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1. Introduction. There are many reasons to study the values of specific
L-functions at special points of the complex plane; cf. [1], [4], [7], 8], [14].
For example, for various applications it is necessary to know that there are
infinitely many members of a relevant class of L-functions which do not
vanish at a special point.

In the present paper we consider the aggregates

I(k)
An(u,v3k) = ot o (N) Hj o (u) Hj g (v)
=1

of products of the Hecke L-functions Hjj. Here u,v € C, N € N and the
weights 2k of holomorphic cusp forms vary over even integers > 12; for
notation used, see Section 3.

Some relevance of the binary additive divisor problems to our subject is
to be noticed. A spectral approach to these classical problems is given in the
fundamental paper [12] by Y. Motohashi. This paper and the monograph
[13] by the same author are our main references.

A brief description of Motohashi’s method in the context of the dual
binary additive divisor problem is given in Section 4.1, where a spectral
decomposition for a weighted sum

N-1

By(a, 8;Wo) = 3 0a(n)os(N — n)Wo(n/N)

n=1
is described in some detail. Here N € N, «,5 € C and Wy : (0,1) — C
is a weight function. In the present paper we do not discuss the nature of
such a decomposition; instead we refer the reader to [12]. It is sufficient for
us to notice that all holomorphic cusp forms contribute to a part of the
spectral decomposition. Following [12] this part is denoted by By and called

2000 Mathematics Subject Classification: 11F66, 11F67, 11F72, 11M41, 11N75.

(1



2 B. Szydlo

holomorphic. From the formula (57) below, it is clear that the By is built
from the aggregates Ay .
If we study By (a, 3; Wy) with a = 3, then the choice

x(1—2x))Pt i x
Wo(x):Wp(x):{(()(l ) i£2i1<1,

where p € C, seems to be natural enough. An explicit form of the holo-
morphic part By, of the spectral decomposition for By(—p, —g; W)) (with
0 < Rp < 1/2 and Rp large enough) is given by the series Hn(p, o) defined
in (1) below; cf. (96). In the present paper we solve the problem of analytic
continuation of v (p, o) to the left of the complex p-plane; cf. also Remark 1
in Section 2.

We describe briefly our main results, the Theorem and Corollaries 1 and 2
from Section 2. We prove that 9 (p, 0) has an arithmetical representation;
see the Theorem. From it we obtain a meromorphic continuation of 9y (p, 0)
to the whole complex p-plane; see Corollary 1. A non-vanishing result for
An(1/2,1/2 + o; k) is derived; see Corollary 2.

The organization of the paper is as follows. In Section 2 the precise state-
ments of the main results are given. We prove them in Section 4. In the
intermediate Section 3 some general notation and facts from hypergeometric
function theory are collected. In the rest of the present introductory section
our method of proof is outlined.

Motohashi’s method is sketched in Section 4.1. We use it in Section 4.2
to obtain a spectral decomposition for By («, 3; W), provided that («, )
belongs to a sufficiently small neighbourhood of (—g,—p) (0 < Rp < 1/2)
and W) is nice enough (see the beginning of Section 4.2). If « = 3 = —p and
Wy is even (i.e. Wy satisfies the condition (51) below), the decomposition
obtained, except for the holomorphic part By, resolves itself into two equal,
arithmetically significant parts. Using these observations, we separate By,
from the spectral decomposition. For a precise statement, see Proposition 1.

In Section 4.3, by reversing the order of steps in Motohashi’s method
in the dual additive divisor problem, we express By in arithmetical terms,
provided that o = 8 = —p, W) is nice enough, even and satisfies additionally
the condition (58) (see Propositions 2 and 3).

Because of the requirement (58), the findings of Section 4.3 cannot be
directly applied to W),. In Section 4.4 we study instead finite linear combina-
tions of W),-functions. We arrive at Proposition 4 which is a weaker version
of our Theorem.

In Section 4.5 we show that the central equality (7) of the Theorem
holds for two special values of the argument p; see Lemma 5. Such con-
crete verifications are possible because we have arithmetical expressions for
the aggregates Ap; see [2], [3], |7], [10], [11]. Relevant formulas are con-
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sequences of classical Petersson’s formulas, for which one may consult |13,
Lemma 2.3].

From Proposition 4 and Lemma 5 we get our Theorem directly. The
discussion in Section 4.5 also yields Corollaries 1 and 2.

We recall that $Hn(p, 0), defined by (1), is identical with the holomorphic
part By, of the spectral decomposition for the binary additive divisor sum
Bn (o, 3; W) with @ = § = —p and Wy = W,,. The form of this decom-
position is almost symmetrical, but not symmetrical, and therefore enables
us to separate By from it. This phenomenon of spectral asymmetry seems
to be of central importance to the proof. It can be traced back to the use
of Kuznetsov’s sum formulas in Motohashi’s paper [12]|. For a thorough pre-

sentation of this important tool of modern analytic number theory, one may
consult [6] and [13].

Acknowledgments. I thank the referees for valuable remarks on the
earlier versions of the paper and Mr Jerzy Trzeciak for a great number of
suggestions for the improvement of the presentation of my work.

2. Statement of the results. Let V € N, p, o € C. Under appropriate
assumptions (see the Theorem below) and notations (see Section 3), put
(1) 9n(p,o) =7 227 PFeN/27e

o0

3 I'(p)I'(p—o)'((k+0)/2)
bt Toven L P+ (k= 0)/2) (1 + k= 0)/2)
x I'(=p+ (1 +k+0)/2)sin(r(p+ (1 -0)/2))
9(k)
x> otin(N)Hj(1/2)Hje(1/2 + o),
j=1

X

cot(mo/2) (1, r(p)lp—o-1)
R L
I'(p—1)I'(p— o)

~ oy (Vg(e) PRI,
(3) An(p; 0) = 2‘779(”)‘779(”+N)Ap,g(n/N)7

N
(@) Do) =3 0 o(m)o_o(N —n)Dy(n/N),

n=1
where

cot(mo/2) I'(p)L'(p — o) ' . N
i [(p—g hP-e—o-ljoe '

—F(1,p;2p — 0;—1/2)(1+x)%™") (x> 0),

(5)  Ap,o(z) =



4 B. Szydlo

(6) Dpola) = (1+ cotma/2) cot(mp)) (a(1 — )7~
_cot(mo/2) I'(p — 0)I'(p — 1)
s I'2p—o0-1)
X(1—z)°F(1,240—2p;2—p;z) (0<z<1).

