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1. Notations. We write, as usual, s = σ + iτ and f(s) = f(s). We
recall here the definition of the extended Selberg class S# studied by
J. Kaczorowski and A. Perelli in a series of papers (see [KP0] for an intro-
duction). The class S# consists of the non-identically vanishing functions
F (s) satisfying the following conditions:

(i) for σ > 1, F (s) is an absolutely convergent Dirichlet series

F (s) =
∞

∑

n=1

ann−s;

(ii) for some integer m ≥ 0, (s − 1)mF (s) is an entire function of finite
order;

(iii) F (s) satisfies a functional equation of the form

(1) Φ(s) = ǫΦ(1 − s), where Φ(s) = Qsγ(s)F (s),

with

(2) γ(s) =
r

∏

j=1

Γ (λjs + µj),

where Q > 0, |ǫ| = 1, and for all j ∈ [1, r], λj > 0, µj ∈ C with
ℜµj ≥ 0.

The Selberg class S is the set of functions F ∈ S# satisfying two more
axioms:

• (Ramanujan hypothesis) for every ε > 0, an ≪ nε;
• (Euler product) for sufficiently large σ,

log F (s) =
∞

∑

n=1

bn

ns
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where bn = 0 unless n is a positive prime power, and bn ≪ nθ for some
θ < 1/2.

We define the class S#♭ as the set of functions F ∈ S# satisfying fur-
thermore the following axiom:

• for every ε > 0 and every x ≥ 1,
∑

n≤x |an|2 = Oε(x
1+ε).

Notation. The degree d of F ∈ S# is defined as d = 2
∑r

j=1 λj , and
the polar order mF of F is the least integer m satisfying (ii). We also write

ξ = 2
r

∑

j=1

(

µj −
1

2

)

and β =
r

∏

j=1

λ
−2λj

j .

Remark 1.1. The functional equation (1) may be written in the form

F (1 − s) = ǫQ2s−1 γ(s)

γ(1 − s)
F (s).

We define S(x) as the sum of the residues of the function F (s)xs/s, and
the error term E(x) as

(3) E(x) =
∑′

n≤x

an − S(x),

the prime indicating that the last term has to be multiplied by 1/2 if x = n.
In case mF 6= 0, E(x) is the error term for the summatory function of the
coefficients of the Dirichlet series F (x).

Remark 1.2. Since s = 1 is the only singularity of the function F , we
can write S(x) in the form

S(x) = F (0) + Res

(

F (s)

s
xs, 1

)

= F (0) + xPF (log x),

where PF is a polynomial function of degree mF − 1. The last equality
results from a simple argument; the reader may consult [Lan, Vorbemerkung
über R(x), p. 697] for more details.

2. Introduction and statement of the results. In this paper we give
pointwise and mean square upper bounds for the error term E(x) associated
with a function F in the extended Selberg class S#.

Estimates for E(x) and
Tx
1 |E(y)|2 dy were first obtained, in the special

case of the divisor problem, by Voronöı in 1904 and Cramér in 1922 re-
spectively (see [V] and [Cr]). Since then, this has been generalised to larger
classes of Dirichlet series.

As early as 1912, Landau give an estimate of E(x) for a class of Dirichlet
series satisfying a functional equation of general type involving multiple
gamma factors. His method of proof is based on an application of the Perron
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formula and the residue theorem. A kind of van der Corput method is also
used.

In 1964, Chandrasekharan and Narasimhan gave an estimate for E(x)
and

Tx
1 |E(y)|2 dy for functions of general type (see [CN1]–[CN3], [Ch]). Their

method is based on the study of some hypergeometric functions. Since then,
their results have been improved for functions of high degree by Redmond
in [R1] and [R2].

Nevertheless, as far as we know, no estimate has been given in the
case of the extended Selberg class. The large classes already studied in the
literature do not comprise the class S# since, in the functional equations
that have been considered, either the µj have to be real, or no conjugate
occurs.

Our results for a function in S# are identical to those obtained by Lan-
dau, Chandrasekharan and Narasimhan in the case where the µj are real.
We prove the following theorems.

Theorem 2.1. Let F ∈ S# be a function of degree d ≥ 2 and let ε > 0.
Then, for x ≥ 1, we have

E(x) = O(x(d−1)/(d+1)+ε).

Remark 2.1. The conclusion of Theorem 2.1 holds true for functions
F of degree d < 2 in S#♭. The additional Ramanujan hypothesis is most
probably redundant but we have not managed to avoid it. Nevertheless, we
notice that:

• from the explicit description of the functions in S# of degree d ≤ 1
given by Kaczorowski and Perelli in [KP1], we easily deduce that the
conclusion of Theorem 2.1 holds true for them;

• the degree of the functions of S# is conjecturally a positive integer (see
[KP0]), and Kaczorowski and Perelli have already proved that there is
no function in S# of degree 1 < d < 5/3 (see [KP2]).

Theorem 2.1 for functions F of degree d < 2 in S#♭ is therefore either
well known or conjecturally empty. Nevertheless, we prove the result an-
nounced in this remark later, since the case 5/3 < d < 2 has to be treated
independently from the degree conjecture.

Theorem 2.2. Assume that F ∈ S#♭ and let ε > 0. Then, for x ≥ 1,
x\
1

|E(y)|2 dy =

{

O(x2−1/d) if 0 < d < 3,

O(x3−4/d+ε) if d ≥ 3.

The Selberg class was introduced in [S] and since then it has been studied
in various papers by Conrey and Gosh (see [CG1], [CG2]), Murty (see [M]),
Kaczorowski and Perelli (see [KP0]–[KP2], . . .). The structure of the ex-
tended Selberg class S# we are considering here has been particularly stud-
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ied by the last two authors. In [KP1] and [KP2], they investigate some
incomplete Fox hypergeometric functions and establish a link between these
functions and those of S#.

Many conjectures have been devised about S and S#. Especially, it is
expected that any function F ∈ S satisfies the generalised Lindelöf hypoth-
esis:

Conjecture 2.1.

∀ε > 0, F (1/2 + iτ) ≪ε τ ε.

This problem is also still open for a function in S# (see [CG2]). This con-
jecture is strongly connected with the study of the error term E(x) since we
can prove that a function F in S satisfies the generalised Lindelöf hypothesis
if and only if

F k(1/2 + iτ)

1/2 + iτ
∈ L2(R) (∀k ∈ N),

and we prove in [dR2] that if F ∈ S#, then

F (1/2 + iτ)

1/2 + iτ
∈ L2(R) ⇔ E ∈ L2([0,∞[, dx/x2),

where E is the error term associated to F .
Our results imply that E ∈ L2([0,∞[, dx/x2) for functions in S# of

degree less than 4. This result is of great relevance in [dR2].
To prove Theorem 2.1, we follow Landau’s method in [Lan]. A few ar-

guments have to be modified. The methods of proof of Theorem 2.2 both
involve an identity relating a smoothed version of the error term to a series
of hypergeometric functions. We then study these hypergeometric functions
and expansions. To return to the initial function, we use finite differences.
This method was used by Chandrasekharan and Narasimhan in [CN1] and
[CN2], except for the study of the hypergeometric function which was eas-
ier in their case. Here, we have to connect our hypergeometric functions to
Bessel functions to obtain some results similar to theirs.

