(a)
2(Qi+1(a) +Qi(a))

− 1
NQi(a)

B

(
NQi(a)

Pi+1(a) + Pi(a)
Qi+1(a) +Qi(a)

)]
.
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So, from formulas (4) and (5),

B

(
NQi(a)

Pi+1(a)
Qi+1(a)

)
= B

(
N

Qi+1(a)

)
,

B

(
NQi(a)

Pi+1(a) + Pi(a)
Qi+1(a) +Qi(a)

)
= B

(
N

Qi+1(a) +Qi(a)

)
.

Thus
�

J(a)

{Nqi(α)α} dα =
1

2Qi+1(a)(Qi+1(a) +Qi(a))

− 1
NQi(a)

(
B

(
N

Qi+1(a)

)
−B

(
N

Qi+1(a) +Qi(a)

))
.

This proves (i). The proof of (ii) is completely similar.

Proposition 2. (i) For even i we have

(6)
1�

0

ai+1(α){Nqi(α)α} dα =
1
2

1�

0

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα+O(1).

(ii) For odd i we have

(7)
1�

0

ai+1(α)(1− {Nqi(α)α}) dα

=
1
2

1�

0

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα+O(1).

Proof. For α ∈ Ni and a ∈ N let J(a, a) := {α ∈ J(a) : ai+1(α) = a}.
Then J(a) =

⋃∞
a=1 J(a, a) and therefore

�

J(a)

ai+1(α){Nqi(α)α} dα =
∞∑

a=1

a

�

J(a,a)

{Nqi(α)α} dα,(8)

since, when α runs through J(a, a), ai+1(α) = a does not depend on α.
Analogously,

�

J(a)

ai+1(1− {Nqi(α)α}) dα =
∞∑

a=1

a

�

J(a,a)

(1− {Nqi(α)α}) dα.

Furthermore, if we put a′ = (a, a) then Qk(a′) = Qk(a) for 0 ≤ k ≤ i and
Qi+1(a′) = aQi(a) + Qi−1(a). In order to calculate the sum in (8), we use
Lemma 4 and the Abel summation formula. Note also that if N ≥ Qi(a)
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and T =
[N−Qi−1(a)

Qi(a)

]
, then

∞∑

a=T+1

1
(aQi(a) +Qi−1(a))2

= [(T + 1)Qi(a) +Qi−1(a)]−2 +
∞∑

a=T+2

a�

a−1

dx

(aQi(a) +Qi−1(a))2

≤
[
N −Qi−1(a)

Qi(a)
·Qi(a) +Qi−1(a)

]−2

+
∞∑

a=T+2

a�

a−1

dx

(aQi(a) +Qi−1(a))2

≤ N−2 +
∞∑

a=T+2

a�

a−1

dx

(xQi(a) +Qi−1(a))2

≤ N−1Q−1
i (a) +

[ −1
Qi(a)(xQi(a) +Qi−1(a))

]∞

T+1
= O

(
1

NQi(a)

)
.

If Qi−1(a) < N < Qi(a), we have T = 0, so
∞∑

a=1

1
(aQi(a) +Qi−1(a))2

= [Qi(a) +Qi−1(a)]−2 +
∞∑

a=2

a�

a−1

dx

(aQi(a) +Qi−1(a))2

≤ Qi(a)−2 +
∞∑

a=2

a�

a−1

dx

(xQi(a) +Qi−1(a))2

≤ N−1Qi(a)−1 +
[ −1
Qi(a)(xQi(a) +Qi−1(a))

]∞

1
= O

(
1

NQi(a)

)
.