THEOREM. Let N € N, o,p € C. Assume that
0<Ro<1/2, Rp>3/2+ Rp/2.
Then
(7) On(p, 0) = Bn(p o) + An(p, 0) + Dn(p: 0)-

Fix o € C with 0 < Rp < 1/2. Consider both sides of (7) as functions of
the complex parameter p. From the Theorem and the discussion in Section
4.5 we obtain

COROLLARY 1. The function Hn(p, o) continues meromorphically from
the halfplane Rp > 3/2+ Rp/2 to the whole complex plane C. The continua-
tion is given by &n(p, 0) +An(p, 0) + DN (p, 0). It has only two poles in the
halfplane Rp > 1/2, at p =1+ o and p = 1. They are simple and

Rz, (0.0 = LN (06l
Res v(pr0) = -2 5 (o)

COROLLARY 2. Let N € N and ¢ € C with 0 < Ro < 1/2. Then there
are infinitely many even integers k such that

(k)
> ot (N Hj(1/2)Hj e (1/2 + 0) # 0.
Jj=1

Proof. Suppose the contrary. Then the sum in (1) is finite and the func-

tion Hn(p, 0)/(I'(p)I'(p — 0)) is regular on C. Since Resp=14, Hn(p, 0) # 0,
this is impossible. =

REMARKS. 1. As stated in the introduction, $Hn(p, ¢) is the holomor-
phic part By, of the spectral decomposition for the binary additive divisor
sum By (—o0,—0; W;) (see (1) and (96)) and, as such, it can be represented
by Bn(—0,—0; W) and the other parts of the decomposition; see (29)—(31),
(38), (39) below and, for further details, [12]. However, because of the conver-
gence problems, such a spectral representation gives no analytic continuation
of Hn(p, 0) to the left of the complex p-plane.
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2. Put p=1/249/2+1, [ being an integer > 2. Then H(p, ) simplifies
to a finite linear combination of the aggregates

9(k)
An(1/2,1/2+ 0k) = > ajwt; o(N)H;p(1/2)Hn(1/2 + o).
j=1

It was mentioned in the introduction that there are arithmetical expres-
sions for Ap; see [2], [3], [7], [10], [11]. In fact, we deduce the Theorem
from its weaker version, Proposition 4, by using the above observations; cf.
Section 4.5.

3. Let us note that the aggregates
9(k)

An(1/2,1/2:k) = ajrtin(N)H; . (1/2)
j=1

are also an object of some recent research; see, for example, [7]. These ag-
gregates form the function $Hn(p,0) (in (1) let o = 0).

It is evident that from the results stated above and concerning Hx(p, o),
0 < Ro < 1/2, we can derive those for H(p,0) by letting o — 0.

3. Notation. Facts from hypergeometric function theory. We use
the standard notations

a+1i00
e(z) = ¥, Us(n):st, S c.ds = S ... ds,
din (a) a—1i00
Stm,nil)= > e((mh+nh*)/l), hh*=1 (modl).

1<h<l, (h,0)=1

From the theory of modular forms we use just a few conventions; for more
information see, for example, [13]. Let (¢ x)1<j<g(r) denote the orthonormal
base of the Petersson unitary space of holomorphic cusp forms of weight 2k
with respect to SLo(Z). It is assumed that ;) are eigenfunctions of all
Hecke operators Tj(n) with eigenvalues t;5(n), n > 1. Let 0;,(1) be the
first Fourier coefficient of ¢; ;. Set

ajr = 16I(2k — 1)(4m) 21 0; (1) %
The Hecke L-function attached to ¢; . is defined by

Hj(s) = th,k(n)n_s (Rs > 1).
n=1

We need the following facts from the theory of the Gauss hypergeometric
function F(a,b;c;z) (a,b,c,2 € C; ¢ #0,—1,-2,...):
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= a+n)l'(b+n n
(8) F(a,b;c; z) z:: Tl )( c—i—)n)(F(n—i—)l) 2" (2] < 1),
I'(c)

(9)  F(a,b;c;2) = TOT (=0

c b— 1(1 )—adt

(Re > Rb > 0; Jarg(l — 2)| < m),

I'(c) 1 S I'(s)['(a—s)I'(b—s)
I'(a)I'(b) 2mi ) I'(c—s)

(0 < v < Ra, Rb; |arg(—2)| < ),

O;/-c

(10)  F(a,b;c;2z) =

(—2)"%ds

I'(c)
1F(a)F(b)F(c— a)l’(c —b)
X5 S I's)I'Ns+c—a—=b'(a—s)I'(b—s)(1 —2)"*ds

™

()

(11)  F(a,b;c;2) =

(0,R(a+b—c) <y < Ra,Rb; |arg(1l — 2)| < ),
PO —a—b) ,
F(c—a)F(c—b)F(a’b’1+ +b—cl—2)

I'e)'(a+b—c)

I(a)I(b)

><(1—z)c_“_bF(c—a,c—b;1+c—a—b;1—z)
(a+b—céZ;larg(l — 2)| < m),
(13)  F(a,b;c;2) =(1—2) “F(a,c—b;c;2/(z2— 1))
=(1-2)% Flc—a,c—bie;2)  (Jarg(l — 2)| < 7)

(12)  F(a,b;c;2) =

(see, for example, |5, Chapter 2]). It is easy to see that (a,b,c,z € C; b # 1;
c#0,-1,-2,...; |arg(l — 2z)| < =)

(14) F(a,0;¢;2) =
(15) F(a,c;c;2) = (1 —2)7
(16) F(1,b:2: 2) = (b—ll)z (1=2)0—1).

