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1. Introduction. Throughout this paper we will consider only commu-
tative rings. First of all we fix some notations which we will use consistently.
P denotes the set of all prime numbers in N∗ = N\{0}. For an abelian group
G with a multiplicatively written operation and a prime number p we denote
by G[p∞] := {x ∈ G : xpk

= 1, k ≥ 1} the p-primary component and by
G[p] := {x ∈ G : xp = 1} the p-socle of G. The order of G is denoted by |G|
or ord(G) and its exponent by exp(G). The order of an element x of a group
is denoted by ordx (∈ N). We write A× for the group of units of a ring A
and µn(A) := {x ∈ A× : xn = 1} for the group of nth roots of unity in A,
n ∈ N∗. For a field K the group µn(K) ⊆ K× is cyclic. By ζn we always
denote a primitive root of unity in K×, i.e. a root of unity of order n. If
K = C, we denote by ζn the standard root of unity exp(2πi/n). If K ⊆ L is
an extension of fields we simply write L|K and denote by [L : K] := dimK L
the degree of L over K. The Galois group AutK-alg L of L|K is denoted by
G(L|K).

In this paper A denotes always a base ring, which is not the zero ring,
and D denotes an abelian group with additively written operation.

Definition 1.1. Let B =
⊕

d∈D Bd be a D-graded A-algebra. Then we
call B unitarily D-graded if B0 = A and B×

d := Bd ∩ B× 6= ∅ for every
d ∈ D.

For a unitarily D-graded A-algebra B =
⊕

d∈D Bd every homogeneous
component Bd, d ∈ D, is obviously a free A-module of rank one. (Notice
that in the unitarily graded case BdBe = Bd+e holds for d, e ∈ D. Hence,
unitarily graded algebras are strongly graded algebras in the sense of [3].)
In particular, a unitarily D-graded A-algebra is a free A-algebra.

Let x ∈ B×
d . Then x−1 ∈ B−d, B

×
d = A×x, and x is transcendental

over A if d ∈ D is not a torsion element, and algebraic over A with minimal
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polynomial Xord d − xord d else. In particular, a unitarily graded A-algebra
B is integral over A if and only if its grading group is a torsion group.

If D′ ⊆ D is a subgroup of D then BD′ :=
⊕

d∈D′ Bd is obviously a uni-
tarily D′-graded A-subalgebra of B. Moreover, B is unitarily D/D′-graded
over BD′ with homogeneous components Bd+D′ =

∑
d′∈D′ Bd+d′ = BdBD′

and B×
d+D′ = B×

d B
×
D′ . Conversely, if C ⊆ B is an A-subalgebra of B then

one easily checks that DC := {d ∈ D : B×
d ∩ C× 6= ∅} is a subgroup of D.

If B is unitarilyD-graded and D = D1×D2 with subgroups D1, D2 ⊆ D,
then the canonical homomorphism BD1

⊗A BD2
→ B = BD is an isomor-

phism of D-graded rings. If B and B′ are unitarily D- and D′-graded respec-
tively then B⊗AB

′ =
⊕

(d,d′)∈D×D′ Bd⊗ABd′ is a unitary (D×D′)-grading

of B ⊗A B
′.

Let B be a unitarily D-graded A-algebra and A→ A′ a ring homomor-
phism. Then B′ := B ⊗A A

′ is a unitarily D-graded A′-algebra.

Example 1.2. The A-algebra A[X]/(Xn − a), a ∈ A×, has a natural
unitary Zn-grading. Hence,

A[X1, . . . , Xr]/(X
n1

1 − a1, . . . , X
nr
r − ar) =

r⊗

j=1

A[Xj]/(X
nj

j − aj),

a1, . . . , ar ∈ A×, has a natural unitary (
∏r

j=1 Znj
)-grading. Since any finite

abelian group is a direct sum of cyclic groups every finite unitarily graded

A-algebra is, up to (graded ) isomorphism, of this type.

Example 1.3. The group algebra A[D] =
⊕

d∈D AT
d is obviously a

unitarily D-graded A-algebra.

We denote by hB× the homogeneous units of a graded ring B, which
is obviously a subgroup of B×. Two unitary gradings are by definition es-

sentially the same if their groups of homogeneous units coincide. The map
deg : hB× → D, which maps an element xd ∈ B×

d to its degree d, is a homo-
morphism of abelian groups. By definition of a unitarilyD-graded A-algebra
we get the following:

Proposition 1.4. Let B be a unitarily D-graded A-algebra. Then

1→ A× → hB× deg−→ D → 0

is an exact sequence of abelian groups. Especially , there is a canonical iso-

morphism D ∼= hB×/A×.

In view of Proposition 1.4, we often identify the groups D and hB×/A×,
but continue to write the operation in D additively.

For an abelian group U containing A×, we construct a universal unitarily
U/A×-graded A-algebra in the following way: We denote U/A× by D and
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write d ∈ D for a class A×x. We choose a system xd ∈ U of representatives
for the elements d = A×xd ∈ D = U/A× and consider the free A-module

A〈U〉 :=
⊕

d∈D

Axd

with A-basis xd, d ∈ D. The product xdxe for d, e ∈ D is given by the
multiplication in U , i.e. xdxe = ad,exd+e with ad,e ∈ A×. It is obvious
that A〈U〉 is a unitarily D-graded A-algebra and that U can be identified
with hA〈U〉× via the canonical inclusion γ : U → A〈U〉×, x 7→ axd, where
A×x = A×xd and x = axd with a ∈ A×. In particular A〈U〉×d = A×xd and
for any system yd ∈ U , d ∈ D, of representatives for U/A× the elements
γ(yd), d ∈ D, form an A-basis of A〈U〉.

The pair (A〈U〉, γ) has the following universal property (which, by the
way, proves its uniqueness):

Proposition 1.5. Let B be a (not necessarily graded ) A-algebra to-

gether with a group homomorphism ψ : U → B× that coincides on A× with

the structure homomorphism of B. Then there is a uniquely determined

A-algebra homomorphism ψ : A〈U〉 → B such that ψ = ψ ◦ γ.
Proof. Because the elements xd form an A-basis of A〈U〉 we can extend

the group homomorphism ψ to an A-module homomorphism ψ : A〈U〉 → B
by ψ(xd) := ψ(xd). Due to the assumption that ψ coincides on A× with the
structure homomorphism of B one easily checks that ψ is even an A-algebra
homomorphism.

Remark 1.6. One can define A〈U〉 alternatively as A⊗B[A×]B[U ], where
B → A is any ring homomorphism (and B[U ], B[A×] are the group alge-
bras). In particular, one can set A〈U〉 := A⊗Z[A×]Z[U ]. We thank the referee
for this useful comment.

Remark 1.7. We can interpret every unitarily graded A-algebra B as
such a universal algebra A〈U〉 with U := hB×. So the algebra structure of
B is already determined by the group extension A× →֒ hB×.

Remark 1.8. It is well known that the group Ext(D,A×)=Ext1Z(D,A×)
describes the isomorphy classes of exact sequences

1→ A× → U → D → 0

of abelian groups. So the group Ext(D,A×) also classifies the isomorphy
types of unitarily D-graded A-algebras. The trivial element of Ext(D,A×)
is the direct product A××D which corresponds to the group algebra A[D] =
A〈A× ×D〉.

