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Extreme values of symmetric power L-functions at 1
by

Y.-K. Lau (Hong Kong) and J. Wu (Nancy)

1. Introduction. The study of the extreme values of Dirichlet L-func-
tions at the point 1 has a long and rich history. Research on this topic
was originated with a paper of Littlewood [15] in 1928 and was pursued
by many authors (cf. [1], [2], [6], [7], [8], [23], [17] and [9]). A very good
historical account can be found in [9], where Granville & Soundararajan
made important progress on the distribution of the extreme values of L(1, x4)
for a real primitive character x4 of modulus |d|.

Among the family of L-functions attached to the automorphic cuspidal
representations for GL,,(Q) where n > 1, the Dirichlet L-functions consti-
tute only a small part corresponding to n = 1. The GLy class consists of
those L-functions associated to holomorphic cusp forms or Maass forms.
The symmetric mth power of a GLo L-function yields, under the Lang-
lands functoriality conjecture if m > 5, an automorphic GL,,+1 L-function
which is defined as an Euler product of degree m + 1 (and thus called an
L-function of degree m+ 1). The properties of these L-functions are of great
current interest and their values at 1 are recently delved. Luo [16] investi-
gated the case of symmetric square L-functions for Maass forms with large
eigenvalue. Royer [18, 19|, Habsieger & Royer [10], Royer & Wu [20] con-
sidered the first two symmetric power L-functions attached to holomorphic
cusp forms with large squarefree level (1) while Cogdell & Michel [3] and
Royer & Wu [21] considered all the symmetric power L-functions. Moreover,
Lau & Wu [14] studied similar problems in the weight aspect. In this paper
we shall further study the extreme values of symmetric power L-functions
at 1.

Let us introduce our notation. For a positive even integer k, we denote
by Hj (1) the set of all normalized Hecke primitive eigencuspforms of weight
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k for the modular group I'(1) = SLa(Z). It is a finite set with cardinality
(1.1) IH:(1)| = k/12 4+ O(1).

Here the normalization is such that the Fourier series expansion at the cusp
OO7

(1.2) ZAf nk=1)/2e2minz (I 2 > (),

has its first coefficient equal to one (i.e. A¢(1) = 1). Inherited from the Hecke
operators, the Fourier coefficient \(n) satisfies the relation

(1.3) Ap( dl%:n Af< >

for all integers m > 1 and n > 1. According to Deligne [4], for any prime
number p there is a (complex) number a¢(p) such that

(1.4) lag(p)] =1
and
(1.5) Ar(p") = ap(p)” + ap(p)" 2+ 4+ ap(p) ™

for all integers v > 1. Hence A¢(n) is a real multiplicative function of n.
Associated to each f € Hj (1), the symmetric mth power L-function (m €
N) is defined as

(1.6) L(s,sym™f) : H H (1 —ap(p)™2p=5)~1
p 0<j<m

for 0 > 1; here and throughout, o and 7 mean tacitly the real and imaginary
parts of s, i.e. s = o + i7. Multiplying out the Euler product, we see that it
admits a Dirichlet series representation

(1.7) L(s,sym™ Z Asymm £ (1

for o > 1, where Agymm ¢(n) is a multlphcatlve function. By (1.4) and (1.6),
we have for n > 1,

(1.8) g 1 ()] < Tt ().
As is customary, 7,41 (n) denotes the number of solutions in positive integers
N1,...,Nm+1 of the equation n = nj---nyy1. The case m = 1 in (1.8) is

commonly known as Deligne’s inequality. For m = 1,2, 3,4, the symmetric
power function L(s,sym™ f) can be analytically prolonged to C and satisfies
the functional equation

Loo(s, sym™ f)L(s,sym™ f) = (sym™ f) Loo(1 — 5, sym™ f)L(1 — s, sym™ f),
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where e(sym™ f) = +1 and Lo (s,sym™f) is the corresponding gamma fac-
tor (cf. [3, Section 1.1]).