We need the quadratic transformation

(17)  F(2a,2b;a+b+1/2;(1—2)/2)
I'la+b+1/2)I"(1/2)
I'la+1/2)I'(b+1/2)

I'la+b+1/2)I"(—-1/2)
I(a)I'(b)
(a+b+1/2#0,-1,-2,...; |arg(1 £ 2)| < 7)

F(a,b;1/2;27)

2F(a+1/2,b41/2;3/2;2%)

(see [5, 2.11(3)]).
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The integral
1
(18) Sxo‘_l(l —2)P 7 F(a,b; ;) do =
0

I'(a)I'(B)
I'la+p)

(Ra, RB, R(c—a—b+ () > 0)
is easy to check. Here the value at z = 1 of 3F5(ay1, ag, as; by, ba; ) is used.
For ,Fy-functions, see [5, Chapter 4].

We also need
(19)  3F(a,b,c;(a+b+1)/2,2¢;1)

/2 (c+1/2)I'(a+6+1)/2)I'((1 —a—5)/2 +¢c)
I'((a+1)/2)I'(b+1)/2)I’'(1—a)/2+ )T ((1 —b)/2+¢)

(R(2¢ —a—1b) > —1)

3F2(G,b,0&;0,a+ﬁ;1)

(see [5, 4.4(6)]).

4. Proof of Theorem

4.1. Motohashi’s method in the dual additive divisor problem. In the con-
text of the dual additive divisor problems Motohashi [12] investigates the
following sums:

N-1
(20) o, B; Wo) = Z oa(n)og(N — n)Wy(n/N).
n=1

Here N € N, a, 8 € C and the weight function Wy : (0,1) — C is a smooth
function with compact support. Motohashi shows a spectral decomposition
of By(a, 3; Wy) in the domain

(21) R(b) ={(a,8) €C?:0>Ra > b, 26 —2 > R(a + B},

where b is an arbitrary fixed negative number (see [12, Section 3]). In Section
4 of [12] the decomposition obtained is continued analytically to a neighbour-
hood of (0,0) € C2.

We will briefly sketch Motohashi’s method (see also N. V. Kuznetsov’s
earlier publication [10]). Our notation is close to [12]. Moreover, sometimes
we will cite some formulas without referring to [12] explicitly.

For v < 0 and n € N we have an identity of Ramanujan

(22) oy(n)=C¢(1—-v) Zl”_lcl n
=1

where

(23) an)y= Y e(hn/l).

1<h<l, (hl)=1
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The Mellin transform of Wy is denoted by
1

(24) wp(s) = SWo(ZE):L‘S_l dx (s €C),
0
and its inversion is
1
(25) Wo(x) = 5= | wo(s)z™ds (2 >0)
271

with a certain a € R.
Assume that (a, 3) € R(b). The application of (22), (23) and (25) trans-
forms (20) into

o0

(26)  By(a.f:iWo)=¢(1-p/)) 171 Y e(=Nh/l)

=1 1<h<l, (h,1)=1

S Néwo(s)D(s,a;e(h/l))ds

(a)

X —
211

where a > 1 is sufficiently large and

(27)  D(s,a;e(h/1)) Zaa e(hn/l)n
e ((h,1) = 1, Rs > 1 + max(0, Rar))
is the Estermann-Hecke zeta function (the D-function).

The principal analytical properties of the D-function are given in the
following lemma, see, for example, [13, Lemma 3.7].

LEMMA 1. For each fized oo # 0 the function D(s,a;e(h/l)) is a mero-
morphic function of s, which has simple poles at s =1 and s = 1 + « with
residues ((1—a)l® ! and ((1+a)l=*7L, respectively; it is reqular elsewhere.
It satisfies the functional equation
(28)  D(s,a;e(h/l)) =2(2n)* 2721 — )I'(1 + a — s)

x {cos(ra/2)D(1 — s, —a;e(h*/1))

— cos(m(s — a/2))D(1 — s, —a;e(=h*/1))},
where hh* = 1 (modl). The function D(s,a;e(h/l)) is of polynomial order
with respect to s if Ns is bounded.

Now the integration line in (26) can be translated to Rts = b. The residue
theorem gives

(29) BN(Q76;WO):Vl(a?/B)+Bl(a7/8)'

Here Vi(a, 3) is the contribution of the poles of the integrands in (26) at
s=1and s =14 « (see Lemma 1) and Bj(«, 3) is given by the right hand
side of (26) but with the new integration line Rs = b.
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Lemma 1, (22) and (23) imply that
¢ —a)¢(1 = p)

(30)  Vi(e, ) = N**Po1_o5(N) <<<1(2 o ﬁ)g) wo(1)
8 ta)cl -
+ N 01_:,_&_5(]\7) C(2+a—ﬂ) ’LU()(1+C¥).
The functional equation (28) of the D-function and its definition (27) give
(31) Bl(aaﬁ):Bi(a)ﬁ)_‘_Bl_(a?ﬁ))
where
(32)  Bf(a,p)
= A=/ 1 > e(=Nh/])
=1 1<h<l, (h,l)=1
% 2% | Nouwo(s)2(2m)2 22102101 — )F(1 + o — 5)

(b)
x cos(m(s — a/2))D(1 — s, —a;e(—h" /1)) ds,

(33) Bi(a,f)=C1-3) """ Y e(-Nn/
=1 1<h<l, (hl)=1
S Nswo(8)2(2ﬂ)25—2—ala—25+1

(b)
xI'1—s)I'(1+a—3s)D(1 —s,—a;e(h*/l))ds,

" cos(ma/2)
2mi

and further

(34) Bf(a»ﬂ) = 2(27T)’8_1C(]_ _ ﬂ)N(a+ﬂ+1)/2

X o—o(m)n@P=D2L (N n:a
Z a( ) :t( )y 10y 7/6)7
n=1

where

() La(Nmanf) =3 7 SEN, miDps(dnyNn/ls o, 6)