Next we estimate the sum (8) from a = T + 1 to ∞ from above. As
a ≥ T + 1 we get

a >
N −Qi−1(a)

Qi(a)
and hence 0 ≤ N

aQi(a) +Qi−1(a)
< 1,

which implies that N/Qi+1(a) and N/(Qi+1(a) +Qi(a)) lie in the inter-
val (0, 1). Note also that for x ∈ (0, 1), B(x) = (x− x2)/2. It follows that

∞∑

a=T+1

a

�

J(a,a)

{Nqi(α)α} dα

=
∞∑

a=T+1

a

(
1

2(aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a))

)
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−
∞∑

a=T+1

a

(
1

NQi(a)

(
B

(
N

aQi(a) +Qi−1(a)

)

−B
(

N

(a+ 1)Qi(a) +Qi−1(a)

)))

=
∞∑

a=T+1

aN

2Qi(a)

(
1

(aQi(a) +Qi−1(a))2 −
1

((a+ 1)Qi(a) +Qi−1(a))2

)

=
N

2Qi(a)

( ∞∑

a=T+1

1
(aQi(a) +Qi−1(a))2 +

T

((T + 1)Qi(a) +Qi−1(a))2

)

= O

(
N

Qi(a)

(
1

NQi(a)
+
N/Qi(a)
N2

))
= O

(
1

Qi(a)2

)
= O(λ(J(a))).

Furthermore
T∑

a=1

a

NQi(a)

(
B

(
N

aQi(a) +Qi−1(a)

)
−B

(
N

(a+ 1)Qi(a) +Qi−1(a)

))

=
1

NQi(a)

( T∑

a=1

B

(
N

aQi(a)+Qi−1(a)

)
−TB

(
N

(T + 1)Qi(a)+Qi−1(a)

))

= O

(
T

NQi(a)

)
= O

(
1

Qi(a)2

)
= O(λ(J(a))).

Therefore�

J(a)

ai+1(α){Nqi(α)α} dα

=
1
2

T∑

a=1

a

Qi(a)

(
1

aQi(a) +Qi−1(a)
− 1

(a+ 1)Qi(a) +Qi−1(a)

)

−
T∑

a=1

a

NQi(a)

(
B

(
N

aQi(a)+Qi−1(a)

)
−B

(
N

(a+ 1)Qi(a)+Qi−1(a)

))

+
∞∑

a=T+1

a

�

J(a,a)

{Nqi(α)α} dα

=
1

2Qi(a)

T∑

a=1

1
aQi(a) +Qi−1(a)

− T

2Qi(a)
1

(T + 1)Qi(a) +Qi−1(a)

+O(λ(J(a)))
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=
1

2Qi(a)

( T∑

a=1

1
aQi(a)

−
T∑

a=1

Qi−1(a)
aQi(a)(aQi(a) +Qi−1(a))

)

− T

2Qi(a)
1

(T + 1)Qi(a) +Qi−1(a)
+O(λ(J(a)))

=
1

2Qi(a)

T∑

a=1

1
aQi(a)

+O

(
1

Qi(a)

T∑

a=1

Qi−1(a)
aQi(a)(aQi(a) +Qi−1(a))

+ λ(J(a))
)

=
1

2Qi(a)2

T∑

a=1

1
a

+O

(
1

Qi(a)2 + λ(J(a))
)
.

Observe that
∑

a≤T

1
a

=
∑

aQi(a)≤N

1
a
−

∑

N−Qi−1(a)<aQi(a)≤N

1
a

=
∑

aQi(a)≤N

1
a

+O(1),

as the condition N −Qi−1(a) < a ≤ N is satisfied for at most one a. Then

(9)
�

J(a)

ai+1(α){Nqi(α)α} dα

=
1

2Qi(a)2

T∑

a=1

1
a

+O

(
1

Qi(a)2 + λ(J(a))
)

=
1

2Qi(a)2

∑

aQi(a)≤N

1
a

+O(λ(J(a)))

=
1

2Qi(a)(Qi(a) +Qi−1(a))

(
1 +

Qi−1(a)
Qi(a)

) ∑

aQi(a)≤N

1
a

+O(λ(J(a)))

=
1
2

�

J(a)

(
1 +

qi−1(α)
qi(α)

) ∑

aQi(a)≤N

1
a
dα+O(λ(J(a)))

=
1
2

�

J(a)

(
1 +

qi−1(α)
qi(α)

)(
log+

(
N

qi(α)

)
+O(1)

)
dα+O(λ(J(a)))

=
1
2

�

J(a)

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα+O(λ(J(a))).
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If N ≤ Qi−1(a) we have
N

Qi+1(a)
≤ 1,

N

Qi+1(a) +Qi(a)
≤ 1.