2. Unitarily graded field extensions. The aim of this section is
to give an answer to the following natural question: For which extensions
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A× →֒ U of abelian groups is the universal algebra A〈U〉 a field? If this is
the case, necessarily A itself is a field. Therefore, we assume in this section
that the base ring A is a field K. Furthermore we use throughout our stan-
dard notations: For an extension K× →֒ U of abelian groups K〈U〉 is the
universal algebra constructed in Section 1. It is unitarily graded, its group
hK〈U〉× of homogeneous units can be identified with U and the grading
group is D := U/K×. For every unitarily graded K-algebra B the canonical
homomorphism K〈hB×〉 → B is an isomorphism. We want to clarify that a
unitarily graded field extension L|K is a Kneser extension as introduced in
[1, Definition 2.1.9 and Definition 11.1.1] and vice versa. Important examples
of unitarily graded field extensions are the Kummer extensions.

Example 2.1. We recall that a (not necessarily finite) algebraic field
extension L|K is a Kummer extension if L|K is a Galois extension with
abelian Galois group G(L|K) and if for every finite intermediate field K ⊆
E ⊆ L the base field K contains a root of unity of order exp(G(E|K)).
The last property holds if and only if the group of all continuous charac-
ters Ǧ(L|K) := Hom(G(L|K),Q/Z) can be identified with the group of the
(continuous) characters G(L|K)→ K× with values in K×.

Proposition 2.2.

(1) Let L|K be a Kummer extension with Galois group G := G(L|K).
For a (continuous) character χ : G → K× let Lχ denote its eigen-

space Lχ := {x ∈ L : σ(x) = χ(σ)x for all σ ∈ G}. Then L =⊕
χ∈Ǧ Lχ is a unitary Ǧ-grading of L over K, Ǧ = Hom(G,K×).

(2) Conversely , let L =
⊕

d∈D Ld be a unitarily D-graded field extension

of K = L0 and suppose that K contains a root of unity of order n0

whenever D contains an element of order n0. Then L is a Kummer

extension of K with Galois group Ď = Hom(D,K×), where a char-

acter δ : D → K× operates as δ(
∑

d∈D xd) =
∑

d∈D δ(d)xd. (Here a

character δ ∈ Ď is an arbitrary group homomorphism D → K×, and

the topology of Ď as a profinite group is given by the finite subgroups

D0 ⊆ D with the surjections Ď → Ď0, Ď = lim←− Ď0.) In particular ,

Ld is necessarily the eigenspace for the character χd : Ď → K×,
δ 7→ δ(d), and the given grading of L can be identified with the grad-

ing of part (1). Furthermore, the only intermediate fields of L|K are

the graded fields LD′ , D′ subgroup of D.

Proof. One easily reduces both assertions to the case of a finite extension
L|K. For part (2) note that the grading group D is necessarily a torsion
group by Proposition 2.3 below.

(1) Then, by the assumption on the roots of unity in K, every K-linear
operator σ ∈ G of L is diagonalisable over K. Since G is commutative
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the elements of G are simultaneously diagonalisable, i.e. L =
⊕

i∈I Li with
G-invariant 1-dimensional K-subspaces Li ⊆ L. Trivially, for every i ∈ I the
function χ : G→ K× with χ(σ) = σ(x)x−1 for all σ ∈ G and all x ∈ Li\{0}
is a character. Because of |Ǧ| = |G| = [L : K], and LχLχ′ ⊆ Lχχ′ , it suffices
to show that dimK Lχ ≤ 1 for all χ ∈ Ǧ; but L1 = K for the trivial
character 1 and Lχ = L1x for any x ∈ Lχ \ {0}.

(2) Obviously, δ : L → L is a K-automorphism of L which respects the
grading. Because of |D| = |Ď| = [L : K] these are all K-automorphisms
of L.

Let us mention that a Kummer extension L|K may have unitary grad-
ings which are essentially different from the canonical grading described
in Proposition 2.2. For instance, the cyclotomic field Q[ζ8] = Q[i,

√
2] ∼=

Q[X]/(X4 + 1) ∼= Q[Y, Z]/(Y 2 + 1, Z2 − 2) is a Kummer extension of Q
which has besides the canonical Z2 × Z2-grading a unitary Z4-grading. The
canonical grading of a Kummer extension L|K is characterised by the prop-
erty that the base field K contains a root of unity of order n0 if the grading
group D contains an element of order n0, n0 ∈ N∗.

Proposition 2.3. Let L = K〈U〉 be a field. Then the group extension

K× →֒ U is essential and , in particular , the grading group D = U/K× is a

torsion group.

Proof. To prove that D is a torsion group let d0 ∈ D, d0 6= 0, and
xd0
∈ L×

d0
. Then 1 + xd0

∈ L×. Let
∑

d∈D yd be the inverse of 1 + xd0
. The

equation (1+xd0
)
∑

d∈D yd = 1 implies y0 = 1−xd0
y−d0

and yd = −xd0
yd−d0

for all d 6= 0. The first equation implies y0 6= 0 or y−d0
6= 0. The other

equations imply (by induction) ykd0
= (−1)kxk

d0
y0 for all k ∈ Z, hence

ykd0
6= 0 for all k ∈ Z. It follows that Zd0 is a finite group.

We want to recall that an extension H ⊆ G of abelian groups is by defi-
nition essential if for every subgroup F ⊆ G with F ∩H = 1 already F = 1
holds. It is easy to prove that this is equivalent to the following conditions:
The quotient G/H is a torsion group and, for every prime number p, the
p-socles H[p] and G[p] coincide. In our case H = K× is the multiplicative
group of the field K. Therefore, the extension K× ⊆ U is essential if and
only if U/K× is a torsion group and every root of unity of order p, p ∈ P,
in U belongs already to K×.

The quotient U/K× = D is a torsion group by the first part. Assume ζp is
a root of unity of order p, p ∈ P, in hL×\K×. Then the graded K-subalgebra
K[ζp] ∼= K[X]/(Xp − 1) is not a field, a contradiction.

Proposition 2.3 says in particular that a unitarily graded field extension
L|K is algebraic. A homogeneous element xd ∈ L×

d , d ∈ D ∼= hL×/K×,
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has degree ord d over K. Therefore, L is separably algebraic if and only if
charK = 0 or charK = ℓ > 0 and D[ℓ∞] = 0.

Since we are only interested in the separable case, from now on we presup-

pose in this section that U/K× is a torsion group and that (U/K×)[ℓ∞] = 1
in case charK = ℓ > 0.

The following three lemmas are the essential steps for the proof of the
main theorem.

Lemma 2.4. Let D = U/K× be a finite p-group of order pα, α ≥ 1,
p prime ( 6= charK). In case p = 2 assume i =

√
−1 ∈ K. Then B := K〈U〉

is a field if and only if the group extension K× →֒ U is essential. In this

case (B×/K×)[p∞] = U/K× = hB×/K× = D.

Proof. By Proposition 2.3 the extension K× →֒ U is essential if B is a
field. For the proof of the converse and the supplement we use induction
on α. Let α = 1. Then B = K[x] ∼= K[X]/(Xp − a) where x ∈ U \K× and
a = xp ∈ K×. We have to show that the polynomial Xp − a is irreducible.
Assume that Xp − a has a zero y in a field extension L of K of degree
m < p. Then a = yp and am = NL

K(a) = NL
K(y)p (where NL

K denotes the
norm function). Because of gcd(m, p) = 1 we have a = bp with b ∈ K×

and (x/b)p = 1 with x/b ∈ U . It follows that x/b ∈ K× (since K× →֒ U is
essential) and x ∈ K×, a contradiction.

To prove the supplement it is enough to show: If y ∈ B× and yp ∈
U = hB× then y ∈ U . We adjoin if necessary to K a root of unity ζp
of order p and consider the Kummer extension K[ζp] ⊆ K[ζp] ⊗K B =
B[ζp] ∼= K[ζp][X]/(Xp − a). (Note that K[ζp] ⊗ B is a field because of
gcd([K[ζp] : K], [B : K]) = 1.)