We start by giving some technical lemmas. In Section 3, we draw up a
list of consequences of the complex Stirling formula and in particular we give
some vertical strip estimates for a function in the Selberg class. In Section 4,
we give some technical lemmas. Section 5 will be devoted to the study of
Bessel functions. In Section 6, we connect a smoothed version of the error
term with a hypergeometric function studied in Section 7. In Sections 8
and 9, we prove Theorems 2.1 and 2.2 respectively.

The author would like to thank the referee for his very fruitful comments,
for pointing out several inaccuracies and for suggesting how to improve our
results, especially in Section 8. We would also like to thank Professor J. Ka-
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czorowski for having suggested the use of Bessel functions during a very
fruitful conversation in Cetraro.

3. Some consequences of the Stirling formula. We give here
some technical estimates coming from the following Stirling formula. The
reader will find a demonstration of this result in [Bo, formule (19),
§VII.2.3].

Proposition 3.1. There exist constants cν = cν(a) such that , for all

M ∈ N, as |s| → ∞,

(4) log Γ (s + a)

=

(

s + a − 1

2

)

log s − s +
1

2
log 2π +

M
∑

ν=1

cνs
−ν + O

(

1

|s|M+1

)

uniformly for |arg(s)| ≤ π − ε with a fixed ε > 0 and a in a compact subset

of C.

3.1. Study of a function coming from the functional equation

Lemma 3.1. Let γ(s) be as in (2). Then, uniformly for s ∈ C such that

ε ≤ |arg s| ≤ π − ε, for all M ∈ N, as |s| → ∞,

log

(

γ(s)

γ(1 − s)

)

=
d

2
s(log s + log(−s)) − s(log β + d)

+
1

2
ξ log s − 1

2
(ξ + d) log(−s)

+
1

2
log β + 2i

r
∑

j=1

ℑµj log λj +
M
∑

ν=1

cνs
−ν + O(|s|−M−1).

This follows easily from the Stirling formula.

Lemma 3.2. Let γ(s) be as in (2). Then, uniformly for σ1 ≤ σ ≤ σ2, as

|τ | → ∞,

γ(s)

γ(1 − s)
= c(σ, τ)|τ |d(σ−1/2)ei(dτ log |τ |−(log β+d)τ−ℑξ log |τ |)(1 + O(1/|τ |))

where c(σ, τ) ∈ C only depends on σ and the sign of τ .

Notation. For a > 0 and ν ∈ R, we define

f(s) = fa,ν(s) :=
1

2

(

2

a

)s−ν Γ (s/2)

Γ (ν − s/2 + 1)
.

We shall establish a link between the function f and the multiple gamma
factor γ.

Lemma 3.3. For α > 0, a > 0, ν ∈ R, κ ∈ C, there exist real numbers

K = K(α, a, κ, ν) and c′j = c′j(α, a, κ, ν), j ∈ N, such that for all M ∈ N,



32 A. de Roton

as |s| → ∞,

(5) log(f(αs + κ))

=
α

2
s(log s + log(−s)) + α(lnα − ln a − 1)s +

κ − 1

2
log s

+

(

κ − 1

2
− ν

)

log(−s) + K +
M
∑

j=1

c′js
−j + O

(

1

|s|M+1

)

uniformly for s such that ε < |arg s| < π − ε with ε > 0.

In particular,

(6) |f(s)| ≍ |τ |σ−1−ν as |τ | → ∞,

uniformly for σ ∈ [σ1, σ2].

Definition 3.1. For ̺ ∈ Z, ̺ ≥ −1, we define

G̺(s) =
Γ (1 − s)γ(s)

Γ (2 + ̺ − s)γ(1 − s)
.

By Stirling’s formula, there is a complex sequence c
(1)
ν = c

(1)
ν (λ1, . . . , λr;

µ1, . . . , µr; ̺) such that for all M ∈ N
∗, as |s| → ∞,

log G̺(s) =
d

2
s(log s + log(−s)) + s

(

r
∑

j=1

2λj log λj − d
)

(7)

+
1

2
ξ log s −

(

1

2
(ξ + d) + ̺ + 1

)

log(−s)

+
(

r
∑

j=1

(−λj − 2iℑµj) log λj

)

+
M
∑

ν=1

c(1)
ν s−ν +O

(

1

|s|M+1

)

uniformly for ε ≤ |arg(s)| ≤ π − ε with ε > 0.

In particular,

(8) |G̺(s)| ≍ |τ |d(σ−1/2)−̺−1 as |τ | → ∞,

uniformly for σ ∈ [σ1, σ2].

Notation. We write

(9) α = d, κ = 1 + ξ, ν = 1 + ℜξ + d/2 + ̺, a = dβ1/d.

Comparing (7) to (5), we show that there exist real numbers ek =
ek(λ1, . . . , λr; µ1, . . . , µr; ̺) such that, as |τ | → ∞,

rm(s) := G̺(s)−
m

∑

k=0

Fk(s) = O(|f(αs+κ)| |s|−m−1) = O(|τ |d(σ−1/2)−̺−m−2)



Extended Selberg class 33

uniformly for σ ∈ [σ1, σ2], with

Fk(s) = ekf(αs + κ)
(−1)k

(αs + κ − k) · · · (αs + κ − 1)
.

3.2. Estimates for the value of a quotient of Γ functions in half integers

Proposition 3.2. For ν ∈ R, ℜz = N + 1/2 with N ∈ N and N ≥
|ν| + 1/2, we have

Γ (1 − z)

Γ (ν + z)
≪ e2N

|z|N |ν + z|N+ν
.

Proof. By the complement formula, we get

Γ (1 − z)

Γ (ν + z)
=

π/sin(πz)

Γ (ν + z)Γ (z)
.

For z = N + 1/2 + it, we have
∣

∣

∣

∣

π

sin(πz)

∣

∣

∣

∣

=

∣

∣

∣

∣

2iπ

eiπ(N+1/2)e−πt − e−iπ(N+1/2)eπt

∣

∣

∣

∣

=
2π

e−π|t| + eπ|t|
.

On the other hand, by (4), we have uniformly for ℜz ≥ |ν| + 1,

log |Γ (ν + z)Γ (z)| = (ℜz − 1/2) log |z| + (ν + ℜz − 1/2) log |ν + z| − |ℑz|π

+ ℑz

(

arctan
ℜz

ℑz
+ arctan

ℜz + ν

ℑz

)

− 2ℜz − ν + log 2π + O(1/|z|)
≥ (ℜz − 1/2) log |z| + (ν + ℜz − 1/2) log |ν + z|

− |ℑz|π − 2ℜz − ν + log 2π + O(1/|z|).
For N ≥ |ν| + 1/2 and z = N + 1/2 + it, we get

log |Γ (ν + z)Γ (z)| ≥ N log |z| + (ν + N) log |ν + z|
− |t|π − 2N − 1 − ν + log 2π + O(1/|z|).

So we have
Γ (1 − z)

Γ (ν + z)
≪ |z|−N |ν + z|−ν−Ne2N .

3.3. Estimates of a function of the Selberg class in some vertical strips

Lemma 3.4. Let F be a function in the extended Selberg class S#.

• Let ε > 0. Then |F (s)| = Oε(1) uniformly for σ ≥ 1 + ε and τ ∈ R.

• For σ < 0, F (s) = Oσ((1 + |τ |)d(1/2−σ)).

• For all ε > 0, if −ε ≤ σ ≤ 1 + ε, then F (s) = Oσ,ε((1 + |τ |) d
2
(1−σ+ε)).

Proof. The first estimate comes from the fact that F (s) is an abso-
lutely convergent Dirichlet series for σ > 1. The functional equation and
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Lemma 3.2 provide the second one. To prove the last estimate, we use a
Phagmén–Lindelöf argument.