=

with (z > 0)

(36) oy (0, 8) = —% | (1= )1 (1 +a — 5) cos(r(s — a/2))
X WO(;I;)(x/?)Qs_a_ﬁ_l ds,

B7)  p-(;0,08) = COS(QZOZ.‘/Q) | r—s)ra+a-s)

x wo(s)(x/2)2$ 7P ds.
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The formulas (29)-(37) show that the sum By(c, 3; Wp) reduces to a
double sum of the Kloosterman sums S(£N, n;1). Kuznetsov’s sum formulas
(see [9], [12, Lemmas 1 and 2| or [13, Chapter 2|) are now applied to the
inner sums Ly (N,n;a,3). The assumption («, 3) € R(b) is needed just at
this stage of Motohashi’s procedure. The resulting spectral expressions can
be summed with the help of another formula by Ramanujan (u,v € C; s
large enough)

Y ouln)an(m)n™ = ¢(s)C(s = w)¢(s = v)C(s = p—v)/((2s — p—v)
n=1

and its appropriate analogs; cf. [12, (2.3), (2.4), (2.9)].

In this way a spectral decomposition of By(«, 3; Wp) is obtained, pro-
vided that («, 3) € R(b); see [12, Section 3]. In Section 4 of [12] Motohashi
shows how to continue analytically this decomposition to a neighbourhood
of (0,0) € C2.

In particular, if o and 3 are sufficiently small and o 4+ § # 0 one has

(38)  Bi(a.8) = V5 (. 8) + V5 (. B) + B (@, B) + B (e, 8)
+ Bh(aaﬁ)v _
(39)  By(a,f)=V; (o, B) + Vs (a, 8) + B: (o, 8) + By (o, B)

(see (29)-(31)). Explicit forms of the terms V;5(a, ), Vit (e, B), BE (e, 8),
and By(a, B) can be found in [12, (3.58), (4.33), (4.34)]. For Bi(a, 3), see
[12, (3.58)4], where

Ba(e, B) = By (a, 3) + By (a, )

is displayed. The lower indices ¢, d and h in the above formulas are used
to signal the fact that a given term depends on the continuous, discrete
or holomorphic part of the spectrum of the hyperbolic Laplacian, respec-
tively.

4.2. Spectral asymmetry. In order to prove the Theorem we use the just
sketched Motohashi Ansatz in the additive divisor problem (see Section 4.1).

First of all we replace the assumptions on the weight function Wy by
weaker ones; cf. Motohashi’s remark after Theorem 4 in [12].

We say that a function Wy : (0,1) — C is nice enough if Wy is smooth,
25 Wole) =0, lip Wolz) =0,

and the order of decay of Wy at x = 0 and x = 1 is sufficiently high.

Further on we assume that the function Wy is nice enough. We also fix
o€ Cwith0<Rp<1/2.
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By modifying the argument in Sections 3 and 4 of [12] one can show that
Bn(a, B;Wy) given by (20) and (29)-(37) can be spectrally decomposed
in the domain R(—1/2) (see (21)), and then analytically continued to a
neighbourhood of (—g, —g) € C2. In particular, provided that («, 3) belongs
to a sufficiently small neighbourhood of (—g, —p), we have there the spectral
decomposition for Bf(a,ﬁ) of the type (38) and (39), the terms Ef(a,ﬁ),
Bdi(oz,ﬂ) and By (a, 3) being regular. For the terms V5" (a, ) + V5= (, ),
we have the expressions (4.33) and (4.34) in [12]; cf. also (44) below. But
these expressions are valid only under the additional assumption

(40) o # f.
This assumption can be dispensed with. To show this, more details from [12]
are needed.

In [12, (3.46), (3.52) and (3.48)] the following three functions of complex
variables &, u and v are introduced:

1 tico
(41) P4 (&u,v) = 4—;1 S cos(m(s —u/2))sin(m(s — (u+v)/2))

< P(s— (ut v+ 1)/2 4 OT(s — (u+ v+ 1)/2— )
X I'(1 = 8)I'(1 + u — s)wo(s) ds,
(42)  2-(&u,v)
+i00
- 4% cos(m€) cos(mu/2) | (s — (u+v+1)/2+8)

XI(s—(u+v+1)/2=8T'(1—s)['(1+u— s)wo(s)ds,
1 (e (vt 1)/2 4 5)
43)  =xGuwo) =53 _§oo T+ (utov+3)/2—9)
X I'(1 = s)I(1 +u — s)wp(s) cos(m(s —u/2))ds.
In (41) and (42) it is assumed that
(1—vtu)/2+E#£0,—1,-2,....

The path of integration starts from —ioo and ends at 4+ioo in such a way that
the poles of I'(s — (u+v+1)/2+¢) lie to the left and those of I'(1—s)I"(1+
u — $) to the right of it. Under the above assumptions on the variables £, u
and v, such a path exists. In (43) it is assumed that

(I-vtu)/24+E#0,—-1,-2,....

Here the path of integration separates the poles of I'(s — (u+v +1)/2 + &)
from the poles of I'(1 — s)I'(1 +u — s). Such a path exists. We remark that
the function @ is expressible by means of the function = (see [12, (3.47)]).
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All the terms on the right hand side of (38) and (39) are expressible by
means of the function @, @_, respectively, in a symmetric way; see again
[12, (3.58), (4.33) and (4.34)]. In particular, for o and [ sufficiently close to
—o and provided that (40) holds, we have

(44) Vi (@, B) + Vi (. )
B 2y S )+ )
~ weos(rB/2) CatAH (2+a+p)

XPyr((a+p+1)/2;a,0) + 2

mcos(mf/2)
¢ —a)¢(1 +6) ,
X (@0t Si((—a+B+1)/2;a, ).