First assume that even yp ∈ K×. If y /∈ K× then B = K[y] and B[ζp] =
K[ζp][y]. By Proposition 2.2 the element y is homogeneous in B[ζp] (since
K[ζp]y

k, k = 0, . . . , p − 1, are the homogeneous components of a unitary
grading of B[ζp]). Then y is also homogeneous in B, i.e. y ∈ U .

Now suppose yp /∈ K×. Then yp2

= (yp)p =: c ∈ K× and Xp − c is
the minimal (= characteristic) polynomial of yp and c = (−1)p+1NB

K(yp) =
(−1)p+1NB

K(y)p. In any case c is a pth power in K× (in case p = 2 we use
i ∈ K). This contradicts the irreducibility of Xp − c.

For the induction step assume |D| = pα+1. Let D̃ ⊂ D be a subgroup of

order pα. Then by induction hypothesis, the unitarily D̃-graded subalgebra

B̃ := B
D̃
⊂ B is a field with (B̃×/K×)[p∞] = hB̃×/K× and B is a unitarily

D/D̃-graded B̃-algebra with B̃×hB× as group of homogeneous units. The

group extension B̃× →֒ B̃×hB× is essential. To prove this, let (yz)p = ypzp

= 1, y ∈ B̃×, z ∈ hB×. Then zp ∈ hB̃×, yp ∈ hB̃×, so y ∈ hB̃× by the in-
duction hypothesis on the supplement. Hence yz ∈ hB× and yz ∈ K× ⊆ B̃×
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since K× →֒ hB× is essential. The case α = 1 implies that B is a field and
(B×/B̃×)[p∞] = B̃×hB×/B̃×.

To prove (B×/K×)[p∞] = hB×/K× let w ∈ B× represent an element in

(B×/K×)[p∞]. Then w ∈ B̃×hB×, w = uv with u ∈ B̃×, v ∈ hB×, hence

u ∈ hB̃× and w ∈ hB× as wanted.

Lemma 2.5. Let D = U/K× be a finite 2-group of order 2α, α ≥ 1.
Assume U contains no element of order 4. Then B := K〈U〉 is a field if and

only if the group extension K× →֒ U is essential. In this case (B×/K×)[2∞]
= U/K× = hB×/K× = D.

Proof. By Proposition 2.3 the extension K× →֒ U is essential if B is a
field. We consider the extension K[i] ⊆ B[i] := K[i] ⊗K B. It is enough to
show that the extension K[i]× →֒ hB[i]× is essential. Then, due to 2.4, B[i]
is a field, hence so is B. Furthermore, (B[i]×/K[i]×)[2∞] = hB[i]×/K[i]×,
which implies (B×/K×)[2∞] = hB×/K× because of hB× = hB[i]× ∩ B. We
have B[i]d = Bd ⊕ Bdi for all d ∈ D. So let b, c ∈ Bd with 1 = (b + ci)2 =
b2 + 2bci − c2. Comparison of coefficients yields b2 − c2 = 1 and 2bc = 0.
Because charK 6= 2 we have b = 0 or c = 0. Suppose b = 0, hence −c2 = 1.
But this means c = ±i ∈ hB×, which is a contradiction. So we have c = 0,
hence b2 = 1. Because K× ⊆ hB× is essential we get b = ±1.

Note that in the situation of Lemma 2.4 or Lemma 2.5 the torsion group
t(B×/K×) may be larger than U/K× = hB×/K× even if B is a field! A sim-
ple example is B = Q[ζ3] = Q[

√
−3] over K = Q.

If D = U/K× is a finite 2-group then the condition that the extension
K× →֒ U is essential is in general not sufficient for K〈U〉 to be a field. By
2.5 this can only occur if U contains an element of order 4.

Example 2.6. We consider the polynomial X4 +4 ∈ Q[X]. We have the
well known decomposition X4 +4 = (X2−2X+2)(X2 +2X+2) over Q, so
the unitarily Z4-graded Q -algebra B := Q[X]/(X4 + 4) is not a field. But
the extension Q× ⊆ hB× is essential due to the fact that there is no element
y ∈ hB× \Q× with y2 = 1. The element x2/2 has order 4 in U = hB×.

Lemma 2.7. Let D = U/K× be a finite 2-group of order 2α, α ≥ 1.
Assume U contains an element of order 4 which is not an element of K.

Then B := K〈U〉 is a field if and only if the group extension K× →֒ U is

essential and −4 /∈ U4 (i.e. there is no element x ∈ U with x4 = −4).

Proof. If B is a field then K× →֒ U is essential by Proposition 2.3.
Furthermore, if there is an element x ∈ U with x4 = −4, then x represents
an element of order 4 in D = U/K× because (x2/2)2 = −1 and therefore
x2 = ±2i /∈ K× by assumption. It follows K[x] ∼= K[X]/(X4 + 4), and K[x]
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is not a field because of X4 + 4 = (X2 − 2X + 2)(X2 + 2X + 2) (see also
Example 2.6).

Conversely, the element i ∈ U of order 4 represents an element of order 2
in U/K× because of i2 = −1. SoK[i] ⊆ B is a graded quadratic subfield of B
and B is unitarily graded over K[i] with grading group K[i]×U/K[i]×. By
Lemma 2.4 it is now sufficient to show that the extension K[i]× →֒ K[i]×U
is essential. To do this, let y2 = x2 with y ∈ U , x = a+ bi ∈ K[i]×, a, b ∈ K.
Then y2 = a2 − b2 + 2abi ∈ U , hence a2 − b2 = 0 or 2ab = 0. If a2 − b2 = 0,
then a = ±b, (y/a)4 = (±2i)2 = −4, which is impossible by assumption.
Therefore ab = 0, i.e. x ∈ U , hence x−1y ∈ U and x−1y = ±1 since K× →֒ U
is essential.

Remark 2.8. (1) In the situation of 2.7 it is rather difficult to describe
the 2-torsion group (B×/K×)[2∞]. Because 1 + i /∈ U represents an ele-
ment of order 4 in B×/K× the group (B×/K×)[2∞] is always larger than
hB×/K× = U/K×. But the simple example K := R, B := R[i] = C shows
that (B×/K×)[2∞] can be much larger than U/K×.

(2) It would be interesting to understand the structure of the separable
K-algebra B = K〈U〉 or at least its spectrum if the essential extension
K× →֒ U satisfies all the assumptions of Lemma 2.7 and moreover −4 ∈
U4. For illustrations look at Example 2.6 and its extension Example 3.10
in the next section or at the following one: For K take the real number
field Q[ζ16] ∩ R and for U the essential extension K×µ16(C) of K× with
K×µ16(C)/K× ∼= Z8. Then 1+i =

√
2 ζ8 ∈ U with (1+i)4 = −4 andK〈U〉 ∼=

K ⊗Q Q[ζ16] splits into 4 components which are isomorphic quadratic field
extensions of K.

The comments in this remark also show that the statements in [7, §93,
Exercise 14(e)(3),(4)] are not correct.

The following theorem, which generalises amongst others the theorem of
M. Kneser in [6], is the main result and summarises the previous lemmas
(cf. also [5, Satz 3.2.6]).