4. Some more lemmas

Definition 4.1. If T > 0 and Λ, c ∈ R with c ≤ Λ, we define the path

C(T, c, Λ) := ]c − i∞; c − iT ; Λ − iT ; Λ + iT ; c + iT ; c + i∞[.

In order to move paths of integration, we shall use the following lemma.

Lemma 4.1. Let f be a meromorphic function on C such that :

• T0 := sup{|ℑ̺| : ̺ a pole of f} < ∞,
• Λ0 := sup{ℜ̺ : ̺ a pole of f} < ∞,
• there exist a > 0 and b ∈ R such that , for all σ1 < σ2, we have,

uniformly in σ ∈ [σ1, σ2], |f(s)| ≪ |τ |aσ−b−1 as |τ | → ∞.

If

(10) T > T0, c < b/a, Λ > Λ0,

then, for x > 0, the integral

I(x) :=
1

2iπ

\
C(T,c,Λ)

f(s)x−s ds

is convergent and its value does not depend on T , c and Λ satisfying (10).
Furthermore, for all ε > 0, we have I(x) = Oε(x

−b/a+ε) as x → ∞.

Proof. Under the assumptions of the lemma, the integrals are convergent
on the path C(T, c, Λ). To get the full conclusion, it is enough to use the
residue theorem between the two paths C(T, c, Λ) and C(T ′, c′, Λ′) with
T, c, Λ and T ′, c′, Λ′ satisfying (10) and observe that the horizontal integrals
tend to zero.

Lemma 4.2. Let a > 0 and b ≥ 1. Then
∞\
0

dτ

(a2 + τ2)b
≤ π

2

a1−2b

√
b

.

Proof. Since a > 0 and b > 1/2, the integral is convergent. Furthermore,

∞\
0

dτ

(a2 + τ2)b
= a1−2b

∞\
0

dτ

(1 + τ2)b
.

By MAPLE, we get
∞\
0

dτ

(1 + τ2)b
=

√
π

2

Γ (b − 1/2)

Γ (b)
.
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The logarithmic derivative of the function ϕ(b) =
√

b Γ (b − 1/2)/Γ (b) is

ϕ′(b)

ϕ(b)
=

1

2b
+

∑

q∈N

(

1

q + b
− 1

q + b − 1/2

)

≤ 1

2b
+

∞\
0

(

1

t + b
− 1

t + b − 1/2

)

dt ≤ 0.

So for b ≥ 1, we have
∞\
0

dτ

(a2 + τ2)b
= a1−2b

√
π

2

ϕ(b)√
b

≤
√

π

2

a1−2b

√
b

ϕ(1) =
π

2

a1−2b

√
b

.

5. Bessel functions. Our main reference for this section is the book of
Watson [W]. We recall here some properties of Bessel functions and we give
an integral representation of these functions which is not given in [W].

Notation. From now on, if c is a real number, we shall write
T
(c) f(s) ds

for
Tc+i∞
c−i∞ f(s) ds.

Let ν be a real number. We define the Bessel function Jν as (formula (8),
§3.1 of [W]):

∀x ∈ R, Jν(x) =
∞

∑

m=0

(−1)m(x/2)ν+2m

m!Γ (ν + m + 1)
.

We recall the asymptotic expansion of Jν(x) as x → ∞ (§7.21 of [W]):

Jν(x) ∼
(

2

πx

)1/2(

cos

(

x − νπ

2
− π

4

) ∞
∑

m=0

(−1)m(ν, 2m)

(2x)2m

− sin

(

x − νπ

2
− π

4

) ∞
∑

m=0

(−1)m(ν, 2m + 1)

(2x)2m+1

)

with (ν, m) = Γ (ν + m + 1/2)/m!Γ (ν − m + 1/2).

From a classical Mellin transform result (formula (7), §6.5 of [W]), for
ν ≥ 0 and 0 < c ≤ ℜ(ν + 1), we have

x−νJν(x) =
1

2iπ

c+i∞\
c−i∞

2s−ν−1Γ (s/2)

Γ (ν − s/2 + 1)
x−s ds.

Remark 5.1. We recover here the function fa,ν defined and studied in
Section 3.1.

We will extend this result to the case ν ≤ 0.
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Lemma 5.1. Let a > 0 and ν ≥ 0. If fa,ν is defined as in Section 3.1,
then we have

lim
N→∞

\
(−2N+1)

fa,ν(s)x−s ds = 0,

uniformly for x in compact subsets of ]0,∞[.

Proof. We define KN (x) :=
T
(−2N+1) fa,ν(s)x−s ds. For N ≥ |ν| + 1 and

z = 1 − s/2, from Proposition 3.2 we have

KN (x) =
1

2

\
(N+1/2)

(

2

a

)2−2z−ν Γ (1 − z)

Γ (ν + z)
x2z−2 dz

= O

(

1

x

(

eax

2

)2N \
(N+1/2)

|dz|
|z|N |ν + z|N+ν

)

.

Furthermore, if u, v ≥ 1, then 1
uv ≤ 1

u + 1
v , so we get

KN (x) = O

(

1

x

(

eax

2

)2N( \
(N+1/2)

|dz|
|z|N +

\
(N+1/2)

|dz|
|ν + z|N+ν

))

.

By Lemma 4.2, we have\
(N+1/2)

|dz|
|z|N =

∞\
−∞

dt

((N + 1/2)2 + t2)N/2
≪ (N + 1/2)1−N

√
N

and \
(N+1/2)

|dz|
|ν + z|N+ν

=

∞\
−∞

dt

((N + ν + 1/2)2 + t2)(N+ν)/2

≪ (N + ν + 1/2)1−N−ν

√
N + ν

.

If N ≥ 2|ν| + 1, we get

KN (x) = O

(

1

x

√
N

(

eax

2

)2N

(N−N + (N/2)−N/2)

)

,

and the integral KN (x) clearly tends to 0 as N → ∞, uniformly for x in
compact subsets of ]0,∞[.

Definition 5.1. Let a > 0 and ν ∈ R. We define the function h0 = hν,a
0

by

∀x > 0, h0(x) := x−νJν(ax).

Proposition 5.1. If ν ∈ R and

(11) T ≥ 1, c < ν, Λ > 0, Λ ≥ c,
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then the integral
T
C(T,c,Λ) f(s)x−s ds is convergent and its value does not

depend on T , c and Λ satisfying (11). Furthermore,

h0(x) =
1

2iπ

\
C(T,c,Λ)

fa,ν(s)x−s ds.

Proof. In this proof, we will write f for fa,ν .

Since the poles of the function fa,ν(αs + κ) are (−2n − κ)/α, n ∈ N, the
first part of the proposition follows from (6) and Lemma 4.1.

We define

g(x) :=
1

2iπ

\
C(T,c,Λ)

f(s)x−s ds.

If N is a positive integer such that N > 1
2(1 − ν), then

g(x) =
1

2iπ

\
C(T,−2N+1,Λ)

f(s)x−s ds.

We apply the residue theorem to the function f(s)x−s on the rectangle
R := [−2N + 1 − iT, Λ − iT, Λ + iT,−2N + 1 + iT ] to get

(12) g(x) =
1

2iπ

\
(−2N+1)

f(s)x−s ds +
N−1
∑

k=0

pkx
2k,

where

pk = Res(f(s)x−s,−2k) =

(

2

a

)−2k−ν (−1)k

k!Γ (ν + k + 1)
.