Hence
∞∑

a=1

a

�

J(a,a)

{Nqi(α)α} dα =
N

2Qi(a)

∞∑

a=1

1
(aQi(a) +Qi−1(a))2

≤ N

2Qi(a)

∞∑

a=1

1
a2NQi(a)

=
1

2Qi(a)2

∞∑

a=1

1
a2

= O(λ(J(a))).

As N ≤ Qi−1(a) we have log+(N/qi(α)) = 0 and formula (9) is valid in this
case also. By summing up in (9) over all a ∈ Ni we get (6). Analogously we
obtain (7) for odd i.

Proposition 3. There exists a constant C > 0 such that for all N
and i, �

AN,i

ai+1(α) dα ≤ C.

Proof. First we treat the case of i odd. We have
�

AN,i

ai+1(α) dα =
∑

a∈Ni

∞∑

a=1

�

AN,i∩J(a,a)

ai+1(α) dα

=
∑

a∈Ni

∞∑

a=1

�

AN,i∩J(a,a)

a dα =
∑

a∈Ni

∞∑

a=1

aλ(AN,i ∩ J(a, a)).

Now, for odd i,

AN,i ∩ J(a, a) ⊆ {α ∈ [0, 1] : {Nqi(α)α} < 1/a} ∩ J(a, a).

Consider the set

Mk(a) = {α ∈ J(a) : k = [Nqi(α)α]}.
Then

AN,i ∩ J(a, a) =
NQi(a)−1⋃

k=0

(AN,i ∩ J(a, a) ∩Mk(a))

and hence
�

AN,i

ai+1(α) dα =
∑

a∈Ni

∞∑

a=1

a
∑

0≤k≤NQi(a)

λ(AN,i ∩ J(a, a) ∩Mk(a)).

If α ∈ AN,i ∩ J(a, a) ∩Mk(a) then

k

NQi(a)
< α <

k

NQi(a)
+

1
aNQi(a)
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and
aPi(a) + Pi−1(a)
aQi(a) +Qi−1(a)

≤ α ≤ (a+ 1)Pi(a) + Pi−1(a)
(a+ 1)Qi(a) +Qi−1(a)

.

We now define, omitting the dependence on a in Pi and Qi,

E1(a, a) =
{
k ∈ Z+ :

k

NQi
≤ aPi + Pi−1

aQi +Qi−1
≤ (a+ 1)Pi + Pi−1

(a+ 1)Qi +Qi−1
≤ k

NQi
+

1
aNQi

}
,

E2(a, a) =
{
k ∈ Z+ :

aPi + Pi−1

aQi +Qi−1
≤ k

NQi
≤ k

NQi
+

1
aNQi

≤ (a+ 1)Pi + Pi−1

(a+ 1)Qi +Qi−1

}
,

E3(a, a) =
{
k ∈ Z+ :

k

NQi
≤ aPi + Pi−1

aQi +Qi−1
≤ k

NQi
+

1
aNQi

≤ (a+ 1)Pi + Pi−1

(a+ 1)Qi +Qi−1

}
,

E4(a, a) =
{
k ∈ Z+ :

aPi + Pi−1

aQi +Qi−1
≤ k

NQi
≤ (a+ 1)Pi + Pi−1

(a+ 1)Qi +Qi−1
≤ k

NQi
+

1
aNQi

}
.

Then
�

AN,i

ai+1(α) dα ≤
∑

a∈Ni

∞∑

a=1

a

4∑

j=1

∑

k∈Ej(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)).(10)

We first derive an upper bound for
∞∑

a=1

a
∑

k∈E1(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)).