Theorem 2.9. For the group extension K× →֒ U (with (U/K×)[ℓ∞] = 1
if charK = ℓ > 0) the universal algebra K〈U〉 is a field if and only if the

extension K× →֒ U is essential and moreover −4 /∈ U4 in case U contains

an element of order 4 not in K×. In this case (K〈U〉×/K×)[p∞] = U/K×

if U/K× is a p-group, p ≥ 3, and (K〈U〉×/K×)[2∞] = U/K× if U/K× is a

2-group and U contains no element of order 4 not in K.

Proof. Let D := U/K×. If the unitarily D-graded K-algebra B := K〈U〉
is a field then K× →֒ U is essential by Proposition 2.3 and the exceptional
case is settled by Lemma 2.7 because BD[2∞] ⊆ B.
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Conversely, let K× →֒ U be essential with −4 /∈ U4 in the special case.
Because of K〈U〉 = lim−→K〈U ′〉 where U ′ runs through the subgroups U ′ ⊆ U
with K× ⊆ U ′ and finite index [U ′ : K×] we may assume that D = U/K× is
finite. Then B =

⊗
pBD[p∞] because D =

⊕
pD[p∞], where p runs through

the prime divisors of |D|. Since the dimensions dimK BD[p∞] are pairwise
coprime it is enough to show that all the K-algebras BD[p∞] are fields. But

BD[p∞] = K〈hBD[p∞]
×〉 and hBD[p∞]

× ⊆ hB× = U are essential extensions of

K× such that [hBD[p∞]
× : K×] is a power of p and the results follow from

Lemmas 2.4, 2.5 and 2.7.

If the factor group U/K× of the extension K× →֒ U is a finite cyclic
group Theorem 2.9 is the well known theorem of Capelli (for the separable
case).

Obviously, if K〈U〉 is a field then K〈U〉 is a Galois extension of K if
and only if the grading group D = U/K× has the following property: if
D contains an element of order n0 then K〈U〉 contains a root of unity of
order n0. (Note that K〈U〉 is by our general assumption always separable.)

3. Applications and examples. In this section we prove some con-
sequences of the results of Section 2. First of all we mention the following
slight generalisation of the theorems of Kneser and Schinzel in [6] and [8,
Theorem 1]; see also [1, Theorems 2.2.1 and 11.1.5], [10, Theorem 1.12] and
[7, §93, Exercise 14].

Theorem 3.1. Let L|K be a field extension with (L×/K×)[ℓ∞] = 1,

i.e. L×ℓ ∩ K× = K×ℓ
, if charK = ℓ > 0, and let U ⊇ K× be a subgroup

of L×. Furthermore, let xi, i ∈ I, be a full system of representatives for the

elements of U/K×. Then E :=
∑

i∈I Kxi is a K-subalgebra of L and the

following conditions are equivalent :

(1) E is a field and the xi, i ∈ I, are linearly independent over K.

(2) K× →֒ U is an essential extension of groups and 1 + i /∈ U if U
contains a root of unity i of order 4 not in K×.

If these conditions hold E is a separable algebraic field extension of degree

[E : K] = [U : K×].

Proof. First of all, the extension K× ⊆ U satisfies by assumption the
condition (U/K×)[ℓ∞] = 1 if charK = ℓ > 0. Consider the universal algebra
K〈U〉 and the canonical K-algebra homomorphism ψ : K〈U〉 → E induced
by the inclusion U → E×. Condition (1) is equivalent to the condition that
K〈U〉 is a field. Now apply Theorem 2.9.

Note that in 3.1 the algebra E is a priori a field if the extension L|K is
algebraic.



86 H. Brenner et al.

The following definitions and results are inspired by the book [1] of
T. Albu and the article [4] of C. Greither and D. K. Harrison. We also
mention the work [10] of D. Stefan where one can find similar graded for-
mulations for finite field extensions.

Definition 3.2. A group extension K× →֒ U with factor group D =
U/K× and universal unitarily D-graded K-algebra L := K〈U〉 is called
co-Galois if the following conditions are satisfed:

(1) L is a field and D[ℓ∞] = 0 if charK = ℓ > 0.
(2) Every intermediate field K ⊆ E ⊆ L is graded, i.e. E = LD′ for

some subgroup D′ ⊆ D.

We call a field extension L|K co-Galois if there exists a co-Galois group
extension K× →֒ U such that L ∼= K〈U〉. In this case the extension K×

⊆ U is uniquely determined as we will see after the proof of Theorem 3.3,
therefore we drop U from our notation. The conditionD[ℓ∞] = 0 if charK =
ℓ > 0 implies that a co-Galois extension is a separable (algebraic) field
extension. A co-Galois extension L|K is our graded equivalent of a U-co-

Galois extension introduced in [1, Definitions 4.3.3 and 12.1.1].

For a co-Galois extension K ⊆ L = K〈U〉 and a subgroup D′ ⊆ D =
U/K× the subfield LD′ is co-Galois over K and L is co-Galois over LD′

(with respect to the induced D/D′-grading). We have maps D′ 7→ LD′ and
E 7→ DE between the set of subgroups of D and the set of intermediate
fields of L|K, which are inverse to each other. Hence, they are (lattice)
isomorphisms.

If L = K〈U〉 is co-Galois and x =
∑

d∈D xd is an element in L then
K[x] = K[xd : d ∈ D] = L〈supp x〉 where 〈suppx〉 is the subgroup of D
generated by the support suppx := {d ∈ D : xd 6= 0} of x. In particular,
[K[x] : K] = |〈suppx〉| and K[x] = L if and only if 〈suppx〉 = D (cf. also
[1, Theorem 8.1.2 and Proposition 10.1.12] and [10, Proposition 2.6]). If L
is co-Galois then any x ∈ L× with x2 ∈ K× is homogeneous. Indeed, if
x /∈ K then [K[x] : K] = 2, charK 6= 2 and x = x0 + xd with 2d = 0 and
x2 = x2

0 + x2
d + 2x0xd = x2

0 + x2
d implies x0xd = 0, i.e. x0 = 0. Examples of

co-Galois extensions are the Kummer extensions (cf. Proposition 2.2).

For the following characterisation of co-Galois extensions compare also
[1, Theorem 4.3.2] and [10, Theorem 2.5] for the case of a finite extension
and [1, Theorem 12.1.4] for the infinite case.

Theorem 3.3. The group extension K× →֒ U with factor group D =
U/K× and universal unitarily D-graded K-algebra L := K〈U〉 is co-Galois

if and only if the following conditions are satisfied :

(1) D is a torsion group with D[ℓ∞] = 0 if charK = ℓ > 0.
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(2) For all primes p with D[p∞] 6= 0 every element of order p in L×

belongs to K×.

(3) If D and K〈U〉× contain elements of order 4 then K× contains an

element of order 4.

Proof. Let L = K〈U〉 be co-Galois. Then K× →֒ U is essential by 2.3
and, in particular, D = U/K× is a torsion group.

Assume now that D contains an element of prime order p and let x ∈ U
represent such an element. Furthermore, let ζp 6= 1 be a pth root of unity

in L. Then
∏p−1

k=0(X− ζk
px) = Xp−xp is the minimal polynomial over K for

all the elements ζk
px, k = 0, . . . , p− 1. The subfield K[x, ζp] is of degree pm

with m < p and hence contains only one subfield of degree p over K since all
subfields are graded. It follows that K[x] = K[ζpx] and ζp = (ζpx)/x ∈ K[x],
i.e. ζp ∈ K.