From Lemma 5.1, the integral KN (x) :=
T
(−2N+1) f(s)x−s ds tends to 0 as

N → ∞, uniformly for x in compact subsets of ]0,∞[. Letting N → ∞ in
(12), we get g(x) =

∑

m≥0 pmx2m = x−νJν(ax).

We shall use some primitive functions of h0 in the case ν > 0. To define
them, we use some properties of the cosine and sine functions.

Definition 5.2. Let a > 0 and ν ∈ R. For t ∈ R, we define

C(t) = cos(at − νπ/2 − π/4), S(t) = sin(at − νπ/2 − π/4)

and for x > 0 and R > −1/2,

CR(x) = −
∞\
x

√

2

π
C(t)

dt

(at)R+1/2
, SR(x) = −

∞\
x

√

2

π
S(t)

dt

(at)R+1/2
.

Using induction and partial integration, we establish the following

asymptotic expansions. For all n ∈ N and all R > −1/2, if γ
(R)
k :=
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Γ (R + k + 1/2)/Γ (R + 1/2) for k ∈ [0, n], then

CR(x) =
1

a

√

2

π

(

S(x)
n

∑

k=0

(−1)kγ
(R)
2k (ax)−R−2k−1/2(13)

+ C(x)
n−1
∑

k=0

(−1)k+1γ
(R)
2k+1(ax)−R−2k−3/2

)

+ O(x−R−2n−3/2),

and

SR(x) = − 1

a

√

2

π

(

C(x)

n
∑

k=0

(−1)kγ
(R)
2k (ax)−R−2k−1/2(14)

+ S(x)
n−1
∑

k=0

(−1)kγ
(R)
2k+1(ax)−R−2k−3/2

)

+ O(x−R−2n−3/2)

as x → ∞. The implicit constants only depend on R and n.
We can now deduce from (13) and (14) the following property.

Proposition-Definition 5.1. For ν > 0, we define by induction some

primitive of h0 of order n by setting

hn+1(x) = −
∞\
x

hn(t) dt.

These integrals are convergent and for all k ∈ N there exist complex se-

quences (c
(k)
l )l and (s

(k)
l )l such that for all M ∈ N, as x → ∞,

hk(x) =
M
∑

l=0

c
(k)
l C(x)x−l−ν−1/2 +

M
∑

l=0

s
(k)
l S(x)x−l−ν−1/2 + O(x−ν−M−3/2).

Proposition 5.2. Let k ∈ N and ν > 0. If 0 < c < ν and x > 0, then

hk(x) =
1

2iπ

c+i∞\
c−i∞

(−1)k Γ (s)

Γ (s + k)
f(s + k)x−s ds.

Proof. We first prove by induction on k that for all s ∈ C such that
0 < σ < ν + 1/2,

Mhk(s) = (−1)k Γ (s)

Γ (s + k)
f(s + k).

Then we use the inverse Mellin transform.

6. Expansion in a sum of hypergeometric functions. Let F ∈ S#

and E(x) be the associated error term as defined in (3). In order to es-
timate E(x), we define a smooth version of it. To go back to the initial
function, we shall use finite differences.
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Definition 6.1. For ̺ ∈ N, we define

A̺(x) =
1

̺!

∑′

n≤x

an(x − n)̺,

the prime indicating that the last term has to be multiplied by 1/2 if ̺ = 0
and x = n. We also define

S̺(x) =
1

2iπ

\
C

F (s)

s(s + 1) · · · (s + ̺)
xs+̺ ds,

where C is a curve enclosing all the singularities of the integrand, and

E̺(x) = A̺(x) − S̺(x).

Remark 6.1. S̺(x) is the sum of the residues of the integrand at its
poles −̺, −̺ + 1, . . . ,−1, 0 and 1, so we have

S̺(x) = x̺ Res

(

F (s)xs

s(s + 1) · · · (s + ̺)
, 1

)

+
1

̺!

∑̺

k=0

(−1)kF (−k)

(

̺

k

)

x̺−k.

The first step consists in finding an expansion of E̺(x) as a sum of
special functions.

Proposition 6.1. Let ̺ ∈ N
∗, ̺ > d/2. For all x > 0,

E̺(x) = ǫQ2̺+1
∑

n≥1

an

n1+̺
I̺

(

nx

Q2

)

where for ̺ ∈ Z, ̺ ≥ −1, the function I̺ is defined as

I̺(x) =
1

2iπ

\
C1

γ(s)

γ(1 − s)

x1+̺−sΓ (1 − s)

Γ (̺ + 2 − s)
ds

and C1 = C(T, c, Λ) with

(15) T > T0 := max

( |ℑξ|
d

,
r

max
j=1

|ℑµj|
λj

)

, c <
̺

d
+

1

2
, Λ > ̺ + 1.

Proof. If c > 1 and ̺ ≥ 1, then by a standard formula, we have

A̺(x) =
1

2iπ

\
ℜs=c

F (s)
xs+̺

s(s + 1) · · · (s + ̺)
ds,

so that, if g(s) = F (s)
s(s+1)···(s+̺) , then

E̺(x) =
1

2iπ

c+i∞\
c−i∞

g(s)xs+̺ ds − 1

2iπ

\
C

g(s)xs+̺ ds.

In view of Lemma 3.4, if σ<0 and |τ |≥1, then g(s) = O((1+|τ |)d(1/2−σ)−̺−1),
so that, if 1/2 − ̺/d < c′ < 0 (such a c′ exists if ̺ > d/2), Λ′ < −̺, T ′ > 0
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and C2 := ]c′ − i∞; c′ − iT ′; Λ′ − iT ′; Λ′ + iT ′; c′ + iT ′; c′ + i∞[, then the
integral

1

2iπ

\
C2

F (s)

s(s + 1) · · · (s + ̺)
xs+̺ ds

is convergent and by using the residue theorem between the lines σ = c
and C2, we get

E̺(x) =
1

2iπ

\
C2

F (s)

s(s + 1) · · · (s + ̺)
xs+̺ ds.

We change the variable s to 1 − z and apply the functional equation to
obtain

E̺(x) =
1

2iπ

\
C1

ǫQ2z−1F (z)

(1 − z)(−z) · · · (1 − z + ̺)
x1−z+̺ γ(z)

γ(1 − z)
dz

where C1 = C(T, c, Λ) with

T > 0, c <
̺

d
+

1

2
, Λ > ̺ + 1.

By Lemmas 3.2 and 4.1, for T > T0 = max(|ℑξ|/d, maxr
j=1 |ℑµj |/λj), 1 <

c < ̺/d + 1/2 and Λ > ̺ + 1, we get

E̺(x) = ǫQ2̺+1
∞

∑

n=1

an

n1+̺

1

2iπ

\
C1

γ(z)

γ(1 − z)

(nx/Q2)1+̺−z

(1 − z)(2 − z) · · · (1 + ̺ − z)
dz.

7. Study of the hypergeometric function I̺. We now study the
function I̺. Kaczorowski and Perelli have studied a very similar function
in [KP1] in order to describe functions of degree d = 1 in S#. Our work is
strongly influenced by theirs. This function is a particular case of the Fox
hypergeometric functions. These last functions have been studied in [Br].
We will study the particular function I̺ rather than extract the information
we need from the very long and dense article [Br]. In order to establish the
asymptotic expansion of I̺, we show that this function is closely related to
Bessel functions.

We shall use the notations defined in Section 3.1.

The function I̺ is closely related to the Mellin inverse transform of G̺.
We are going to approximate G̺ by functions whose inverse Mellin trans-
forms are known.