From the conditions for k in E1(a, a) we obtain

k ≤ NQi(a)
aPi(a) + Pi−1(a)
aQi(a) +Qi−1(a)

, k ≥ NQi(a)
(a+ 1)Pi(a) + Pi−1(a)
(a+ 1)Qi(a) +Qi−1(a)

− 1
a
.

Thus

k ∈
[
NQi(a)

(a+ 1)Pi(a) + Pi−1(a)
(a+ 1)Qi(a) +Qi−1(a)

− 1
a
,NQi(a)

aPi(a) + Pi−1(a)
aQi(a) +Qi−1(a)

]
,

which is an interval of length

NQi(a)
(aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a))

+
1
a
.(11)

If E1(a, a) is not empty we have

1
aNQi(a)

=
k

NQi(a)
+

1
aNQi(a)

−
(

k

NQi(a)

)

≥ (a+ 1)Pi(a) + Pi−1(a)
(a+ 1)Qi(a) +Qi−1(a)

− aPi(a) + Pi−1(a)
aQi(a) +Qi−1(a)

=
1

(aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a))

and hence
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N ≤ (aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a))
aQi(a)

(12)

≤ (a+ 1)Qi(a)(a+ 2)Qi(a)
aQi(a)

≤ (a+ a)Qi(a)(a+ 2a)Qi(a)
aQi(a)

≤ 6aQi(a).

We have Pi(a)Qi−1(a)− Pi−1(a)Qi(a) = 1. It follows for k ∈ E1(a, a) that

k ≤ NQi(a)
aPi(a) + Pi−1(a)
aQi(a) +Qi−1(a)

= N
aPi(a)Qi(a) + Pi−1(a)Qi(a)

aQi(a) +Qi−1(a)

= N
aPi(a)Qi(a)− 1 +Qi−1(a)Pi(a)

aQi(a) +Qi−1(a)

= NPi(a)
aQi(a) +Qi−1(a)
aQi(a) +Qi−1(a)

− N

aQi(a) +Qi−1(a)

= NPi(a)− N

aQi(a) +Qi−1(a)
.

Similarly, using

k ≥ NQi(a)
(a+ 1)Pi(a) + Pi−1(a)
(a+ 1)Qi(a) +Qi−1(a)

− 1
a
,

we have

k ≥ NPi(a)− N

(a+ 1)Qi(a) +Qi−1(a)
− 1
a

and hence

(13) NPi(a)− N

(a+ 1)Qi(a) +Qi−1(a)
− 1
a
≤ k

≤ NPi(a)− N

aQi(a) +Qi−1(a)
.

Therefore |E1(a, a)| ≤ 1. Now, if

2N
Qi(a)

< a,
N

aQi(a) +Qi−1(a)
<

1
2

we directly get, for a > 1,

N

(a+ 1)Qi(a) +Qi−1(a)
+

1
a
<

1
a

+
1
2
< 1,

which means that the interval (13) does not contain an integer in this case.
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Furthermore

λ(J(a, a)) =
1

(aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a))

≤ 1
a2(Qi(a))2 =

2
2a2(Qi(a))2

≤ 2
a2Qi(a)(Qi(a) +Qi−1(a))

= 2
λ(J(a))
a2 .

Thus, since for positive integers k and m,
mk∑

a=k

1
a
≤

mk∑

a=k

1
k

= (mk − k + 1)
1
k
≤ m,

we have
∞∑

a=1

a
∑

k∈E1(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)) ≤
∞∑

a=1

a
∑

k∈E1(a,a)

λ(J(a, a))

≤ 2λ(J(a, 1)) +
∑

N/(6Qi(a))≤a≤2N/Qi(a)

aλ(J(a, a))

≤ 2
(Qi(a) +Qi−1(a))(2Qi(a) +Qi−1(a))

+
∑

N/(6Qi(a))≤a≤2N/Qi(a)

2
λ(J(a))

a

≤ 2
(Qi(a))2 + 2 · 12 · λ(J(a)) = O(λ(J(a))).

We have established
∞∑

a=1

a
∑

k∈E1(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)) = O(λ(J(a))).