Let i ∈ L× be a root of unity of order 4 and let x ∈ U be an ele-
ment representing an element of order 4 in D. Then i is homogeneous and∏3

k=0(X − ikx) = X4− x4 is the minimal polynomial over K for all the ele-
ments ikx, k = 0, 1, 2, 3. Furthermore, ((1+ i)x)4 = (x+ ix)4 = −4x4 ∈ K×,
hence [K[(1 + i)x] : K] ≤ 4. If i /∈ K× then ix is homogeneous with
deg x 6= deg ix and therefore K[(1 + i)x] = K[x, ix] = K[x] = K[ix]
and i ∈ K[x], K[i] = K[x2], i.e. deg i = deg x2 = 2deg x, which implies
((1 + i)x)2 = 2ix2 ∈ K×. This is a contradiction!

To prove that conversely conditions (1)–(3) imply that L = K〈U〉 is
co-Galois over K we can assume that D = U/K× is finite.

Conditions (1) and (2) imply that the extension K× →֒ U is essential.
Suppose that U contains an element y of order 4 not inK×, and assume that
x4 = −4, x ∈ U . This implies y2 = −1 = (x2/2)2, hence y = ±x2/2 (since
K× →֒ U is essential) and x2 /∈ K×. Therefore, x represents an element of
order 4 in D. By assumption (3), this implies that K× contains an element
i of order 4. Then (y/i)2 = 1 and y/i = ±1, y = ±i ∈ K×, a contradiction.
By Theorem 2.9, L is a field.

Now, let E be an intermediate field, K ⊆ E ⊆ L = K〈U〉. We have to
show E = K〈U ∩ E×〉. Consider the group extension E× →֒ E×U (⊆ L×)
with index [E×U : E×] = [U : U ∩ E×]. If the universal algebra E〈E×U〉
is a field then the canonical homomorphism E〈E×U〉 → L = E[E×U ] is
an isomorphism, which implies [L : E] = [E×U : E×] = [U : U ∩ E×] =
[L : K〈U ∩ E×〉] and E = K〈U ∩E×〉 because of K〈U ∩E×〉 ⊆ E.

So we have to verify that E× →֒ E×U satisfies the conditions of Theorem
2.9. Assumption (2) implies that E× →֒ E×U is essential. Now suppose that
E×U contains an element i of order 4 not in E× and x4 = −4 with x ∈ E×U .
The element x represents an element of order 4 in E×U/E× ∼= U/U ∩ E×

because (x2/2)2 = −1 = i2 and x2 = ±2i /∈ E×. But then D = U/K×
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contains an element of order 4 and by condition (3), i ∈ K, a contradic-
tion.

We remark that for a co-Galois extension L = K〈U〉 of K the group

U = hL× of homogeneous units is uniquely determined ; cf. also [1, Corollaries
4.4.2 and 10.1.11]. (L may however have unitary gradings which are not
co-Galois, cf. Example 2.1.) Indeed, let L = K〈U ′〉 be another co-Galois
grading and let x ∈ U ′. We have to show x ∈ U . We may assume that the
order of x in U ′/K× is a power of a prime p, i.e. that [K[x] : K] = pα, α ≥ 1,
and that L = K[x]. If p ≥ 3 then x represents an element of (L×/K×)[p∞]
and therefore belongs to U by Theorem 2.9.

If p = 2 then again x ∈ U . This follows from 2.9 if U does not contain
an element of order 4 not in K×. If i =

√
−1 ∈ U , i /∈ K×, then D is

an elementary abelian 2-group by condition (3) in Theorem 3.3 and the
homogeneous elements x ∈ L for both gradings are characterised by the
condition x2 ∈ K (cf. also Proposition 2.2). This proves our remark.

Furthermore, if L = K〈U〉 is a co-Galois extension then (L×/K×)[p∞] =
(U/K×)[p∞] for every prime p ≥ 3 with (U/K×)[p∞] 6= 1 and the equality

(L×/K×)[2∞] = (U/K×)[2∞] holds in the following cases: (1) U/K× con-

tains an element of order 4, (2) i (=
√
−1) ∈ K×, (3) i /∈ L×. In any case the

equality (L×/K×)[2] = (U/K×)[2] holds (compare also with [1, Theorems
4.4.1 and 12.1.8]). The equality (L×/K×)[p∞] = (U/K×)[p∞] for a prime
number p ≥ 2 is equivalent to the property that K〈Tp(L

×/K×)〉 is a field,
where Tp(L

×|K×) is by definition the canonical preimage of (L×/K×)[p∞]
in L×, and this is checked by applying Theorem 2.9 together with the char-
acterisation of co-Galois extensions in Theorem 3.3.

Let T(L×|K×) = {x ∈ L× : xn ∈ K× for some n} ⊆ L× denote the
canonical preimage in L× of the torsion subgroup t(L×/K×) of L×/K×. (In
[4] the group t(L×/K×) is called the co-Galois group of L|K.)

Definition 3.4. A field extension L|K is called absolutely co-Galois if
the canonical K-algebra homomorphismK〈T(L×|K×)〉 → L induced by the
inclusion T(L×|K×) →֒ L× is an isomorphism.

In an equivalent, but different approach finite absolutely co-Galois ex-
tensions were treated in [4] and called co-Galois extensions; see also [1,
Definition 12.2.1] for the infinite case. We prefer the term “absolutely co-
Galois” in order to stress that the grading group is the whole torsion group
of L×/K×.

If L|K is absolutely co-Galois then L is unitarily t(L×/K×)-graded
and hL× = T(L×|K×). The extension is necessarily separable. Indeed, let
x ∈ L×, xℓ ∈ K×, ℓ := charK > 0. Then (1 + x)ℓ ∈ K×, which implies
x ∈ K since 1, x, 1 + x are homogeneous. This means (L×/K×)[ℓ∞] = 1.
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The following characterisation of absolutely co-Galois extensions is a
direct consequence of Theorem 2.9. One compares also [4, Theorem 1.5] and
[1, Theorem 3.1.7] for finite extensions as well as [1, Theorem 12.2.2] for the
infinite case.

Theorem 3.5. A field extension L|K is absolutely co-Galois if and only

if the following conditions are satisfied :

(1) The group T(L×|K×) generates L as a K-algebra, the group ex-

tension K× →֒ T(L×|K×) is essential and (L×/K×)[ℓ∞] =

Tℓ(L
×|K×)/K× = 1, i.e. L×ℓ ∩K× = K×ℓ

, if charK = ℓ > 0.
(2) If L× contains a root of unity i of order 4 then i belongs already

to K×.

For the following two easy corollaries compare also [4, Theorem 1.6(a)],
[1, Proposition 3.2.2(2) and Theorem 12.2.4(4)] and [1, Theorem 12.2.3].

Corollary 3.6. If L|K is an absolutely co-Galois extension, then so

are the extensions L|E and E|K for any intermediate field E.

Theorem 3.3 implies:

Corollary 3.7. An absolutely co-Galois extension L|K is co-Galois

with respect to the group extension K× →֒ T(L×|K×) and with grading

group T(L×|K×)/K× = t(L×/K×).

Co-Galois extensions are not necessarily absolutely co-Galois. Look at
Q[ζ3]|Q or as an extreme case at C|R. A co-Galois extension L = K〈U〉
over K is absolutely co-Galois if and only if the following conditions are
satisfied: (1) Any root of unity ζq of prime order q in L× with (U/K×)[q∞]
= 1 belongs already to K×. (2) If the element i of order 4 belongs to L×

then i ∈ K×. (If i /∈ K× then K[i] is never absolutely co-Galois.)

Example 3.8. Let K be a field which contains for every prime p 6=
charK a root of unity of order p and a root of unity of order 4 if
charK 6= 2. Furthermore, let Ksep be the separable algebraic closure

of K. Then the group T(K
×
sep|K×) is an essential extension of K×. In-

deed, T(K
×
sep|K×) = I′(K×) where I′(K×) ⊆ I(K×) is the preimage of∏

p∈P, p6=char K(I(K×)/K×)[p∞] in the injective hull I(K×) of the group K×.