In [14], Lau & Wu proved the following results on the extreme values
of L(1,sym™f) in the weight aspect. Let m = 1,2,3,4 and 2| k. For any
f € H;(1), under GRH for L(s,sym™f), we have
(L9) {1+ 0(1)}2B;, logy k)~ < L(1,sym™ f)

< {1+ o(1)}(2B;; logy k)™
as k — oo. In the opposite direction, it was shown unconditionally that there
are fi € Hj (1) such that for k — oo,
(1.10) L(1sym™ f7) = {1+ o(1)} (B, log, k)",
(1.11) L(1,sym™f,) < {14 o(1)}(B,, logy k).
Here (and throughout) log; denotes the j-fold iterated logarithm. The con-
stants At and B are exphcltly evaluated,

At =m+1, B} =¢ (m=1,2,3,4),

Ao = 1, Bz =¢e7¢(2)7! =1,3
(1.12) " e m= e ¢ )_2 (m=1,3),

A, =1, B, =¢€7¢(2)77,

Ay =5/4, L =e'B,

where ((s) is the Riemann zeta function, v denotes the Euler constant and
B}~ is a positive constant given by a rather complicated Euler product (cf.
[14, (1.16)]).

The results in (1.9)—(1.11) determine completely, at least under GRH,
the order of magnitude of L(1,sym™f). Then it is interesting and natural
to try to remove the assumption of GRH and close up the gap coming from
the factor 2. We shall prove an “almost all” result for this delicate problem,
which can be regarded as an analogue, in the higher degree L-function case,
of the results of Elliott ([6], [7]) and Montgomery & Vaughan [17] on Dirichlet
L-functions. It implies that the forms f satisfying (1.10) or (1.11) are rather
rare in the sense of having density zero.

In what follows we shall assume k to be any sufficiently large even integer
(but the parity will be repeatedly emphasized).

THEOREM 1.1. Fizm € {1,2,3,4}, 61,02 > 0 such that 1 — 20, — 602 > 0
and 03 € (0, min{1/260; — 1,1}]. Then fOT 2|k and z > (log, k)%, we have

oo LI o )’

for all but O(ke™ 2 ) forms f € Hi(1), where zp := min{z, (logk)*} and the
implied constants depend on 61,602 and 03 only.
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COROLLARY 1.2. Let € > 0 be an arbitrarily small positive number, m €
{1,2,3,4} and 2| k. Then there is a subset E} of Hj(1) such that

E}| < ke (ogk)"/?7®

and for each f € Hj (1)\E}, we have
{1+ O((log k) ™) }(By, logy k)~ < L(1,sym™f)
< {1+ O((log k) )} (B} logy k) ™.
The implied constants depend on € only.
REMARKS.

(i) These results can be generalized (with a little extra effort) to Hj (IV),
where N is squarefree and Hj(N) denotes the set of all normalized
Hecke primitive eigencuspforms of weight k& for the congruence sub-
group Ip(N). Our method can also be applied to establish similar
results in the level aspect for N squarefree and free of small prime
factors.

(i1) We consider the case 1 < m < 4 because the required properties of
the high symmetric power L-functions are only known in these cases.
Other higher degree cases will follow along the same lines when the
(expected) corresponding properties are established.

Our results above are analogues of Theorem 1 of [17] (see also [7]), where
the case L(1,xq) was investigated. However, their methods do not seem
to generalize directly to the symmetric power L-functions. Following their
approach, one can see that the key point of the proof is to study the large
sieve type inequality

(1.13) >

feH;(1)

Z Asymmf(p) 2

p

P<p<2P

But then two difficulties come up. First, Asymm ¢(n) is not completely mul-
tiplicative, and second, the instantaneously available (almost) orthogonality
property following from the large sieve result (developed in [5] for the level
case and in [14] for the weight) is not adequate. As was indicated by Cogdell
& Michel in [3, Section 1.3|, the second difficulty was relatively more seri-
ous. In order to get around it, we shall appeal to Petersson’s trace formula
with the observation Agymmy(n) = Ap(n™) for squarefree n. But then the
harmonic weight (in the trace formula) needs further treatment as a trivial
bound is not suitable for our purpose. To this end, we make use of (see (2.6)
below)
. k—l )\f(nQ) —14e
l="wr D == +0:("7),

12
n§k7/2
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where wy is the harmonic weight (see (2.5) below). However, only a short
initial section of the newly introduced sum is manageable by the Petersson
trace formula. The remaining part will be handled using an idea in [13,
Lemma 6] by means of the large sieve result in [14]. Clearly our result for
(1.13) (see the proposition below) is of independent interest and has other
applications which will be presented elsewhere.