In order to estimate
∞∑

a=1

a
∑

k∈E2(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)),

we start by observing that for k in E2(a, a) we have

k ≥ NQi(a)
aPi(a) + Pi−1(a)
aQi(a) +Qi−1(a)

,

k ≤ NQi(a)
(a+ 1)Pi(a) + Pi−1(a)
(a+ 1)Qi(a) +Qi−1(a)

− 1
a
,

(14)

so it follows that

k ∈
[
NQi(a)

aPi(a) + Pi−1(a)
aQi(a) +Qi−1(a)

, NQi(a)
(a+ 1)Pi(a) + Pi−1(a)
(a+ 1)Qi(a) +Qi−1(a)

− 1
a

]
,

which is an interval of length
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NQi(a)
(aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a))

− 1
a
.(15)

As

AN,i ∩ J(a, a) ∩Mk(a) ⊆
[

k

NQi(a)
,

k

NQi(a)
+

1
aNQi(a)

]
,

we get

λ(AN,i ∩ J(a, a) ∩Mk(a)) ≤ 1
aNQi(a)

.

If E2(a, a) is not empty we have

1
aNQi(a)

≤ 1
(aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a))

and hence 2N ≥ aQi(a). Moreover, from (14) we get

(16) NPi(a)− N

aQi(a) +Qi−1(a)
≤ k

≤ NPi(a)− N

(a+ 1)Qi(a) +Qi−1(a)
− 1
a
.

From this we infer that |E2(a, a)| is at most

(17)
N

aQi(a) +Qi−1(a)
− N

(a+ 1)Qi(a) +Qi−1(a)
− 1
a

+ 1

= O

(
NQi(a)

(aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a))
+ 1
)

= O

(
N

a2Qi(a)
+ 1
)
.

Consider the set

A(a) =
{
a ∈ N :

NQi(a)
(aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a))

≥ 1
2

}
.

In the case a ∈ N\A(a), there is no k satisfying (16), which means that in
this case E2(a, a) = ∅. If a ∈ A(a), we have

2NQi(a) ≥ (aQi(a) +Qi−1(a))((a+ 1)Qi(a) +Qi−1(a)) ≥ a2Q2
i (a)

and then N/(a2Qi(a)) ≥ 1/2. This implies that 1 = O(N/(a2Qi(a))) and
from (17) we get |E2(a, a)| = O(N/(a2Qi(a))). Thus

∞∑

a=1

a
∑

k∈E2(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a))

=
∑

a≤2N/Qi(a)

a
∑

k∈E2(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a))
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=
∑

a∈A(a)∧a≤2N/Qi(a)

a
∑

k∈E2(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a))

= O

( ∑

a∈A(a)

a
N

a2Qi(a)
· 1
aNQi(a)

)
= O

( ∞∑

a=1

1
a2(Qi(a))2

)

= O

(
1

(Qi(a))2

)
= O(λ(J(a))).

Hence,
∞∑

a=1

a
∑

k∈E2(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)) = O(λ(J(a))).

In order to estimate
∞∑

a=1

a
∑

k∈E3(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)),

we notice that for k ∈ E3(a, a) we have

k ≤ NQi(a)
aPi(a) + Pi−1(a)
aQi(a) +Qi−1(a)

, k ≥ NQi(a)
aPi(a) + Pi−1(a)
aQi(a) +Qi−1(a)

− 1
a
.

From these conditions we deduce that E3(a, a) is an interval of length at
most 1/a and (as before) that if k ∈ E3(a, a), then

(18) NPi(a)− N

aQi(a) +Qi−1(a)
− 1
a
≤ k ≤ NPi(a)− N

aQi(a) +Qi−1(a)
.

We have seen above that for 2N/Qi(a) < a,E3(a, a) is empty. So,
∞∑

a=1

a
∑

k∈E3(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a))

≤
∞∑

a=1

a
∑

k∈E3(a,a)

λ(J(a, a))

≤
∑

1≤a≤2N/Qi(a)

aλ(J(a, a)) ≤
∑

1≤a≤2N/Qi(a)

a
1

aNQi(a)

≤ 2N
Qi(a)

· 1
NQi(a)

=
2

Q2
i (a)

= O(λ(J(a))).