The equality I′(K×) = I(K×) holds if and only if K is a perfect field.

Since the group extension K× →֒ T(K
×
sep|K×) = I′(K×) is co-Galois by

Theorem 3.3 the canonical homomorphism K〈I′(K×)〉 → Ksep is injective
and its image K[I′(K×)] is the largest absolutely co-Galois extension of K;
cf. Theorem 3.5. It is also a Galois extension which contains all roots of
unity, i.e. for any n ∈ N∗ with n 6= 0 in K there is a root of unity of order
n in K[I′(K×)].
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Furthermore, ifK contains all roots of unity then this extension coincides
with the largest Kummer extension of K, which is in this case also the
largest abelian extension Kab of K. The Galois group of this extension
is the character group Hom(I′(K×)/K×,K×) = Hom(I′(K×)/K×,Q/Z) of

I′(K×)/K× = t(K
×
sep/K

×) (cf. Proposition 2.2).

So if we iterate this construction starting with K1 := K[I′(K×)] instead
of K0 := K we get the Kummer extension K2 := K1[I

′(K×
1 )] of K1 and

altogether a tower of subfields K = K0 ⊆ K1 ⊆ K2 ⊆ · · · of Ksep such that
every extension Kj+1|Kj , j ∈ N, is absolutely co-Galois (and Kummer for
j > 0).

If F is an arbitrary field then take for K0 the field K := F [ζp, p ∈
P, p 6= charF ; i], where ζp ∈ F sep (= Ksep) is a root of unity of order p (and
i ∈ Ksep of order 4 if charF 6= 2). If charF = 0 then

⋃
j≥0Kj =: F solv is the

union of all Galois extensions of F in F sep = F with solvable Galois group.

Example 3.9. Let K be an ordered field and let Kreal be the real closure
of K. Then the group T(K

×
real|K×) is an essential extension of K× since ±1

are the only roots of unity in K
×
real. Indeed, T(K

×
real|K×) = {±1} I(K×

+ ),

where T(K
×
real,+|K×

+ ) = I(K×
+ ) ⊆ K

×
real,+ is the injective hull of the group

of positive elements in K.

Since the group extension K× →֒ T(K
×
real|K×) is co-Galois by Theorem

3.3 the canonical homomorphism K〈{±1} I(K×
+ )〉 → Kreal is injective and

its image K[I(K×
+ )] is the largest co-Galois extension of K in Kreal. It is

even absolutely co-Galois (cf. Theorem 3.5).

In case that K = Q or, more generally, that K is a real algebraic number
field the injectivity of the canonical map K〈{±1} I(K×

+ )〉 → Kreal ⊆ R is a
classical result of Besicovitch [2] and Siegel [9].

That Q ⊆ Q[I(Q×
+)] is a co-Galois extension can be expressed in the fol-

lowing way: If (ν1σ, . . . , νrσ) ∈ Qr, σ = 1, . . . , s, are r-tuples which represent
different elements in (Q/Z)r and if p1, . . . , pr are different prime numbers
then the degree of every element

x =
s∑

σ=1

aσp
ν1σ

1 · · · pνrσ
r

with a1, . . . , as ∈ Q× is |d| where 1/d is the greatest common divisor of all

the minors (including 1) of the r × s-matrix (ν̺σ)1≤̺≤r, 1≤σ≤s; for instance,

x := 21/231/4+21/331/2 has degree 12 over Q and Q[x] = Q[21/231/4, 21/331/2]
(= Q[21/631/4]); cf. [1, Example 9.2.9].

In a similar way, the finite subextensions of K[I(K×
+ )] can be described

for a finite real number field K: The multiplicative group K×
+ of the positive

numbers in K is free. (For any finite number field K the group K×/µ(K),
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where µ(K) is the group of roots of unity in K, is free.) If a basis πi, i ∈ I,
of K×

+ is given (and such a basis can be constructed in principle) one has
completely analogous results for K instead of Q, replacing the primes p ∈ P
by the πi, i ∈ I. (Even the assumption that K is a real field is not essential.
One replaces K×

+ by K×/µ(K).)
Iterating the construction of K〈{±1} I(K×

+ )〉 from K, we get a tower

of fields K = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kreal with Kj+1 = Kj [I(K
×
j,+)] =

Kj〈{±1} I(K×
j,+)〉 for an ordered field K. It is an interesting task to deter-

mine for a given x ∈ ⋃
j Kj the smallest j ∈ N with x ∈ Kj .

Example 3.10. Any essential group extension Q× →֒ U can be em-
bedded into the injective hull I(Q×) = I({±1}) × I(Q×

+) and hence the
universal algebra Q〈U〉 into Q〈I(Q×)〉. We use the canonical identifica-
tion I(Q×) = I({±1}) × I(Q×

+) = S1[2∞] × T(R×
+|Q×

+) ⊆ S1 × R×
+ = C×,

S1 := {z ∈ C : |z| = 1}. The group I(Q×
+) = T(R×

+|Q×
+) is torsion-free and

divisible with the primes p ∈ P as canonical Q-basis and was studied in the
previous example.

The universal algebra Q〈I(Q×)〉 is not a field because of i ∈ S1[2∞] ⊆
I(Q×), i /∈ Q× and (1+ i) = ζ8

√
2 ∈ I(Q×), (1+ i)4 = −4 (cf. Theorem 2.9).

To understand Q〈I(Q×)〉 we compare this algebra with the universal
Q[i]-algebra Q[i]〈I(Q[i]×)〉, which is by Theorem 2.9 a field.

Also I(Q[i]×) can be identified with a subgroup of C× which extends the
identification of I(Q×) as a subgroup of C× from above. We have to choose
t(I(Q[i]×)) = S1[2∞] and take for the primes q ∈ Z[i] with −π/4 < arg q <
π/4 the element exp(α ln q) as qα, α ∈ Q, and identify pα ∈ I(Q×), α ∈ Q,
p ≥ 3 prime in Z, in the natural way with pα ∈ I(Q[i]×). For the prime
1+i ∈ Z[i] and for 2 = (−i)(1+i)2 ∈ Z we proceed as follows: (1+i)α, α ∈ Q,
will be identified with exp(2πi(α/8)2)2

α/2, where r2 for r ∈ Q denotes the
2-component of [r] ∈ Q/Z =

⊕
p∈P(Q/Z)[p∞] =

⊕
p∈P(Z(pk, k∈N)/Z). Then

1 + i will be identified with exp(2πi/8)
√

2 = 1 + i (and hence (1 + i)n with
(1 + i)n for all n ∈ Z). The element 2α ∈ I(Q×), α ∈ Q, has in I(Q[i]×) the
representation 2α = exp(−2πi(α/4)2)(1 + i)2α.