2. A large sieve type inequality. This section is devoted to establish-
ing a large sieve type inequality, which will be our key tool for the proof of
Theorem 1.1. For 2|k, f € Hj (1), m e Nand 1 < P < Q < 2P, we consider
the sum

)\s m"™ (p)
Tsymmf(P’ Q) = Z #
ppq P

Our aim is to prove the following result, which gives a good control over the
tail part of the Dirichlet series representation of log L(1,sym™ f) for most
forms f.

ProOPOSITION 2.1. Let m € N be fized. Then
21) Y s (PQ)Y < K(logh)m 2183 Py ()220
feH; (1)
uniformly for
(2.2) 2|k, jeN, 1<PI<p/Ome2)  po@<ap,
where O(m) := (m+1)*+m~+7 and the implied constant depends on m only.

To prove it, we need a couple of preliminary lemmas.
Although the function Agymm ¢(n) is not completely multiplicative on N,
its restriction to the subset of squarefree integers is, and furthermore

(2:3) Ay () = ][ 2 @)™ = As(n™)
pln 0<j<m

for n squarefree, which follows immediately from (1.5)—(1.7). Thus we give
an upper estimate for |Tiymm (P, Q)% in terms of sums over squarefree
integers.

LEMMA 2.2. Let j € N, 2|k, m € Nand 1 < P < @ < 2P. For any
f e Hi(1), we have

‘Tsymmfuja Q)’zj
1

<im (.] log Q)(m+1)4 Z 3/2

na<Qi M2

Syt )

. ) ni
P7 /na<n1<Q7? /na
(nl,ng)zl
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where
(2.4) aj(n) =a;(n; P,Q) == {(p1,...,p;j) :p1---pj =n, P <p; <Q}.

The summations Zh and Zb run over squarefull (%) and squarefree integers,
respectively. The implied constant depends on m only.

Proof. Multiplying out the product Tyymm ¢(P, Q)?, we obtain a summa-
tion over integers in (P7,Q’]. As every integer n decomposes uniquely into a
product of coprime integers n = nins with n; squarefree and ny squarefull,
it then follows that

Tsymmf(P Q)J

= 3 T )Y ) 2272,

n2<Q] 2 pv [In2 Pj/n2<n1§Qj/n2
(nl,ng):1

Next we remove the products of Agymm ¢(p) over squarefull integers by the
Cauchy-Schwarz inequality and (1.8):

|Tsymmf(P Q) |2j

(m + 1)22() B 1 b aj(ning) ?
< Z 1/2 > n > )‘syme(nl)T
n<QJ na<Qi %2 Pi [na<ni1<Q7 /ng
(nl,ng):l

Here {2(n) denotes the number of prime factors of n counted with multi-
plicity. Consequently, we get our result with (2.3) and the estimate below
obtained by Rankin’s trick

s (m + 1)2.(2(n) (m + ].)4 1 (m+1)4

n<x p<lz
(see the proofs of Theorems I1.1.2 & I1.1.13 in [22] for paradigms). =

In view of Lemma 2.2, we invoke naturally the Petersson trace formula
to prove our proposition. However, the summation on the left side of (2.1)
runs over f € Hj (1) without the harmonic weight
I'k—-1 12¢(2
(2.5) wr = (k;—l ) = ¢2) S
(@m)5=HIfI - (k= 1L, sym?f)
(See [11, §2] for the last equality.) We borrow the technique of [13|. The
underlying principle is built on approximating the factor L(1,sym?f) with
a finite Dirichlet series.

(?) An integer n is called squarefull if p|n = p*|n.
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LEMMA 2.3. Let 2 ] k, fe H*(l) and y > 1. For any fized € > 0, we have
L(Lsym*f) = ((2) Y Ap(n®)n~ + O (k5 (k¥ *y~ 12 + k1)),
n<ly
The implied constant depends on € only.
Proof. For ¢ > 1, we have
L(s,sym® f) = ((25) Y As(n?
n>1

Applying the Perron formula ([22, Corollary I1.2.1] with B(x) = 2z and
a = 3), we deduce that

1/log y+ik

Ap(n?) 1 L(1+ s,sym*f) y° -1 -1
—_—t = — - —ds+ O ((ky)°(k .
Z n 27i S , ¢(2+ 2s) s ((ky) (k™" +y70)
n<y 1/log y—ik