Recall that we have proved that

G̺(s) =
m

∑

k=0

Fk(s) + rm(s),
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with

Fk(s) =
(−1)kekf(αs + κ)

(αs + κ − k) · · · (αs + κ − 1)
, rm(s) = O(|τ |d(σ−1/2)−̺−m−2).

If T > T0, Λ > max(̺ + 1, (m −ℜκ)/d), c < 1/2 + ̺/d, c is not a pole
of rk and C1 = C(T, c, Λ) is the path as in Definition 4.1, then the integrals

Hk(x) :=
1

2iπ

\
C1

Fk(s)x
1+̺−s ds and Rk(x) :=

\
C1

rk(s)x
1+̺−s ds

are convergent. With these notations, for x > 0 and m ∈ N we have

(16) I̺(x) =
m

∑

k=0

Hk(x) + Rm(x).

To estimate Rm, we move the path of integration to the right so that the
integral remains convergent. By Lemma 4.1, for m ∈ N and ε > 0 we get

(17) Rm(x) = Oε(x
1/2+̺−(̺+m+1)/d+ε) as x → ∞.

Proposition 7.1. If T ≥ 1, Λ > max(0, c) and c < ν, then

Hk(x) =
ek

d2iπ
x1+̺+(κ−k)/d

\
C(T,c,Λ)

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)
(x1/d)−z dz.

Proof. By (6),

Fk(s) ≪ |τ |d(σ−1/2)−̺−k−1 as |τ | → ∞,

so if T > T0 := max(|ℑξ|/d, maxr
j=1 |ℑµj|/λj), c < (1/d)(̺ + k) + 1/2 and

Λ > max(̺ + 1, (k −ℜκ)/d), by Lemma 4.1, we have

Hk(x) =
1

2iπ

\
C(T,c,Λ)

Fk(s)x
1+̺−s ds

=
1

2iπ

\
C(T,c,Λ)

ekf(αs + κ)
(−1)kx1+̺−s

(αs + κ − k) · · · (αs + κ − 1)
ds.

We change the variable s to z = αs + κ − k to obtain

Hk(x) =
ek/d

2iπ
x1+̺+(κ−k)/d

\
C(T ′,c′,Λ′)

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)
(x1/d)−z dz

for any real T ′, c′ and Λ′ satisfying T ′ ≥ 1, Λ′ > max(0, c′) and c′ < ν.

We now establish a link between Hk and hk in case ν > 0, i.e. in case
̺ > −ℜκ − d/2.

Proposition 7.2. If ν > 0, then for x > 0 we have

Hk(x) =
ek

d
x1+̺+(κ−k)/dhk(x

1/d).
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Proof. By Proposition 7.1, we have

Hk(x) =
ek/d

2iπ
x1+̺+(κ−k)/d

\
C(T,c,Λ)

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)
(x1/d)−z dz.

By Lemma 4.1, since the real parts of the poles of the integrand are less
than 0, and since we have

∣

∣

∣

∣

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)

∣

∣

∣

∣

≍ |τ |σ−ν−1,

we can choose 0 < c = Λ < ν because ν > 0, and so

Hk(x) =
ek/d

2iπ
x1+̺+(κ−k)/d

c+i∞\
c−i∞

(−1)kf(z + k)

z(z + 1) · · · (z + k − 1)
(x1/d)−z dz

= δekx
1+̺+δ(κ−k)hk(x

1/d).

For k = 0 and ν ∈ R, we also have

(18) H0(x) =
e0

d
x1+̺+κ/dh0(x

1/d).

We shall now deduce from the link between I̺ and hk an asymptotic
expansion of I̺ in case ν > 0 and an asymptotic equivalent of I0 in case
ν ≤ 0.

Notation. We write

δ = 1/d, ω = 1 + ̺ + (κ − ν − 1/2)δ = (̺ + 1/2)(1 − δ) − iδℑξ.

Theorem 7.1. Assume ̺ > −1 − ℜξ − d/2 (i.e. ν > 0). There exist

complex sequences (δn)n and (δ′n)n such that for all m ∈ N and all ε > 0,
as x → ∞,

I̺(x) = eiaxδ
m

∑

n=0

δnxω−nδ + e−iaxδ
m

∑

n=0

δ′nxω−nδ + O(xℜω−(m+1/2)δ+ε).

Proof. By Proposition 7.2, (17) and (16), we have

I̺(x) =

m
∑

k=0

δekx
1+̺+(κ−k)δhk(x

δ) + O(x1/2+̺−(̺+m+1)δ+ε)

=
m

∑

k=0

δekx
1+̺+(κ−k)δhk(x

δ) + O(xℜω−δ(m+1/2)+ε).

Using the asymptotic expansion of hk (see Proposition-Definition 5.1) we
show that there exist complex sequences (δn)n and (δ′n)n such that for
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all m ∈ N,

I̺(x) = C(xδ)
m

∑

n=0

δnx1+̺+(κ−ν−n−1/2)δ + S(xδ)
m

∑

n=0

δ′nx1+̺+(κ−ν−n−1/2)δ

+ O(x1/2+̺−(̺+m+1)δ+ε)

so there exist complex sequences (ηn)n and (η′n)n such that for all m ∈ N,

I̺(x) = eiaxδ
m

∑

n=0

δnxω−nδ + e−iaxδ
m

∑

n=0

δ′nxω−nδ + O(xℜω−(m+1/2)δ+ε).

Proposition 7.3. Let ν ∈ R. Then

I0(x) = O(x(1−δ)/2) as x → ∞.

Proof. By (16)–(18), for all ε > 0 we have

I0(x) = δe0x
1+δκh0(x

δ) + Oε(x
1/2−δ+ε).

But h0(x) = O(x−ν−1/2) = O(x−ℜκ−d/2−1/2), so I0(x) = O(x(1−δ)/2) +

Oε(x
1/2−δ+ε). We choose 0 < ε < δ/2 to get the final result.

Proposition 7.4. If ̺ ∈ N, then the function I̺ has a ̺th derivative

and for all k ∈ N, k ≤ ̺, we have

I(k)
̺ (y) = I̺−k(y).

Proof. Assume that ̺ ∈ N and T , c and Λ satisfy (15). Then

I̺(x) =
1

2iπ

\
C(T,c,Λ)

G̺(s)x
1+̺−s ds.

We have
d

dx
(G̺(s)x

1+̺−s) = (1 + ̺ − s)G̺(s)x
̺−s

and the integral \
C(T,c,Λ)

(1 + ̺ − s)G̺(s)x
̺−s ds

is convergent uniformly for x in compact subsets of [0,∞[. So we have

I ′̺(x) =
1

2iπ

\
C(T,c,Λ)

(1 + ̺ − s)G̺(s)x
̺−s ds.

But (1 + ̺ − s)G̺(s) = G̺−1(s) so

I ′̺(x) =
1

2iπ

\
C(T,c,Λ)

G̺−1(s)x
̺−s ds.

Since T , c and Λ satisfy conditions (15) with ̺ − 1 instead of ̺, we have

I ′̺(x) = I̺−1(x).