Note that here the assumption (40) is really necessary if we adopt the
definitions (41) and (42) of the functions @1. But we have the following
lemma (cf. also [10, Supplement to Theorem 3.5]).

N®0_atpt1(N)

LEMMA 2. If Wy is nice enough, and &, u,v € C are in generic position,
then

(45) D4 (&u,v)

_ msin(m(u+v)/2) I'((1 —u—v)/24+&I((1 —u—v)/2 =)
4sin(mu/2) I'l—u)
1

><SWO(:C)F((l—u—v)/Q—I—f,(l—u—v)/2—§;1—u;x)dm
0
msin(m(u—v)/2) I'(14+u—0v)/2+ (1 +u—v)/2—¢)
4sin(mu/2) I'(1+u)

1
xSWO TF(14+u—v)/24+& (14+u—0v)/2—&1+u;z)dr,

(46) 45—(5,%1))
_ cos(m&) cos(mu/2) I'((1 —u—v)/2+ & I((1 —u—v)/2 =)
2 I'l—o)
xI(14+u—v)/24+)I((1+u—v)/2-¢)
1

><SWo(m)F((l—u—v)/Q—i-f,(l—u—v)/2—§;1—v;1—af)da:.
0

Proof. Under the assumption that u ¢ Z, translate the paths of integra-
tion in (41) and (42) to s = +o00. The residue theorem, (24), and (8) give
(45) and, in the case of ¢_,
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b (&u,v)
_ _mcos(mE) (F((l —u—v)/24+ (A -u—-v)/2-¢)
4sin(mu/2) I'l—w)

1
><SWO(m)F((l—u—v)/2—|—§,(1—u—v)/2—§;1—u;x)dm
0

PO +u—=0)24+H9I((A +u—v)/2=§)
I'(l+u)

1
X SWO(:v)a:“F((l +u—v)/2+&(14+u—v)/2-¢);1 +u;w)daz).
0

By (12), this is identical with (46). m

Now it is clear from (4 ) (46) that the assumption (40) can be dropped
and the terms V;=(a, 8) + Vit (, B) are regular at (—p, —p). This also means
that Bi(a, §) are regular at (—o, —0).

Moreover, by using (15) and (14), we obtain from (45) and (46)
47)  24(1/2 - 0; -0, ~0)

_ mcos(mo/2)
N 2 1 —|— 0)

1

WO 12Qa1+9’ )d7

O

(48)  P4(1/2;—0,—0)
= lim ¢+((ﬁ_a+1)/27a’ﬁ)

a——g,B——p

— T eos (%)r@)g%(x) ((1 —a)e - %) dz,

(49)  @-(1/2—0;—0,~0)

7 cos(mo/2) ;
= 5 1+ §)W0 F(1,20;1+ 0;1 — ) dx,

0)
(50) ¢ (1/2;-0,—0)= lim & ((f-a+1)/2a0)

a——p,B——0

- % cos (%) I'(o) 5 Wo(z)z @ dz.

Now we add a new assumption on Wj.
We say that Wy : (0,1) — C is even (with respect to 1/2) if it satisfies

(51) Wo(z) =Wo(1l—2x) (0<z<1).
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If Wy is nice enough and even, then from (47)-(51) we have
P4(1/2 - 0;—0,—0) = 2-(1/2 = 0; —0,—0);
P4(1/2;—0,—0) = 2-(1/2;—0, —0).
This and (44) give
(52) Vo' (=0, —0) + V5 (0, —0) = Vy (=0, —0) + V5 (—0,~0)-
Observe also that (45), (46) and (51) imply even more easily that
(53) ¢+(£a 0, ) @*(gﬂ -0 _Q) (%g = 0)
From the explicit expressions for BE(«, 8) and B(jf(a,ﬁ) (see [12, (3.58)]),
and (53) we get
(54) Bi(-0,—0) = B (-0, —0), B{(~0,~0) = Bi(~0,~0).
Finally, recall the representations (38) and (39) for Bi(a,3), and use
(52) and (54) to obtain
PROPOSITION 1. Define
(55) B*(a,8) = B (&, f) = By (a, 8)  ((ov, B) € R(—1/2)),

where ch(a, B) are given by (32) and (33). If the weight function Wy is nice
enough, then B® has an analytic continuation from the domain R(—1/2) to
a neighbourhood of (—o, —o) € C2. If Wy is also even (see (51)), then

(56) B*(—¢,—0) = Bu(-0,~0)-

From [12, (3.58)y] we quote (correcting a misprint) the explicit formula
for By (a, B):
(57)  Bu(e,f)

(27T )8 N (etB+1)/2 Z Z Lot k(N)
k=6 j=1

X Hjp((1— o= P)/2)Hjp((1 + o= §)/2) 54 (k = 1/2;, )
with the function = defined above by (43).

4.3. Back to the additive divisor problem. As before, let o € C with
0 < o < 1/2. Using Proposition 1, we obtain an analytic continuation of
the function B®*(—p, 3) (see (55)) from the domain

R_,={BeC:RG < -3+ Ro}

to a neighbourhood of the point 3 = —p. It is evident from Sections 4.1 and
4.2 that the continuation is of a spectral nature. We propose a different look

at B*(—o,[3).
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PROPOSITION 2. Let Wy be nice enough. Assume that

1 1
(58)  wo(1) =\Wo(z)dz =0, wo(l—p)=|Wy(x)z™2dx =0.
0 0

Then we have the representation

(59)  B*(—0.8) = NCog(y) HTe/2)

cot(mo/2)

¢(—=0)wo(—0)

—op(N) ((@)wo(0) + a5(N)((=B)W (1)

[e.9]

Z n)og(n + N)YWT(n/N)

+ Z o_p(n)og(n — NYW™(n/N)
n=N+1

N—-1
+ Y o p(n)og(N —n)W™(n/N),
n=1

where for x > 0,

2cos(mp/2) 1
w2 2mi

(60)  WT(z)= — | wo(s)I(s)I(1 - s)
(1/2)
X I'(s+0) (1 —s— p)cos(m(s+ 0/2))x"* ds,
2 cos?(mp/2) 1
72 2mi

(61) W (x) = Wola) - | wo(s)[(s)I(1—s)

(1/2)
X I'(s+0)['(1 —s— o)z *ds.