By moving the segment of integration to 0 = —1/2 + ¢ and using the con-

vexity bound for L(s,symf) (see [14, Proposition .1]):
L(Sasym2f) <. (k‘ + |7_’) max{O 1— 0}+5
it follows that

Z )\fgln2) _ L(l’gs(};I;IQf) FO.((ky)F (k) + K34y -1/2y).

which is equivalent to the required result. =

Taking y = k7/2 and using the bound w; < (log k)/k (cf. [11]), Lemma 2.3
with (2.5) gives

_ k-1 )‘f(nQ) —1+4e

n<y

n<y

As mentioned in the introduction, the (short enough) initial section of the
sum in (2.6) is under control of the Petersson trace formula. For the remain-
ing part, we apply an idea in [13] to deduce that this part is small on average
in virtue of the large sieve result developed in [14]. Define
>, M’
r<n<ly

Below we give the analogues of Lemmas 4 and 3 in [13], where the sum
> Agm2g(n)n~t is used instead but it seems that our choice will lead to
simpler manipulations.

LEMMA 2.4. Leti>1, 2|k and f € Hj(1). Then
(2.7) = 3 A ci(d, E),

ri<dl<y?
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where ¢;(d,€) = 0 unless d = d’d* with d° squarefree and d* squarefull such
that d’ | and (d°,d*) = 1. Furthermore,

(2.8) lci(d, €)| < 7(dl)Ti—1(d),
where T;(-) is the divisor function defined as in (1.8).

Proof. We proceed by induction on 4. The case of i = 1 is trivial since
we have ¢;(1,£) = 1 and ¢;1(d,¢) = 0 for d > 2. Assume that (2.7) holds for
i as claimed. Thus by (1.3) we have

segyt= Y Ly adh s Af<<€n§fl>2>

T<ni+1<y o+l Ti<dl<y! di|(£n41)2
Ar(43)
= i11(do, £
> dolo ci+1(do, lo)

witl <dglo<yi+l
with

Ci+1(d07£0) = Z Z Z Ci(d, 2)

T<ni11<Y 2t <dl<y® di|(€n41)?
€n;p1=d;fo, do=dd;

We write uniquely dy as a product djdj of coprime integers with d)

squarefree and djj squarefull. We claim that
civ1(do, lo) #0 = dj| .

Let d) = d'd} with d' || d and d} || d; (}). Then, (d',d;) = (d},d) = 1 as d) || dd;
and dl(’) is squarefree. Since d; | (¢,n;11)? and ¢n; 1 = d;{g, we have d; |y (by
noting d; || d;). On the other hand, by the induction hypothesis we see that
ci(d,€) # 0 implies d' | ¢, thus d' | £ for (d',d;) = 1. This implies dJ |y as
db = d'd} is squarefree.

It remains to verify (2.8), which is an immediate consequence of the
formula

c(d0):= > > > > 1.

T<N1,..ni <Y di|(n1,n2)? do|(nina/di,ns)? di—1|(n1ni—1/d1-di—2,n;)?
dZ:nlm d:dl"'di—l

This completes the proof of Lemma 2.4. u
LEMMA 2.5. For any A > 0, € > 0 and integer i > 1, we have
(2.9) Z w}(w,y)zi LA k°
feHg(1)
uniformly for 2|k and k® < z* < y* < k4.

(®) The notation d||n means that v,(d) = wv,(n) for all p|d, where v,(n) is the
exponent of p in the canonical factorization of n.
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Proof. The main ingredients of the proof are Lemma 2.4 and the following
large sieve type inequality: Suppose a(n) <. n~1*¢ for any € > 0. Then

(2.10) 3 ] S a ( <. (KL)*(1 + k720712
fEHI(1) L<(<2L

uniformly for 2|k and L > 1.
The inequality (2.10) is a consequence of the relation

(2.11) M%) =" Agymzp(d)u(n),

dn?=¢
where u(n) is the Mobius function, and the large sieve inequality in [14,
Proposition 4.1] with m = 2: For any € > 0 we have

S| bedmes(e ( <o k(L + B2V 3 [y 2
felz (1) (<L <L

uniformly for 2|k, L > 1 and {b;}1</<1 C C.
From (2.11), we write the inner sum in (2.10) as