An iteration gives the conclusion.
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8. Estimation of the error term

8.1. Estimation of the error term with Landau’s method. In this section
we shall prove Theorem 2.1. Let F ∈ S# be of degree d ≥ 2. Using arguments
similar to the one used in the proof of the Perron formula (see [T, Section I.2,
Theorem 1]), we prove that for all ε > 0, x ≥ 1 and T ≥ 1,

∑′

n≤x

an =
1

2iπ

1+ε+iT\
1+ε−iT

xsF (s)

s
ds + O

(

x1+ε
∞

∑

n=1
n 6=x

|an|
n1+ε(T |log(x/n)|)

)

+ O

( |ax|
T

)

=
1

2iπ

1+ε+iT\
1+ε−iT

xsF (s)

s
ds + O

(

x1+ε

T

)

+ O

( |ax|
T

)

,

where ax = 0 if x 6∈ N. Applying the residue theorem, we get

1

2iπ

1+ε+iT\
1+ε−iT

xsF (s)

s
ds = S(x) +

1

2iπ

−ε−iT\
1+ε−iT

xsF (s)

s
ds

+
1

2iπ

−ε+iT\
−ε−iT

xsF (s)

s
ds +

1

2iπ

1+ε+iT\
−ε+iT

xsF (s)

s
ds.

Let us estimate the horizontal integrals. If s = σ + iT with T ≥ 1 and
−ε ≤ σ ≤ 1 + ε, by Lemma 3.4 we have

xs

s
F (s) = O(T d(1+ε)/2−1(xT−d/2)σ),

and therefore,

1+ε±iT\
−ε±iT

xsF (s)

s
ds = O

(

T d(1+ε)/2−1

(

x1+ε

T d(1+ε)/2
+

x−ε

T−dε/2

))

= O

(

1

T
x1+ε

)

+ O(x−εT d(1+2ε)/2−1).

Now, let us estimate the vertical integral. Using the functional equation and
Lemma 3.2, we have

F (s) = ǫQ2s−1 γ(1 − s)

γ(s)
F (1 − s)

= ǫQ2s−1c(σ, τ)|τ |d(1/2−σ)ei(−dτ log |τ |+(log β+d)τ−ℑξ log |τ |)

× F (1 − s)(1 + O(1/|τ |)).
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So, for s = −ε + iτ , we have

F (s)
xs

s

= Ax−ε|τ |d(1/2+ε)−1
∑

n≥1

an

n1+ε
ei(−(dτ+ℑξ) log |τ |+(log βQ2x

n
+d)τ)(1 + O(1/|τ |)),

where A is a constant depending on ε and the sign of τ . We have

−ε+iT\
−ε−iT

F (s)
xs

s
ds

= A1x
−ε

∑

n≥1

an

n1+ε

T\
1/d

τd(1/2+ε)−1ei(−(dτ+ℑξ) log τ+(log βQ2x
n

+d)τ) dτ

+ A2x
−ε

∑

n≥1

an

n1+ε

T\
1/d

τd(1/2+ε)−1ei((dτ−ℑξ) log τ−(log βQ2x
n

+d)τ) dτ

+ O
(

x−ε
∑

n≥1

T\
1/d

τd(1/2+ε)−2 dτ
)

+ O(x−ε).

With u = dτ , we have

−ε+iT\
−ε−iT

F (s)
xs

s
ds

= B1x
−ε

∑

n≥1

an

n1+ε

dT\
1

ud(1/2+ε)−1ei(−(u+ℑξ) log u+(log d+log βQ2x
n

/d+1)u) du

+ B2x
−ε

∑

n≥1

an

n1+ε

dT\
1

ud(1/2+ε)−1ei((u−ℑξ) log u−(log βQ2x
n

/d+1+log d)u) du

+ O(x−εT d(1/2+ε)−1) + O(x−ε)

= B1x
−ε

∑

n≥1

an

n1+ε

dT\
1

ud(1/2+ε)−1ei(ϕ(u)−ℑξ log u) du

+ B2x
−ε

∑

n≥1

an

n1+ε

dT\
1

ud(1/2+ε)−1ei(−ϕ(u)−ℑξ log u) du

+ O(x−εT d(1/2+ε)−1) + O(x−ε)

with ϕ(u) = −u log u +
(

log βQ2x
n /d + 1 + log d

)

u.
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According to Hilfsatz 10 of [Lan], for U ≥ 1, δ ≥ 0 and w ∈ R we have

∣

∣

∣

U\
1

uδe±iu(log u−w) du
∣

∣

∣
< 23U1/2+δ.

Applying this lemma with δ = d(1/2+ε)−1 and w = log βQ2x
n /d+1+log d,

for U ≥ 1 and d ≥ 2 we get

U\
1

ud(1/2+ε)−1e±iϕ(u) du < 23Ud(1/2+ε)−1/2.

Therefore,

dT\
1

ud(1/2+ε)−1ei(±ϕ(u)−ℑξ log u) du = O(T d(1/2+ε)−1/2)

and so
−ε+iT\
−ε−iT

F (s)
xs

s
ds = O(x−εT d(1/2+ε)−1/2).

Finally, we have proved that if d ≥ 2, then
∑′

n≤x

an = S(x) + O

(

1

T
x1+ε

)

+ O(x−εT (d−1)/2+ε) + O

( |ax|
T

)

so with T = x(d+1)/2, since an = o(n1+ε), we have
∑′

n≤x

an = S(x) + O(x(d−1)/(d+1)+ε).

Remark 8.1. With a similar method combined with the van der Corput
method used instead of Hilfsatz 10, we could prove that for 1 ≤ d < 2, we
have the estimate E(x) = O(xd/4+ε).

8.2. Method used by Chandrasekharan and Narasimhan. We shall use
finite differences to establish a link between E(x) and its smooth version
E̺(x).

If ̺ is an integer, λ > 0 and 0 < ̺λ < x, the ̺th finite difference of the
real function f is defined as

∆̺
λf(x) =

∑̺

ν=0

(−1)̺−ν

(

̺

ν

)

f(x + λν).

By formula (8) of [CN2], we have

E(x) = E0(x) = λ−̺∆̺
λ(A̺(x) − S̺(x))(19)

+ O(λ logmF−1 x) + O
(

∑

x<n≤x+̺λ

|an|
)

.
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Notation. In case d > 1, we define λ(x) = x1−δ−η, where δ = 1/d and
η > 0, and choose a convenient η for each case.

Definition 8.1. We define

W (x) = ∆̺
λ(A̺(x) − S̺(x)), V (x) = E(x) − λ−̺W (x).

We assume d > 1. In order to estimate W (y), we shall use Proposi-
tion 6.1, the asymptotic expansion of I̺ and some properties of finite dif-
ferences. We follow the method used by Chandrasekharan and Narasimhan
in [CN1].

Notation. For all natural n, we write αn = n/Q2.

Since W (y) = ∆̺
λ(A̺(y) − S̺(y)), by Proposition 6.1, for ̺ > d/2 and

y > 0 we have

W (y) = αQ−1
∞

∑

n=1

an

α1+̺
n

∆̺
λI̺(αny).

We now estimate ∆̺
λI̺(y). Assume that ̺ ∈ N, λ > 0, y ∈ R and f has

a ̺th derivative on ]0,∞[. Then

∆̺
λf(y) =

y+λ\
y

t1+λ\
t1

· · ·
t̺−1+λ\

t̺−1

f (̺)(t̺) dt̺ · · · dt2dt1.

In particular,

|∆̺
λf(y)| ≤ λ̺ sup

y≤t≤y+̺λ
|f (̺)(t)|.

Applying this to I̺, by Proposition 7.4 we get

|∆̺
λI̺(y)| ≤ λ̺ sup

y≤t≤y+̺λ
|I0(t)|.