The representation (59) gives a meromorphic continuation of B*(—p, 3) from
R_, to the domain RB < 0, in particular to a neighbourhood of —o.

From Propositions 1 and 2 we get immediately

PROPOSITION 3. Let Wy be nice enough and even (see (51)). Assume
(58). Then

(62)  Bu(—0,—0) = B*(—0,—0)

— N2 ,(N) cot(mo/2)

s

+oo(M)5(o) (-

C(—0)wo(—0)

cot(mp/2)

wo(O) + W (1))
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—o(n+ N)WT(n/N)+W~(1+n/N))

Mg

n=1

n)o_o(N —n)W=(n/N),

||D12

where Bh(—g, —Q) is given by (57) with o = 3 = —p, and for WE, see (60)
and (61) above.

Proof of Proposition 2. From (32), (33) and (55), for 5 € R_, we get
(63)  B*(=0,0)

= —¢a=-p> 1t > ( Nh/m | Nowo(s)
=1 1<h<l, (hl)= m( 1/2)

x 2(2m)2 72 oo 2sHIP(1 — s)[(1 — o — 5)

x {cos(me/2)D(1 — s, ¢; e(h*/1))

+ cos(m(s+ 0/2))D(1 — s, 0;e(—h"/1))} ds.
Translate the integration line above to Rs = 3/2. Because of (58), there are
only two poles of the integrand in the strip —1/2 < Rs < 3/2, at s = —p
and s = 0. They come from the D-functions (see Lemma 1). Denote the
contributions of s = —p and s = 0 to B*(—p, ) by G_,(8) and Go(5),

respectively. From Lemma 1, (22), (23) and the functional equation of the
Riemann zeta function it follows that

(64) G_p(B) =—N"927277272I(1 + g) cos(mo/2){ (1 + o)wo(—0)

xCL=p)Y 1%t " e(=Nh/l)
=1 1<h<L, (hl)=1
= N"%05(N) M ((—0)wo(—0)
and similarly
(65) Go() = ~a(N) L2 ¢(g)un(0).
The remainder
(66) P(B) = B*(—0,8) — G—,(B) — Go(P)

is given by the right hand side of (63) but with the new integration line
Rs = 3/2.

Applying the functional equation (28) to D(1 — s, g;e(£h*/l)) and the
definition (27) of the D-functions, and changing the order of summation and
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integration, we get

(67) P(3) = P*(8)+ P~ (B)

with

(68) PE(8) = 3 o g(n)os(n = N)W*(n/N).
n=1

Here we put

(69) o5(0) = ¢(=0),
which is in accordance with the observation that for 38 < —1,

[e.9]

CA=-g> 11 > 1=((-B)

I=1 1<h<l, (h1)=1
(cf. (22), (23)), and for = > 0,
_ 2cos(mp/2) 1

(70)  WH(z) = 5 ) wo() ()0 (1 - s)
(3/2)
X I'(s+ 0)I'(1 — s — p)cos(m(s+ 0/2))x™* ds,
(71) W (z)
— <_%> % | wo(s)I(s)I(1 - s)
(3/2)
x I'(s 4 0)I'(1 — 5 — o)(cos?(m0/2) 4 cos®(n(s + 0/2)))xz* ds
cos? (7
:WM@—z—#ﬁQE%S wo(s)(s)I'(1— s)

(3/2)
x I'(s+0)I'(1—s— o)z *ds.
By translating the integration lines in (70) and (71) to s = 1/2 and using

the assumption (58), we obtain (60) and (61). Put together (63)-(69) in
order to get (59). =

4.4. A special weight function. For p € C let

(72) Wy(z) = { = ?f Vo<t
0 if x > 1.
We remark that the same definition is given in Section 1.
An individual W)-function cannot satisfy the assumption (58) of Propo-
sitions 2 and 3, but a linear combination of W),’s can. For a later purpose
(see Section 4.5) it is sufficient to consider linear combinations of just three
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Wp’s. So, set
3
(73) Wo(x) = aWpy,(z)  (z>0)
i=1
with ¢, ¢2, c3, p1, p2, p3 € C.
Assume that Rp; (i = 1,2, 3) are sufficiently large. Then the above func-
tion W) is nice enough and even (see the beginning of Section 4.2 and (51)).
The Mellin transform of W, is

R p)L(p+s—1)

o1, 1
(74)  wpy(s) = §Wp(x)aj Lz = Top 1) (Rs > 1 — Rp).
So, by (24) and (72)—(74),
3
(75) wo(s) = ZCiwpi(s)
—Z Llpi+s—1) (Rs >1—Rp;; i =1,2,3).

2pz s—1)

The condition (58) of Propositions 2 and 3 is equivalent to the following
linear system of two equations with respect to ci, c2 and cs:

3

4F(pz')F(pi) _
(76) 25 Ty "
> I(p)(pi—o)
; Ci —F(Qpi ~ ) =0.
Put
. I'(p2)I'(p2)'(p3)'(ps —0)  I'(p3)'(p3)I'(p2)I'(p2 — o)
' T'(2p2)T(2p3 — o) r2p3)(2p2 —0)
(77 ey = L(p3) M (p3) (p) (1 — o)~ I'(p)I'(p1) I (p3)I'(ps — 0)
’ I'(2p3)T(2p1 — o) rep)l(2ps —0)
or — I'(p1)I(p1) M (p2)'(p2 —0)  IT'(p2)I'(p2)I'(p1)I'(p1 — 0)
’ I'(2p)T(2p2 — o) I(2p2) T (2p1 — 0)

This is of course a solution of (76).

Further on Wy denotes the concrete function defined by (72), (73) and
(77) under all the assumptions made.