> DA = Aymap(d > w(n)a(dn?)
L<¢<2L d<2L A /L/d<n§\ /2L/d

and apply the large sieve inequality to the right side. Then (2.10) follows
because the condition a(n) < n=!¢ yields

2
S \ 3 ]a(an)\‘ < L1,
d<2L | /LJd<n<.\/2L/d
Now we prove (2.9). Firstly, we divide the sum in (2.7) dyadically:

Glea= Y > el

j<(logy?)/log2 i /2i+1<(<yi/2i

where

G = % #

279 <d<2it!
zt [l<d<y'/t

Then, by the Cauchy—Schwarz inequality, we obtain

(2.12) Z wi(z, y)*

feHE(1)

<4 (logk) Z Z

j<(logy?)/log2 fEH (1)

N2
PO ég) :

@i 25+ <<y /29
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From (2.8) and 7;(d¢) < 7;(d)7;(¢), we have

1 7;(d*)?

dle 29 /d<d*<2i+1/d

By the Rankin trick again, it is easy to see that

()2 ,
Zh mild)” o (log t)%®
= Vd

with (i) := ((i + 1)i/2)?, and hence
c;(0) < 7:(0)37(£)279/2(log 27) (0.
From (2.12) and (2.10) with a(¢) = 27/2(log 27)~%@¢;(¢) /¢, we infer that

> wila,y)?

FeH; (1)

<<A,5 i Z Z

J<<logk feH*
Caci kD 2*1{1+k5/2(x"2*j*1)*1/2} <A k°
j<logk

fork‘r’gxigyigk:A.-

21/2(1og 20) =00 ¢ (¢ 2

@t /291 <0<yt /27

Now we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. By Lemma 2.2 and (2.6), we deduce that

(213) D [Tymms (P Q)Y
feH;(1)

3/2
na<Qi M2

<m <1ng)(m+l)4 (k: Zh | M (n2)| —|—O(R)>,

Sy S

. . ni
P7 /na<n1<@Q? /n2
(nl,ng):l

n2
M (ng) := Z wfz/\fgl )

feH; (1) n<y

with y = £7/2, and

(2.14) R:=k71* Z“ 31/2 >

n2<Q@QJ Ny fEH;;(l)

S gy n)

PJ /nao<ni<Q7 /no
(n1,m2)=1
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) o1 7(n™) 2 )
12k — AN, 12p.€
<Y om0 X ) <y

na<QJ o Pi/no<n<Qi/ng
by the Deligne inequality, (1.1) and the trivial estimate for (2.4),
(2.15) aj(n) < gl

The remaining task is to estimate M (n2). We square out the innermost
sum in M (ng) and explore the cancellation through the Petersson trace for-
mula. But this approach is only effective for small n, hence we split M (ng)
into two parts,

(2.16) M(ng) = Sy + Sz

according to n < z and x < n < y respectively where 2 = k!/2. The second
term S, is handled by Lemma 2.5, as follows.

From the estimate wy < (log k)/k, the Deligne inequality and (2.15), we
have

2
Sew < K 0gk) > i@yl (3 Y et
feH; (1) n<QJ

< (j1)%k (log k)P > Jwi(z,y)l.
feng (1)

Applying Holder’s inequality and Lemma 2.5 with ¢ = 10, we deduce that

Sew < GO (Y > wiwy)®)

feH;(1) feH; (1)

19/20 1/20

< (j!)2k71/20+€.

Now we treat S; by the Petersson trace formula (see [12, Corollary 2.10])
3" wpAp(@)As(b) = 8(a,b) + O(k=5/%(ab)/*75((a, b)) log(2ab)),
feH; (1)

where d(a,b) is the Kronecker delta and the implied constant is absolute.
Squaring out and using (1.3) and (2.15), we obtain

. 1 b b 1

n<x PI/na<ni,n|<QI/n2

x> D> wpdp(n®)Ag (%ﬂ)‘

d|(na1,my)™ " fEHE(1)

Let us write n; = d¢ and n} = d¢’ where d = (ny,n}). Then d, ¢ and ¢’ are
squarefree and pairwise coprime for squarefree n; and n). Therefore,
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(2'17) Z Z Z d2€€l