Hence
∞∑

a=1

a
∑

k∈E3(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)) = O(λ(J(a))).
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In order to estimate
∞∑

a=1

a
∑

k∈E4(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)),

we observe that for k ∈ E4(a, a) we have

k ≤ NQi(a)
(a+ 1)Pi(a) + Pi−1(a)
(a+ 1)Qi(a) +Qi−1(a)

,

k ≥ NQi(a)
(a+ 1)Pi(a) + Pi−1(a)
(a+ 1)Qi(a) +Qi−1(a)

− 1
a
.

From these conditions we deduce that E4(a, a) is an interval of length at
most 1/a and, as before, if k ∈ E4(a, a) then

(19) NPi(a)− N

(a+ 1)Qi(a) +Qi−1(a)
− 1
a
≤ k

≤ NPi(a)− N

(a+ 1)Qi(a) +Qi−1(a)
.

Once again, if 2N/Qi(a) < a, E4(a, a) is empty. Then

∞∑

a=1

a
∑

k∈E4(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)) ≤
∞∑

a=1

a
∑

k∈E4(a,a)

λ(J(a, a))

= O(λ(J(a))).
It follows that

∞∑

a=1

a
∑

k∈E4(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a)) = O(λ(J(a))).

So, if 2 - i, we have proved that

�

AN,i

ai+1(α) dα =
∑

a∈Ni

∞∑

a=1

a

4∑

j=1

∑

k∈Ej(a,a)

λ(AN,i ∩ J(a, a) ∩Mk(a))

=
∑

a∈Ni
4 ·O(λ(J(a))) = O(1).

The case 2 | i can be proved either similarly or by a change of variable
α → 1 − α. In fact, for 0 < α ≤ 1/2 we have ai+1(1 − α) = ai(α) and
qi+1(1−α) = qi(α) for i > 0, and if 1/2 < α ≤ 1 we have ai(1−α) = ai+1(α)
and qi(1− α) = qi+1(α) for i ≥ 0. Hence,
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• if 0 < α < 1/2 and i > 0 then

1− α ∈ AN,i ⇔ 1− {Nqi(1− α)(1− α)} < 1
ai+1(1− α)

⇔ {Nqi(1− α)α} < 1
ai+1(1− α)

⇔ {Nqi−1(α)α} < 1
ai(α)

⇔ α ∈ AN,i−1;

• if 1/2 < α < 1 and i > 0 then

1− α ∈ AN,i ⇔ 1− {Nqi(1− α)(1− α)} < 1
ai+1(1− α)

⇔ {Nqi(1− α)α} < 1
ai+1(1− α)

⇔ {Nqi+1(α)α} < 1
ai+2(α)

⇔ α ∈ AN,i+1;

• if 1/2 < α < 1 and i = 0 then

1− α ∈ AN,0 ⇔ 1− {Nq0(1− α)(1− α)} < 1
a1(1− α)

⇔ {Nq0(1− α)α} < 1
a1(1− α)

⇔ {Nq1(α)α} < 1
a2(α) + 1

⇒ {Nq1(α)α} < 1
a2(α)

⇒ α ∈ AN,1.

Let CX be the characteristic function of the set X. Then for i > 0,
�

AN,i

ai+1(α) dα =
1�

0

ai+1(α)CAN,i(α) dα

=
1/2�

0

ai+1(1− α)CAN,i(1− α) dα+
1�

1/2

ai+1(1− α)CAN,i(1− α) dα

=
1/2�

0

ai(α)CAN,i−1(α) dα+
1�

1/2

ai+2(α)CAN,i+1(α) dα = O(1).