By Proposition 7.3, I0(x) = O(x(1−δ)/2) so if y ≥ λ̺, we have

(20) |∆̺
λI̺(y)| ≤ λ̺O(y(1−δ)/2).

On the other hand, by Theorem 7.1 we have

(21) |∆̺
λI̺(y)| = O(|I̺(y)|) = O(yℜω) = O(y(̺+1/2)(1−δ)).

For ̺ > d/2, z > 0 and y > 0, we have

W (y) = αQ−1
∞

∑

n=1

an

α1+̺
n

∆̺
λI̺(αny)(22)

= αQ−1
∑

αn≤z

an

α1+̺
n

∆̺
λI̺(αny) + αQ−1

∑

αn>z

an

α1+̺
n

∆̺
λI̺(αny).
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Using (20) in the first sum and (21) in the second one, we get

W (y)=O

(

∑

αn≤z

|an|
α1+̺

n

α̺
nλ̺(αny)(1−δ)/2

)

+O

(

∑

αn>z

|an|
α1+̺

n

(αny)(̺+1/2)(1−δ)

)

=O

(

∑

αn≤z

|an|
α

(1+δ)/2
n

λ̺y(1−δ)/2

)

+ O

(

∑

αn>z

|an|
α

̺δ+(1−δ)/2
n

y(̺+1/2)(1−δ)

)

.

If ̺ > (d + 1)/2, using the definition λ = y1−δ−η and choosing z = ydη, since
∑∞

n=1 |an|n−1−ε < ∞ for all ε > 0, we get

W (y) = O(z1+ε−(1+δ)/2y(̺+1/2)(1−δ)−̺η) + O(z1+ε−̺δ−δ/2y(̺+1/2)(1−δ))

for all ε > 0 and so

(23) W (y) = O(y(̺+1/2)(1−δ−η)+dη/2+ε).

We can now prove the result announced in Remark 2.1: for any function
F ∈ S# such that

∑

n≤x |an|2 ≪ n1+ε for all ε > 0 (also for functions of
degree d < 2), for any x ≥ 1 and any ε > 0, we have

E(x) = O(x(d−1)/(d+1)+ε).

Let F be such a function. By Cauchy’s inequality, we have

(24)
(

∑

y<n≤y+̺λ

|an|
)2

≤ ̺λ
(

∑

y<n≤y+̺λ

|an|2
)

≪ y2−δ−η+ε

for all ε > 0, so

(25) V (y) ≪ y1−(δ+η)/2+ε.

Since E(x) = V (x) + λ−̺W (x), by (25) and (23) we have, for all ε > 0,

E(x) = O(x(1−δ−η)/2+dη/2+ε) + O(x1−(δ+η)/2+ε).

We choose η = δ to get E(x) = O(x1−δ+ε).
If we assume that an = O(nε) for all ε > 0, then V (x) ≪ x1−δ−η+ε, so

by (23), for all ε > 0,

E(x) = O(x(1−δ−η)/2+dη/2+ε) + O(x1−(δ+η)/2+ε).

We choose η = (1 − δ)/(d + 1) to get E(x) = O(x(d−1)/(d+1)+ε).

9. Estimation of the mean square of the error term. We shall
now estimate the integral

Tx
0 |E(y)|2 dy and prove Theorem 2.2. Since the

estimate of Theorem 2.2 is obvious for functions of degree d ≤ 1 in S#, we
shall assume that F ∈ S# is of degree d > 1 and

∑

n≤x |an|2 ≪ x1+ε for all
ε > 0. We have

x\
1

|E(y)|2 dy ≤ 4max
(

x\
1

λ−2̺|W (y)|2 dy,

x\
1

|V (y)|2 dy
)

.
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9.1. Estimation of the second integral. As x → ∞, we have
x\
2

λ(y)2 log2mF−2 y dy =

x\
2

y2(1−δ−η) log2mF−2 y dy

≪ x3−2δ−2η log2mF−2 x + 1.

By (24), we have

x\
1

(

∑

y<n≤y+̺λ

|an|
)2

dy = O
(

x\
1

y1−δ−η
(

∑

y<n≤y+̺λ

|an|2
)

dy
)

= O
(

∑

1<n≤x+̺x1−δ−η

|an|2
n\

n−̺n1−δ−η

y1−δ−η dy
)

= O
(

∑

1<n≤x+̺x1−δ−η

|an|2n2(1−δ−η)
)

.

So, for all ε > 0, as x → ∞,
x\
1

(

∑

y<n≤y+̺λ

|an|
)2

dy = O((x + ̺x1−δ−η)2(1−δ−η)+1+ε)

= O(x3−2δ−2η+ε).

Finally, by (19), for all ε > 0, we have

(26)

x\
1

|V (y)|2 dy = O(x3−2δ−2η+ε + 1).

9.2. Estimation of the first integral. To estimate
Tx
1 λ−2̺|W (y)|2 dy, we

shall use Proposition 6.1, the asymptotic expansion of I̺ and some properties
of finite differences. We follow the method used by Chandrasekharan and
Narasimhan in [CN2].

By (22), for ̺ > d/2 and y > 0, we have

(27) |W (y)|2 = Q2
∞

∑

m=1

∞
∑

n=1

aman

(αmαn)1+̺
∆̺

λI̺(αmy)∆̺
λI̺(αny).

Definition 9.1. We write

W1(y) =
∞

∑

n=1

|an|2

α
2(1+̺)
n

|∆̺
λI̺(αny)|2,

W2(y) =
∑

n 6=m

aman

(αmαn)1+̺
∆̺

λI̺(αmy)∆̺
λI̺(αny).

We shall estimate
Tx
1 λ−2̺W1(y) dy and

Tx
1 λ−2̺W2(y) dy separately.
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9.2.1. Estimation of diagonal terms

Proposition 9.1. If ̺ ∈ N and x > 1, then
x\
1

λ−2̺W1(y) dy = O(x2−δ).

Proof. By (20), we have
x\
1

λ−2̺W1(y) dy =

x\
1

λ−2̺
∑

n≥1

|an|2|∆̺
λI̺(αny)|2

α
2(1+̺)
n

dy

=

x\
1

λ−2̺
∑

n≥1

|an|2(λ̺α̺
n(αny)(1−δ)/2)2

α
2(1+̺)
n

dy ≪
x\
1

∑

n≥1

|an|2
α1+δ

n

y1−δ dy.

For all ε > 0,
∑

αn≤x |an|2 = Oε(x
1+ε), so if ε < δ, then

∑

n≥1 |an|2/α1+δ
n

= Oδ(1). This proves
x\
1

∑

n≥1

|an|2
α1+δ

n

y1−δ dy = Oδ(x
2−δ).

9.2.2. Estimation of non-diagonal terms

Notation. We recall that

ω =

(

̺ +
1

2

)

(1 − δ) − iδℑξ, αn = n/Q2, a = dβδ.

Equation (27) shows that the estimation of the non-diagonal terms re-
duces to estimating the integral

x\
1

λ(y)−2̺∆̺
λI̺(αmy)∆̺

λI̺(αny) dy.

In view of the asymptotic expansion of I̺ given in Theorem 7.1, this estimate
is reduced to that of the integral

(28) U (b,c)
m,n (x) =

x\
1

λ(y)−2̺∆̺
λ(yωeibyδαδ

m)∆̺
λ(yωe−icyδαδ

n) dy,

where b and c are real numbers such that |b| = |c| = a.