Now we are going to determine an explicit form of the right and left hand
sides of the formula (62) of Proposition 3 with our Wj.
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For Rp large enough and ¢ € C with 0 < Ro < 1/2 put, for z > 0,
_ 2cos(me/2) 1 S I'pI'(p+s—1)

(78) Wy (x) = 2 I'(2p+s—1)

5 r'(s)raa—s)
(1/2)
X I'(s+0)'(1 —s—p)cos(m(s+ 0/2))x"° ds,
(79) Wy (a) = Wy(a) + Wy(a)
B 2 cos?(mo/2) 1 S I'(p)I'(p+s—1)
I'2p+s—1)

™

= Wp(2) w2 i
(1/2)
xI'(s)I'(1—s)'(s+0)[(1—s—p)x °ds
(cf. (60), (61), (72)-(75)).

3

LEMMA 3. We have
(80) W, ()
_ cot(mg/2) (_F(p)F(p)

F(1,p;2p; —1/z)2™"

™ I'(2p)
L(p)(p—o) . . ”
e ime ) o)
(81)  Wy(z)
— Cot(:-Q/Q) (FE{)()QI;D(zi—l)l) FLp2—pil— 1/a)e
I'(p—1)I'(p—o L o
T T T(2p—1-9) Flp—e2-pl-1/z)z 1) (z > 0),
(82)  Wy(z)= COt(ZQ/Q) (F?()QI;)()p) F(1,p;2p;1/a)a!
L) I(p—o ‘ ' .
a mF(LP— 0;2p — o;1/x)x 1) (z > 1),

(83) W, (z)+W, (1+x)
= W (z) + Wp(1 +2)

_ cot(mo/2) I'(p)I'(p — o) _ ) o—
=— rop g FLp-e2—eg-1/re '

—F(1,p;2p— o;—1/2)(1+2)%" ") (x> 0),

(84) W, (1-x)

_cot(mo/2) I'(p—o)I'(p — 1)
™ I'2p—po-1)

X (1—=2)°F(1,24+ 0—2p;2 — p;z) + Np(z)

— (1 + cot(mo/2) cot(mp)) W ()
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I'(p)I'(p)
I'(2p—1)
x (1 -2x)F(1,3/2 —p;3/2; (1 —22)%)  (0<z<1),
(86) W, (1) = Wy(1)
:cmmwm<mmrw—n__rw—nr@—w>
™ I'(2p-1) I'2p—1-o)

(85)  Ny(x) = = cot(mo/?)

Proof. From the identity
cos(m(s+0/2)) (1 —s)['(1—s—p)

_ v (F(l—s)_F(l—s—g)>
2sin(mo/2) \I'(s + 0) I'(s)

and (78) we get

W= - (1§ IO D),
7r LI (2p+s—1)
1 Fp)lp+s-—DIs+oll-s5-0)
- 2mi S I'2p+s—1) . ds)'
(1/2)
This and (10) give (80) after some calculation.
By (79), for x > 0,
2
Wp(m) _ _20087539/2) % S I'p)I'(p+s—1) P(s)I(1—s)

@) I'2p+s—1)

x ['(s+0) (1 —s—p)x *ds.

Consider the above integral as the value of the convolution of W, and
an appropriate hypergeometric function at = (cf. (74) and (11)). Use further
(13) and (16) to obtain successively, for z > 1,

1

o COS2 s
W) = 2 T2 b1 4 gy — o) [ WP (11— 0221 /1) &
0
1
- —COt(Zigm ggwp(t)Fu, 14021 —t/a)dt
0
_ cottme2) 1 R e e ”/C;_Q dt.

0
This, (72) and (9) imply (82).
Apply (12) to both terms of (82). The result is (81) valid for z > 1. By
analytic continuation, (81) holds for z > 0.
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By (13), for x > 0,
F(1,p;2p;1/(x+ D))z +1)"" = F(1,p; 2p; —1/a)z ™!
and
F(Lp—0;2p—;1/(x+ 1)) (@ + 1) = F(1,p; 2p — 0; —1/2)(1 + z)% .

So (83) is a consequence of (80) and (82).
By (13), for 0 < = < 1,

87 F(Lp2-p1-1/(1-2)(1—2)"" = F(1,2 - 2p;2 - p; ),

) F(lp—g2-pl-1/1-z)(1—-z)"
=F(1,24+0—2p;2 —p;z)(1 — x)°.

Use (17) to get, for 0 < z < 1,

(89) F(1,2—2p;2—p;x)

re-pra) .
=TGRy CWRLTREAS )

r'2-pl(=1/2)
ra/2)ra - p)

(1—22)F(1,3/2 — p;3/2; (1 — 22)?).

By (15),
(90)  F(1/2,1—p;1/2;(1 —22)}) =22 2(z(1—2))Pt (0<z<1).

The formulas (84) and (85) now follow from (79), (81) and (87)-(90).
Take x =1 in (81) to get (86). m

For p, o € C with Rp large enough, 0 < Rp < 1/2 and k even, k > 6 we
introduce the notation

(91) EJ(k_l/Q;_Q) " 2mi § I'k+1—p0—3s)

)
1 —0— s)wp(s)cos(m(s+ 0/2))ds

with w,(s) given by (74) (cf. (43), (57), (62), (72), (73), (75)).

LEMMA 4. Under the above assumptions

I'(p)I'(p— o) I'((k+0)/2)
I(p+(k—0)/2)I(1+k—0)/2)
x I'(=p+ (1+k+0)/2)sin(m(p+ (1 - 0)/2)).

Proof. Translate the integration line in (91) to Rs = 4o00. The residue
theorem, (8) and (74) give

(92) 5 (k—1/2%—g) = ~2¢ %"
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(93) Eﬁ(k—l/Q;—Q)Zm
I(k+o) ¢ . .
. (F(k—g)F(1+0) éWp(z)F(HQ’l Chreltend
1 ¢ _@ Q.
_mswp(x)x F(k,l—k,l—g,m)dm).