Similarly,
�

AN,0

a1(α) dα =
1�

0

a1(α)CAN,0(α) dα

=
1/2�

0

a1(1− α)CAN,0(1− α) dα+
1�

1/2

a1(1− α)CAN,0(1− α) dα
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≤ 1
2

+
1�

1/2

(a2(α) + 1)CAN,1(α) dα ≤ 1 +
1�

1/2

a2(α)CAN,1(α) dα = O(1),

and the result follows.

4. Proof of the Theorem. In order to prove the Theorem we start by
proving the following result:

Proposition 4. Given α ∈ Ω and N ∈ N with N =
∑m

i=0 biqi we have
for 0 ≤ i ≤ m,

1�

0

bi(α) dα =
1
2

1�

0

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα+O(1).

Proof. For even i we have, by Section 2 and Propositions 1–3,
1�

0

bi(α) dα =
�

[0,1]\AN,i
bi(N,α) dα+

�

AN,i

bi(N,α) dα

︸ ︷︷ ︸
= 0

=
�

[0,1]\AN,i
(ai+1(α){Nqi(α)α}+O(1)) dα

=
1�

0

ai+1(α){Nqi(α)α} dα+O(1)

=
1
2

1�

0

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα+O(1).

The proof for the odd case is entirely similar.

Theorem 1. For N ∈ N,
1�

0

sN (α) dα =
1
2

∞∑

i=0

1�

0

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα+O(logN).

Proof. Let (Fk)k≥0 be the sequence of Fibonacci numbers: F0 =F1 = 1,
Fk+1 = Fk + Fk−1. Then there is a c > 0 such that logFk ≥ k/c for k ≥ 2.
For every α ∈ Ω we have qk(α) ≥ Fk, and N ≤ qk(α) for c logN ≤ k, and
therefore for 2 | k,

ak+1{Nqkα} ≤ ak+1N |qkα− pk| < ak+1N/qk+1 ≤ N/qk.
Similarly for 2 - k,

ak+1(1− {Nqkα}) ≤ ak+1N |qkα− pk| < N/qk.
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Hence
∞∑

2|k≥c logN

ak+1{Nqkα} =
∞∑

2 - k≥c logN

ak+1(1− {Nqkα}) = O(1).

So, we can calculate
� 1
0 sN (α) dα as follows:

1�

0

sN (α) dα =
1�

0

∞∑

i=0

bi(N,α) dα

=
∑

2|i
i≤c logN

�

[0,1]\AN,i
ai+1(α){Nqi(α)α} dα

+
∑

2 - i
i≤c logN

�

[0,1]\AN,i
ai+1(α)(1− {Nqi(α)α}) dα+O(1)

=
∑

2|i
i≤c logN

( 1�

0

ai+1(α){Nqi(α)α} dα+O(1)
)

+
∑

2 - i
i≤c logN

( 1�

0

ai+1(α)(1− {Nqi(α)α}) dα+O(1)
)

+O(1)

=
∑

2|i
i≤c logN

1�

0

ai+1(α){Nqi(α)α} dα

+
∑

2 - i
i≤c logN

1�

0

ai+1(α)(1− {Nqi(α)α}) dα+O(logN) +O(1)

=
1
2

∑

i≤c logN

1�

0

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα+O(logN).

Since log+(N/qi(α)) = 0 for i > c logN , the result follows.

Then, by Theorem 1 we have

1�

0

sN (α) dα =
1
2

∑

i≤c logN

1�

0

(
1 +

qi−1(α)
qi(α)

)
log+

(
N

qi(α)

)
dα+O(logN).

This sum has been asymptotically developed in [4] with the effect that it is
equal to (6/π2) log2N +O((logN)3/2 log logN).
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5. Concluding remarks. The methods used here can be generalized
to prove that
∞∑

i=0

1�

0

bni (N,α)

an−1
i+1 (α)

dα =
6

(n+ 1)π2 log2N +O((logN)3/2 log logN), n ∈ N.

It seems to be hopeless to generalize this method to more general integrals,
like

� 1
0 sN (α)L dα. On the other hand it might very well happen that there

is a central limit law behind our main theorem.
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