Lemma 9.1. For δ < 1, ̺ ≥ 1, z > 1 and x > max(1, (2̺)1/(η+δ)), we

have

(29) U b,c
m,n(x) = O

(

1

αδ
m − αδ

n

)

x2(1−δ)(αmαn)δ̺ if αn < αm < z,

(30) U b,c
m,n(x) = O

(

αδ̺
n

αδ
m − αδ

n

)

x(̺+2)(1−δ)(1 + λxδ−1αδ
m)

if αn ≤ z < αm,
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(31) U b,c
m,n(x) = O

(

1

αδ
m − αδ

n

)

λ−2̺x(2̺+1)(1−δ)(x1−δ + λαδ
m)

if z < αn < αm.

Proof. In this proof, m and n are fixed so we do not always write them.
For b, c ∈ R \ {0} such that |b| = |c| and for y > 0, we define

Gb
m(y) = e−ibyδαδ

m∆̺
λ(yωeibyδαδ

m), Hb,c(y) = λ(y)−2̺y1−δGb
m(y)Gc

n(y),

so we have

U b,c
m,n(x) =

x\
1

λ(y)−2̺Gb
m(y)Gc

n(y)eiyδ(bαδ
m−cαδ

n) dy

=
1

iδ(bαδ
m − cαδ

n)

x\
1

Hb,c(y)
d

dy
(eiyδ(bαδ

m−cαδ
n)) dy,

and hence

(32) U b,c
m,n(x)

= O

(

1

|αδ
m − αδ

n|

)(

|Hb,c(x)| + |Hb,c(1)| +
x\
1

∣

∣

∣

∣

d

dy
Hb,c(y)

∣

∣

∣

∣

dy

)

.

We have

|Gb
m(y)| = |∆r

λ(eibyδαδ
myω)|,

∣

∣

∣

∣

d

dy
Gb

m(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

eibαδ
myδ d

dy
(e−ibαδ

myδ

∆̺
λ(yωeibαδ

myδ

))

∣

∣

∣

∣

,

and these two functions have been estimated by K. Chandrasekharan and
R. Narasimhan in [CN2] in case ω is real. In case ω ∈ C, the estimates and
their proofs are the same (see [dR1] for more details). We recall here their
results:

If y > max(1, (2̺)1/(η+δ)), we have

Gb
m(y) = O(yℜω),(33)

Gb
m(y) = yω∆̺

λ(eibαδ
myδ

) + O(λyℜω−1),(34)

Gb
m(y) = O(λ̺yℜω−̺(1−δ)αδ̺

m ),(35)

and

d

dy
Gb

m(y) = O(λαδ
myδ−2+ℜω) for ̺ ≥ 1,(36)

d

dy
Gb

m(y) = O(λ̺yℜω−̺(1−δ)−1αδ̺
m ).(37)
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Using λ′(y) = O(λ(y)/y), we get

(38)

∣

∣

∣

∣

d

dy
Hb,c(y)

∣

∣

∣

∣

= O(y−1Hb,c(y))

+ λ(y)−2̺y1−δO

(∣

∣

∣

∣

d

dy
Gb

m(y)

∣

∣

∣

∣

|Gc
n(y)| + |Gb

m(y)|
∣

∣

∣

∣

d

dy
Gc

n(y)

∣

∣

∣

∣

)

.

If αn < αm ≤ z, by (35) and (37) we have

Hb,c
k,l (y) = λ−2̺y1−δO(λ2̺y2ℜω−2̺(1−δ)(αmαn)δ̺)(39)

= O(y2(1−δ)(αmαn)δ̺),

and by (38),

d

dy
Hb,c(y) = O(λ−2̺y−δλ2̺y2ℜω−2̺(1−δ)(αmαn)δ̺)(40)

= O(y1−2δ(αmαn)δ̺).

By (39), (40) and (32), we get (29).

If αn ≤ z < αm, by (33) applied to Gb
m(y), (35) to Gc

n(y), (36) to
d
dyGb

m(y) and (37) to d
dyGc

n(y), we have

(41) Hb,c(y) = λ−2̺y1−δO(λ̺y2ℜω−̺(1−δ)αδ̺
n ) = O(λ−̺y(̺+2)(1−δ)αδ̺

n ),

and by (38),

(42)
d

dy
Hb,c(y) = O(λ−̺y2ℜω−(̺−1)(1−δ)−1αδ̺

n )

+ λ−2̺y1−δO(λyℜω−2+δαδ
mλ̺yℜω−̺(1−δ)αδ̺

n + yℜωλ̺yℜω−1−̺(1−δ)α̺δ
n )

= O(λ−̺y−δ+2ℜω−̺(1−δ)αδ̺
n ) + O(λ−̺+1y2ℜω−̺(1−δ)−1αδ

mαδ̺
n )

= O(λ−̺y(̺+1)(1−δ)−δαδ̺
n (1 + λyδ−1αδ

m)).

By (41), (42) and (32), we get (30).

If z < αn < αm, by (33) and (36), we have

(43) |Hb,c(y)| = λ−2̺y1−δO(y2ℜω) = O(λ−2̺y(2̺+2)(1−δ)),

and by (38),

d

dy
Hb,c(y) = O(λ−2̺y2ℜω−δ) + λ−2̺+1y2ℜω−1O(αδ

m + αδ
n),

so

(44)
d

dy
Hb,c(y) = O(λ−2̺y(2̺+1)(1−δ)−δ(1 + λyδ−1αδ

n)).

By (43), (44) and (32), we have (31).
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We can deduce from these estimates those of non-diagonal terms. The
proof is the same as in [CN2], we just recall here their conclusions.

Lemma 9.2. Assume that

W2(x) =
∑

m 6=n

bmbn

(αmαn)1+̺
∆̺

λI̺(αmy)∆̺
λI̺(αny),

I̺(x) ∼ eiaxδ
M
∑

ν=0

δνx
ω−νδ + e−iaxδ

M
∑

ν=0

δ′νx
ω−νδ,

and the estimates of Lemma 9.1 hold for the function

U (b,c)
m,n (x) =

x\
1

λ(y)−2̺∆̺
λ(yωeibyδαδ

m)∆̺
λ(yωe−icyδαδ

n) dy,

for all b, c ∈ R such that |b| = |c| = a. Then for all ε > 0, we have

x\
1

λ−2̺W2(y) dy = O(x2(1−δ)(xη(d−2)+ε + log x)).

9.3. Proof of Theorem 2.2. Under the hypothesis of Theorem 2.2, we
have

x\
1

λ−2̺|W (y)|2 dy = O(x2−δ) + O(x2(1−δ)(xη(d−2)+ε + log x))

and
x\
1

|V (y)|2 dy = O(x3−2δ−2η+ε).

Finally, for all η > 0, we have
x\
1

|E(y)|2 dy = O(x2−δ) + O(x2(1−δ)(xη(d−2)+ε + log x)) + O(x3−2δ−2η+ε).

If d < 2, then we let η → ∞ to obtain
x\
1

|E(y)|2 dy = O(x2−δ).

If d ≥ 2, then we choose η = δ to get
x\
1

|E(y)|2 dy = O(x2−δ) + O(x3−4δ+ε).

This ends the proof.

Estimates of Theorem 2.2 prove that for d < 4, the function E(x) belongs
to L2([0,∞[, dx/x2). We use this in [dR2]. The estimate we get in this last
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theorem is similar to the one obtained by Chandrasekharan and Narasimhan
in [CN2]. We intend to adapt the method used by Redmond in [R2] in order
to sharpen our result in the case d ≥ 4 and avoid the use of the hypothesis
∑

n≤x |an|2 ≪ x1+ε.
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