0
Apply (13) to the last hypergeometric function to get

(94) F(k,1-kl-gz)=(1-2)F(k—01-k—-01-02)
From (18), (93) and (94) it follows that

(95)  Ef(k—1/2—0)

- 2sin(mo/2)

< I'(k+ o) I(p)I'(p)
I'(k —o)I'(1+ 0)I'(2p)
I'p—0)I'(p—o)

I'(1—-0)I'(2p —20)

3ok 4+ 0,1 —k+0,p;1+ 0,2p; 1)

><3Fz(k—Q,l—k—y,p—@;l—y,Zp—QQ;1)>-

Use (19) in order to evaluate the two 3F3’s in (95). After some calculations
we find that (92) holds. =

For Rp large enough and p € C with 0 < Rp < 1/2 denote by By
the holomorphic part of the spectral decomposition for the binary additive
divisor sum By(—p, —p;W,) with W), given by (72). By (43), (57), (72),
(74), (91), (92), the principal analytical properties of the L-functions H
(see [13, Lemma 3.6]), the estimate [13, (2.26)] and Stirling’s asymptotic
formula, we have

(96) By = 9n(p, 0),

where $n(p, 0) is defined by (1) in Section 2.
Because of (73), the statement (96) implies

3
=1

We remark that here c;, co and c3 can be any complex numbers, not just
given by (77).
By (85), the function N, is odd with respect to 1/2:

Np(z)=—-Np(1—2z) (0<z<1).
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Hence,
N-1
(98) 0_o(n)o_o(N —n)Ny(1 —n/N) = 0.
n=1
Use (8) and (83) to see that

(99) Wy (@) + Wy (14+2) < 272 (2 +oc).
From (60), (61), (72)—(75), (78), (79), (98), (99) and Lemma 3 it follows
that the right hand side of (62) in Proposition 3 can be rewritten as
3

(100) B*(—0,—0) = Y _ ci(®n(pi, 0) + An(pir 0) + D (pi 0))
i=1
with ¢1, ¢o and ¢3 given by (77) and the notation introduced in Section 2.
Recall that (77) ensures that our Wy satisfies the assumption (58) of Propo-
sitions 2 and 3 (cf. (75)—(77)).
Finally, from Proposition 3, (97) and (100) we obtain the following weak
version of the Theorem.

PROPOSITION 4. Let N € N, g,p1,p2,p3 € C. Assume that

0<Ro<1/2
and
(101) Rp; is sufficiently large (i =1,2,3).
Then
3
(102) > (98 (pir 0) — B (pis 0) — An(pi, 0) — D (pis 0) =0
i=1

with ¢, c2 and c3 given by (77).

4.5. End of proof of Theorem. We need a concrete version of the assump-
tion (101) of Proposition 4.
Consider $n(p,0) as a function of p. Convexity bounds for Hj;; with
respect to k (cf. [13, Lemma 3.6]), the estimate
9(k)
QK <k
j=1
(cf. [12, (2.2.10)]) and Deligne’s bound
t;k(N)| < d(N) = 00(N)
can be applied to the series defining Hn(p, 0), showing that this series is

absolutely and uniformly convergent on compact subsets of the halfplane
Rp > po, where pg = 3/2 + Ro/2. Hence Hn(p, 0) is regular there.
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Consider the series Ay (p, 0) defined by (3) and (5). By using (8) and the
ratio convergence test, we conclude that 2Ax(p,0)/(I'(p)I'(p — 0)) is abso-
lutely and uniformly convergent on compact subsets of the whole complex
plane C. Hence Ay (p, 0)/(L'(p)I'(p — 0)) is regular on C.

Fix z € (0,1). Then F(1,2 + 0 — 2p;2 — p;z)/I'(2 — p) is an entire
function of p (see [5, Subsection 2.1.6]). So the finite sum Dy (p, o), de-
fined by (4) and (6), is meromorphic on C. In order to see more, replace in
(4) the D, ,-function by the W -function given by (79). Observe that this
does not change D n(p, 0). The function defined by the integral in (79) is
regular in the halfplane Rp > 1/2. We conclude that Dy (p, 0) is regular
there.

It is clear from (2) that & y(p, 0) is meromorphic on C. It has only simple
poles. In the halfplane Rp > 1/2 there are only two of them, at p =1+ p
and p = 1. The respective residues are given in Corollary 1.

We can therefore replace the assumption (101) of Proposition 4 by

(103) Rpi > po = 3/2+Ro/2 (i =1,2,3).

LEMMA 5. The equality (7) of the Theorem holds for p =5/2+ /2 and
p="T/2+ o0/2.

Proof. Observe that with special p = 1/2 + 9/2 + [, [ being an integer,
the series in (1) defining $Hn(p, o) simplifies to a finite sum Zzl:G,keven(' )
with a general term involving

o(k

)
(104) ot e(N)Hjk(1/2)Hjk(1/2 + o).
j=1

By the preceding discussion, it is also safe to assume that [ > 2 (cf.
(103)).

A trace formula of Bykovsky [3, Lemma 6] gives an arithmetical expres-
sion for (104); cf. also [10, Section 4.3], [11, Theorem 2.4], [2, Theorem 1], [7,
Theorem 17]. (The results we are referring to are consequences of versions
of Petersson’s classical sum formulas; see, for example, [13, Lemma 2.3|.)
This arithmetical expression can be written in terms of the divisor function
0s(n) and the hypergeometric function. Its structure is quite similar to that
of &n(p,0) +An(p, 0) + DN (p, 0), provided that p = 1/2+ /2 + 1, | being
an integer. The lemma actually follows from the above result of Bykovsky
by direct verification. m

In Proposition 4 put p; = 5/2 + 0/2, po = 7/2 4+ /2 and p3 = p with
Rp > 3/2 4+ Ro/2; cf. the discussion preceding Lemma 5. This lemma and
(102) give (7), because c3 # 0 in (77). The Theorem is proved.
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