P Jng<dl,dt' <Q7 /ny

(0,0))=1
1 (d%ee")
X Z Zﬁ Z wrAp(n ))\f<d— .
di|dmn<z ! femz(1) !
The Petersson trace formula shows that the sum over f € Hj (1) equals

(dQEE’)m/4n1/2

2 INmM( gm 2
5(n?, (¢€)™(d™ /dy) )+0< s

m3(n?) log k) :

Clearly for dy |d™ and squarefree integers ¢ and ¢’ with (¢,¢") = 1, we have
— (Y (A" fdy)? = 00(d™ dy) .
Thus after summing over n, the é-symbol contributes
m 1 dy 1 log k
;} §(n2, (L0)™(d™ /dy)?) < wd_mngm/ézg(;lm/dl)ﬁ < g%,,
while the O-term produces a term trivially bounded by

IOg k Qj(m/2+2)
Y2 k5/6 Z

< (log k)%ed
n<x

in view of our choices of x, j and Q.
Inserting these estimates into (2.17), it follows that

Sy < ( logk: Z Z Z d%’

Pi /n2<d€ ' <QI /ng

" 2
< ()2(ogk)® S 7(32)< ) ﬁ%)

d<QI /n2 Pi/dne<t<QI /dna
2
6 TL2 b m
< (j12(logk) 5 > r(dm).
d<Q7/na

Together with the estimates of S, and (2.17), we get an upper bound for
M(ng)Z
n3 b
M(ns) < ()2 (logk)® 2 57 7(d") + ()220
d<Qi /nz
In view of (2.13), we need to evaluate the following sum over squarefull
integers:

Z 1/2 Z T(d™) < Q’(log k)™ Z n~1? <« Q7 (log k)™ !

n<Qi  d<Qi/n n<Q
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as there are O(v/t) squarefull integers less than ¢ and
Z 7(d™) < t(logt)™
d<t
Together with (2.13) and (2.14), we conclude that
D" [Ty p(P.Q)P < klog k) ™D T (12 QTP o (1)K,
feHi (1)
which gives our desired result, by Stirling’s formula and Q < 2P. =

3. Proof of Theorem 1.1. Let m € N, 2|k and f € Hj(1). We have
o
3.1 log L mpy = o Zsymn A
(3.1) og L(s,sym™ f) = > =% oxn

n=1

(c>1),

where

(3:2)  Asymms(n)

_ { [y (p)™ + ay(p)™ 2 + - 4 ap(p) ™ ]logp if n=p,
0 otherwise.
Apparently |Agmmf(n)| < (m 4+ 1)logn for n > 1. To prove our theorem,
we shall show that for almost all f, log L(1,sym™f) is well approximated
by a short partial sum over primes. Actually, log L(1,sym™ f) has a good
approximation by a partial sum of moderate length when L(s,sym™ f) has
a bigger zero-free region, which is available for most f € Hj(1).
As in [14], for each n € (0,1/100], we define

(3.3) H; (Lim):={f e H;(1): L(s,sym™f) # 0 for s € S},

k,sym™

where S :={s:0>1-n, \T! < 100k"}U{3 :0 > 1}, and

According to (1.11) of [14], we have
(3.5) Hy aymm (13 1)] < K217,

For f € H;Symm(l; 1), we have the following result.

LEMMA 3.1. Fiz n € (0,1/100] and 6o € (0,1] and let m € {1,2,3,4}.
Let 2|k and z = exp{[(logk)/7(m+4)]%}. Then for any f € H; symm (137),
we have

ar(p)™ P\ 1
log L(1,sym™ Z Z log< +O0| 5 |-
p<zx 0<j<m p (lOg k) 0

The implied constant depends on &, n and m only.
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Proof. Let f € H;(1), T > 1 and & > 1. By the Perron formula (][22,
Corollary 11.2.1] with B(z) = 1 and a = 1), we have

( ) 1 1/log x+iT 8
Z Asymm 5 (n) — S log L(s+ 1,sym™ f) — ds
nlogn  2mi , S
2<n<z 1/log z—iT
log(Tz) 1
0 - .
* < T * x
Once f € Hk symm( ;m), we have the upper estimate
(3.6) log L(s,sym™ f) <, log k

uniformly for ¢ > 1 — 45 and |7| < (logk)*". This is a particular case of
Proposition 3.5 of [14] (with a = 1n).