The kernel of the universal homomorphism ϕ : Q〈I(Q×)〉→Q[i]〈I(Q[i]×)〉
is the principal ideal generated by f := x2−2x+2 = (2i+2)−ζ8

√
2, with x :=

ζ8
√

2 ∈ Q〈I(Q×)〉 = Q[i]〈Q[i]× ∗ I(Q×)〉 and x4 = −4 (where ∗ denotes the
multiplication in Q〈I(Q×)〉, which has to be distinguished from the multipli-
cation in Q[I(Q×)] ⊆ C). This assertion follows from the fact that fxj , j ∈ J ,
generate kerϕ as a Q[i]-vector space if xj , j ∈ J , represent the elements of
the factor group Q[i]×∗I(Q×)/Q[i]×. Therefore Q〈I(Q×)〉/fQ〈I(Q×)〉 is iso-

morphic to the subfield Q[I(Q×)] ⊆ C. The principal ideal (f) can also be
generated by the idempotent element e := (x+ 2)f/8. If we use the automor-
phism of I(Q×) induced by taking the 5th power on the component S1[2∞]
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of I(Q×) and the identity on the other components we get an automorphism
Ψ : Q〈I(Q×)〉 → Q〈I(Q×)〉. The kernel of the homomorphism ϕ ◦ Ψ−1 :
Q〈I(Q×)〉 → Q[i]〈I(Q[i]×)〉 is generated by Ψ(e) = (−x+ 2)Ψ(f)/8 = 1− e.

It follows that Q〈I(Q×)〉 is the product of two fields which are both iso-

morphic to Q[I(Q×)] ⊆ C. For any essential group extension U of Q× we have
inclusions Q× ⊆ U ⊆ I(Q×). Hence: If Q〈U〉 is not a field , i.e. if −4 ∈ U4,
then Q〈U〉 decomposes into two fields. But, these fields are not necessarily
isomorphic. Perhaps the simplest example is Q〈U〉 := Q[X]/(X16 + 4) ∼=
(Q[X]/(X8 − 2X4 + 2)) × (Q[X]/(X8 + 2X4 + 2)) = K1 × K2, K1 6∼= K2.
To prove this, one computes for instance the Galois group G(L|K) of the
splitting field L of X16+4 over Q and considers K1 and K2 as subfields of L.
The Galois group is isomorphic to the semidirect product (Z4 × Z4) ⋊ Z2

where Z2 is generated by the complex conjugation κ which operates on
Z4 × Z4 as the matrix (

2 1

1 2

)
.

The two factors of the product group Z4 × Z4 (which are not conjugate in
(Z4 × Z4) ⋊ Z2) are the subgroups belonging to K1 and K2.

4. Unitarily graded Galois extensions. We consider finite Galois
field extensions L|K. (We leave to the reader the easy generalisations to
infinite Galois extensions. One simply uses the fact that in the graded case
L = K〈U〉 = lim−→K〈U ′〉 where U ′ runs through the subgroups U ′ ⊆ U = hL×

with K× ⊆ U ′ and [U ′ : K×] < ∞.) Let us start with the case where the
Galois group is cyclic. If L has a unitary grading over K then the grading
group D is necessarily also cyclic. To prove this, observe that any subgroup
D′ ⊆ D defines the graded subfield LD′ . Therefore, for any divisor d′ of
|D| = ordD, there exists at most one subgroup of D of order d′. But this
condition characterises the finite cyclic groups in the class of all finite (not
necessarily abelian) groups D (indeed, it suffices to consider prime powers
d′ dividing |D|). Moreover, if the cyclic extension L|K has a grading then
this grading is even co-Galois and hence essentially unique (in the sense that
the group of homogeneous units is unique). Conversely, if a Galois extension
has a co-Galois grading with cyclic grading group then the Galois group is
also cyclic. More generally, the following is true.

Lemma 4.1. Let L|K be a finite Galois field extension with a D-co-

Galois grading. Then exp(D) = exp(G(L|K)) and there is an element σ ∈
G(L|K) with ordσ = exp(G(L|K)).

Proof. Let σ ∈ G := G(L|K). Then L is graded over the σ-invariant
field Lσ = LD′ with grading group D/D′ for some subgroup D′ ⊆ D. The
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extension L|Lσ is cyclic of degree ordσ. It follows that D/D′ is also cyclic
of the same order. This proves exp(G)|exp(D). For the converse let D′ ⊆
D be a subgroup with cyclic quotient D/D′ of order exp(D). Then the
Galois extension L|LD′ has a D/D′-co-Galois grading. By the remark above,
G(L|LD′) ⊆ G(L|K) = G is cyclic of order |D/D′| = exp(D).

If the (finite) Galois extensions Lσ|K, σ = 1, . . . , s, have a co-Galois
grading and if L := L1 ⊗K · · · ⊗K Ls is a field (i.e. if the Lσ are linearly
disjoint over K), then the grading of L derived from the gradings of the
factors is also co-Galois. This follows immediately from the fact that for
this grading of L the conditions of Theorem 3.3 hold since they hold for
the factors. Note that a D-graded Galois extension contains a root of unity
of order m if D contains an element of order m. (In general, the product
L1 ⊗K L2 of co-Galois extensions is not co-Galois even if L1, L2 are linearly
disjoint. For example, Q[ 3

√
2]⊗Q Q[ζ3] has no co-Galois grading at all.)

Let us now assume that the extension L|K is abelian with Galois group
G := G(L|K) and that it has a co-Galois grading with U = hL× as group
of homogeneous units and grading group D ∼= U/K×. Then we can prove
a little bit more. If D = D1 × · · · ×Dr is a decomposition of D into cyclic
factorsD̺, ̺ = 1, . . . , r, then the subfields LD̺ are also co-Galois and Galois.
Hence the Galois group G̺ := G(LD̺ |K) is also cyclic and G̺

∼= D̺. The
(non-canonical) isomorphism

G = G(LD1
⊗K · · · ⊗K LDr |K) = G1 × · · · ×Gr

∼= D1 × · · · ×Dr = D

follows (cf. also [10, Theorem 2.9]). Conversely, if the grading group D of
an arbitrary unitary grading of an (abelian) extension L|K is isomorphic
to the Galois group G, then the grading is co-Galois because the mapping
D′ 7→ G(L|LD′) is an injective and hence bijective map from the set of
subgroups D′ ⊆ D into the set of subgroups of G.

A (not necessarily abelian) Galois extension L ofK which has a co-Galois
grading contains necessarily a root of unity of order n where n := exp(D) =
exp(G(L|K)). The base fieldK contains necessarily a root of unity of order p
for every prime divisor p of n and moreover a root of unity of order 4 if 4 |n;
cf. Theorem 3.3. Altogether, K contains a root of unity of order er(n) where
er(n) is the extended reduction of n defined by

er(n) :=

{
r(n) if 4 ∤n,

2 r(n) if 4 |n.

Here the reduction r(n) of n is the product of the prime factors of n.

The elements of the Galois group G of L|K are explicitly given by the
formula

σχ

(∑

d

xd

)
=

∑

d

χ(d)xd,
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where the index χ runs through the character group Ď = Hom(D,L×) =
Hom(D,µn(L)), n = exp(D). It follows that µn(L) ⊆ U = hL× since

σχ(U) = U for all χ ∈ Ď (the co-Galois grading is essentially unique!)
and hence χ(d) = σχ(xd)/xd ∈ U for all χ ∈ Ď and all homogeneous units

xd of degree d, d ∈ D.

The group U = hL× can be described in the following way using only the
Galois group G:

U/µn(L) = (L×/µn(L))G

(where n = exp(G) and the operation of G on L×/µn(L) is induced by
the Galois operation). We only have to show the inclusion U ′ ⊆ U , where
U ′ ⊆ L× is defined by the equation U ′/µn(L) = (L×/µn(L))G. From the
exact sequence of group cohomology

1→ µn(L)G = µn(K)→ (L×)G = K×

→ (L×/µn(L))G = U ′/µn(L)→ H1(G,µn(L))

we derive the exact sequence

1→ µn(L)/µn(K)→ U ′/K× → H1(G,µn(L)).

It follows that U ′/K× is a finite group since H1(G,µn(L)) is finite. Moreover,
the exponent of H1(G,µn(L)) divides n = exp(G) = |µn(L)|.