Now for f € stymm(l;n), we move the line of integration to o = —in
and estimate log L(s + 1,sym” f) by (3.6) over the contour. We see that

(37) Z Asymmf(n)

nlogn
2<n<zx &

= log L(1,sym™f) + O (log(kTw) . (logk)(log 7) >

T xn/4
m 1

by taking the parameters T = (log k)*/" and z = exp{[(logk)/7(m + 4)]%}.
On the other hand, we have

sym™ As m’ ( l/)
(38) Z ;logfn Z Z Vo ]’)j

Y lo
2<n<zx p<zv<(logz)/logp p &P

-y 3 ay(p)tm=2

- vpY
p<z 0<j<mv<(log z)/log p
m—2j -1 1
-2 ¥ (e -5—) +o(3)}
D x
p<z 0<j<m
Combining (3.7) and (3.8), we get the required result. m
The size of x given in Lemma 3.1, even though being quite small, is still
insufficient for our purpose. Making use of the proposition to remove the

“exceptional forms”, we are able to further reduce its size in the next two
lemmas.

LEMMA 3.2. Fizm € N and 01,92 > 0 such that 61 —d2 —2 > 0. Suppose
that
(3.9) 2|k and (log k)51 <pP<Q<2P< o 14/15(m+4)
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Then

(3'10) ‘Tsymmf(Pv Q)‘ < !

(log k)
for all but Og, 5, m(k1=%) forms f € Hi (1), where
0o := (61 — 62 — 2)/10(m + 4)61 > 0.
Proof. Define

(3.11) EL(P,Q) := {f € Hi(1) : (3.10) fails}.
We shall use Proposition 2.1 with the choices
log k 1
S Y A
- [C logP] LIl ey

to count |EL (P,Q)|. Plainly we have
U/ GmH12) < pi o (9p) < fT/(Om+24)
by (3.9), whence the proposition is applicable. It follows that
(3.12) |EL (P, Q)| < k((log k)?(m) 21108 p=i 4 (211087} =1/21) (1og k)2%27
On the other hand, the lower bound for P in (3.9) yields
—jlog P+ j(2logj + d21ogy k) + 6(m) logy k
< —c'logk + (' (log k) /log P + 1)(2 + d2) logy k + 0(m) log, k
< —d{(8) — 09 — 2)/61} logk + (0(m) + 2 + §2) logy k
< —1{(61— 62— 2)/61} log k
and
— - logk + j(2log j + 62 logy k)
< —3logk + (<(logk)/log P + 1)(2 + 62) logy k
—(55 — d(2+62)/61) logk + (2 + 62) logy k
—2(& = d(2+62)/61) log k.

Inserting these two estimates into (3.12) and noticing 5 — ¢/(2 + 02) /61 >
(61 — 62 — 2) /1, we get the desired result. This completes the proof. =

IN

IN

LEMMA 3.3. Fizm € N and 03,64 > 0 such that 1—203—3d4 > 0. Suppose
that

(3.13) 2|k and (logy k)'/* < P < Q < 2P < (clogh)"/%,
where ¢ = (1 — 203 — 04)/24(m + 4)(0(m) + 2) > 0. Then
(314) |Tsymmf(P7 Q)| < P

for all but 053754,m(k6_(0(m)+2)P63) forms f € Hi(1).
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Proof. The argument is similar to Lemma 3.2. Define
(3.15) E2(P,Q) := {f € H(1) : (3.14) fails}.
This time we apply Proposition 2.1 with another choice of parameters:

= o P93 1 . 29(m) +4
logP ’ ’ 1—253—54‘

By (3.13), it is easy to verify that eCP% < pio< p2e¢ = gl/6(mt+4) <
k7/(6m+24)  Thyg we deduce by the proposition that

(3.16)  |E2,(P,Q)| < k((logk)?(m)e2ilosi p=i | ¢2ilogj},—1/21) p204j
Now, in view of our choices of ¢’ and ¢, we have
— (1 —=0d4)jlog P +2jlogj+ 0(m)logy k
< —(1 = 84) P% + 2(¢'P% Jlog P + 1)d3log P + 0(m) log, k
< —d(1 =265 — 84)P% + (B(m) + 2) log, k
< —3d(1 - 255 — 04) P
by the lower bound for P in (3.13), and
— - logk + j(2log j + 64 1og P)
< —s-logk + (' P% [log P + 1)(265 + 64) log P

—o-log k + 2¢/ (283 + 64) P9
2%6 — 2 (203 + (54))P63
< —%C,(l — 203 — 54)P63

<
< —

by the upper bound in (3.13). We get the required result by these two esti-
mates and (3.16). This completes the proof. m

Now we finish the proof of Theorem 1.1. Fix n € (0,1/100] and §y € (0, 1]
and let m € {1,2,3,4}. Take ¢; (1 <i < 4) such that

1/91>51>2/(1—92), 52:250:203, 53:01, 54:02.

It is easy to verify that d; and d3 fulfill the conditions in Lemmas 2.4 and
2.5 respectively, and 1/d3 > d;. Define

z = exp{[(logk)/T(m +4)]°},  y1:= (logk)™, 2 := (logy k)"/".
Then we consider the following three cases according to the size of z.

1° The case z > x. The required formula follows immediately from
Lemma 3.1 with a better upper bound O(k3!") for the exceptional set in
view of (3.5).
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2° The case y1 <z<xz. By Lemma 3.1 with x=exp{[(log k)/7(m+4)]%},
we can write

(3.17)  log L(1,sym™f)
( )m 25\ —1 1 i
_ I;Oggmlog(l - 7> + O<W> Ry (sym™ )

for any f € Hf symm (137), where

Risym™f)=— 3 % log( (;m ZJ).

2<p<lz 0<j<m

This case will be done if we show that R;(sym™ f) is negligible apart from
a small exceptional set of f. Clearly,

o= X (P20 (1)

z<p<a
)
z<p<a p z
Define
P =212 Q;:=min{2'z,z}, E} =H, symm (1577) U U EL (P, Q)),

i<Llogx
where EL (P;, Q;) is defined as in (3.11). According to Lemma 3.2, we have
ELI < K 3 [EL(PLQ))] < (log k!
i<<log x
and for f ¢ EL
1
Ri(sym™f) < 3 Ty (P Q)] + 5 <
i<Klogx
Inserting this into (3.17), we find that for f ¢ EL

(3.18) log L(1,sym™ Z Z log(l - u)_l

p<z0<j<m

o 1 1
PO\ loghymto et 3 )

which will give the required result.

(log k)%2—% 2

3° The case yo < z < y1. We truncate the tail as in (3.17), and use the
estimate of the second case. Thus it remains to evaluate

Ry f)i=— 3 3 g1 - A 2").

2<p<ly1 0<j<m
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Let us take
P =271z Q,:= mln{2 2,91}, E =H, symm (Lim)u U E2 (P, Q).
1<logy k

By Lemma 3.3, we have

B2 | < K31 4 ke~ O+ 150 b « fpe=0(m)="

and
1
(3.19) Rg(symmf) < Z ‘Tsymmf<Pi7 Qz)‘ + ;
i<logy k
1 1
« 3 gmled
1<logy k

for all f ¢ EZ2,.
Finally, define Ej, := El UE2. Then we have

6(m)z% )

|E| < ke
In view of (3.19) and (3.18), we derive that

m—25\ —1
(3.20) log L(1,sym™ f Z Z log(l—L>

p<z0<5<m

1 1
o ( (log k)% - ZT‘*)

for f € Hj (1)\Ej}, where 65 := min{dg, 01, 2 — do}. Obviously this is equiv-
alent to our required result. The proof of Theorem 1.1 is thus complete. =
4. Proof of Corollary 1.2. By Theorem 1.1 with the choice of
z=logk, 61=1/2—¢, 0y3=05=c¢,
there is a subset E; of Hj (1) such that |Ej| < ke~ (108 k)27 and

s -{vo(g LI (-9

p<z0<5<m

for each f € Hy(1)\Ej. In view of (1.4) and the prime number theorem, it
follows that

L(1,sym™f) < {1 +o<m)} I <1 - %>—(m+1)

p<z

= {1 +0 <®> }(eV logy k)1
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for all f € H;(1)\E;. This proves the upper bound result in Corollary 1.2
and one can treat the lower bound in the same way. =
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