We show that the universal algebra K〈U ′〉 is a field and use Theorem
2.9 to do this. If p is a prime divisor of |U ′/K×| then p divides n = |µn(L)|
hence er(n), and K contains a root of unity of order p. This proves that
K× →֒ U ′ is essential. If U ′ contains an element i of order 4 but i /∈ K×

then 4 ∤n (because |µer(n)(K)| = er(n) and hence |µn(L)/µn(K)| is odd and

H1(G,µn(L)) does not contain an element of order 4). Then, by the exact
sequence above, U ′/K× contains no element of order 4. It follows −4 /∈ U ′4.
The canonical homomorphism K〈U ′〉 → L which extends the isomorphism
K〈U〉 ∼→ K[U ] = L is injective. This yields U = U ′.

We notice:

Lemma 4.2. Let L|K be a finite Galois field extension with Galois

group G and n := exp(G). If |µn(L)| = n, |µer(n)(K)| = er(n) and U ′ ⊆ L×

is the subgroup with µn(L) ⊆ U ′ and U ′/µn(L) = (L×/µn(L))G then the

universal algebra K〈U ′〉 is a field isomorphic to K[U ′] ⊆ L. The canonical

sequence

1→ µn(L)/µn(K)→ U ′/K× → H1(G,µn(L))→ 1

is exact and K〈U ′〉 ∼= K[U ′] is a co-Galois and Galois extension of K.

Moreover , K[U ′] ⊆ L is the largest Galois subextension of L which is co-

Galois.
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Proof. The exact sequence follows from the exact sequence 1→ µn(L)→
L× → L×/µn(L) → 1 and H1(G,L×) = 1 (Noether’s theorem). The co-
Galois property follows from Theorem 3.3. The extension K[U ′] is Galois
since U ′ is G-invariant.

In general, the co-Galois extension K〈U ′〉 ∼= K[U ′] ⊆ L of Lemma 4.2 is
a proper subfield of L. It coincides with L if and only if |U ′/K×| = |G| or
equivalently

|H1(G,µn(L))| = |µn(K)| |G|/n.
This proves

Theorem 4.3. Let L|K be a finite Galois field extension with Galois

group G and n := exp(G). Then L has a co-Galois grading over K if and

only if the following conditions are satisfied :

(1) |µn(L)| = n and |µer(n)(K)| = er(n).

(2) |H1(G,µn(L))| = |µn(K)| |G|/n.
In the cyclic case condition (1) in 4.3 is sufficient:

Theorem 4.4. Let L|K be a finite cyclic field extension of degree n.
Then L has a unitary grading (which is necessarily a co-Galois grading) if

and only if |µn(L)| = n and |µer(n)(K)| = er(n).

Proof. Let the conditions on the roots of unity be satisfied. We have
to prove that condition (2) of Theorem 4.3 is also satisfied, which means
|H1(G(L|K), µn(L))| = |µn(K)|. Let σ be a generator of the Galois group
G := G(L|K). Then the cohomology group H1(G,µn(L)) is the homology
of the complex

µn(L)
σ/ id−→ µn(L)

N−→ µn(L)

of finite groups where N is the norm x 7→ ∏n−1
j=0 σ

jx. It follows from the
Index Satz that

|H1(G,µn(L))| = |kerσ/id| |cokerN|/|µn(L)| = |µn(K)| |cokerN|/n.
It remains to show that |cokerN| = n, i.e. µn(L) belongs to the norm-1-group
of L|K. But this is verified by the following (probably well known) lemma.

Lemma 4.5. Let L|K be a finite field extension of degree n. Then µn(L)
is contained in the norm-1-group of L|K.

Proof. It is sufficient to show: If ζ ∈ L is a root of unity of prime power
order pα > 1 and if pα divides n, then NL

K(ζ) = 1. Consider the subfield

K[ζ] and let m := [K[ζ] : K]. Then m |n and NL
K(ζ) = N

K[ζ]
K (NL

K[ζ](ζ)) =

N
K[ζ]
K (ζn/m) and ζn/m ∈ µm(K[ζ]). Therefore, we may assume additionally

L = K[ζ]. Now, K[ζ]|K is a Galois extension. Its Galois group is a subgroup



96 H. Brenner et al.

of the automorphism group Aut(〈ζ〉) = (Z/Zpα)× and its order m divides
pα−1(p− 1), i.e. m = pβt, β < α, t | (p− 1).

It suffices to prove N(ζ)pα−β
:= N

K[ζ]

K[ζpα−1
]
(ζ)pα−β

=1. Then K[ζ]|K[ζpα−1

]

is a Galois extension of degree pβ and its Galois group G is a subgroup of
1 + Zp/Zpα ⊆ (Z/Zpα)×.

First let p ≥ 3. Then G = 1 + a, a := Zpα−β/Zpα and N(ζ)pα−β
=

(
∏

σ∈G σζ)
pα−β

= ζpα−βS , S :=
∑

j∈a
(1 + j) = pβ +

∑
j∈a

j = pβ since
∑

j∈a
j = 0, hence N(ζ)pα−β

= ζpα−βpβ
= 1.

Now let p = 2 and α ≥ 2. Then 1 + Z2/Z2α is the product of the cyclic
subgroups {±1} and 1 + Z4/Z2α. The subgroups of order 2β are 1 + a,
a := Z2α−β/Z2α (if β ≤ α−2) and the groups (1+α)⊎−(1+a)(1+x) with
a := Z2α−β+1/Z2α and a fixed x ∈ Z4/Z2α, (1 + x)2 − 1 = x(2 + x) ∈ a.

In the first case N(ζ)2
α−β

= ζ2α−βS with S :=
∑

j∈a
(1 + j) = 2β +

∑
j∈a

j = 2β + 2α−1 if β > 0 (and S = 1 if β = 0), hence N(ζ)2
α−β

= 1. In

the second case N(ζ)2
α−β

= ζ2α−βS with S := −(
∑

j∈a
j)x − 2β−1x, hence

ζ2α−βS = ζ−2α−1x = 1.

In general, condition (1) in Theorem 4.3 is not sufficient for the existence
of a co-Galois grading of L|K, even in the abelian case. For instance, the
Galois extension Q[

√
−3,
√
−19] ⊆ Q[ζ32·19] with Galois group Z3 × Z9 has

no co-Galois grading but ζ9 ∈ Q[ζ32·19] and ζ3 ∈ Q[
√
−3,
√
−19].

If the Galois group G of L|K is abelian and contains a subgroup isomor-
phic to Zn × Zn, n = exp(G), then L|K has a co-Galois grading (if and)
only if L|K is a Kummer extension, i.e. |µn(K)| = n.

Also, if |µn(K)| = n and L|K has a co-Galois grading then G is neces-
sarily abelian, hence L|K is a Kummer extension. It follows, quite generally,
that for a finite Galois and co-Galois extension L|K with Galois group G
the co-Galois extension L|K[ζn] (n = exp(G)) is a Kummer extension. Since
an abelian extension L|K has a co-Galois grading if and only if every cyclic
subextension L′|K, L′ ⊆ L, has such a grading, Theorem 4.4 is useful also
in this more general setting.

With respect to Lemma 4.5 the group µn(K) = H0(G,µn(L)) can also

be interpreted as the modified cohomology group Ĥ0(G,µn(L)) (in the sense

of Tate). Since Ĥ1(G,µn(L)) = H1(G,µn(L)) condition (2) in Theorem 4.3
can be written as

h(G,µn(L)) :=
|Ĥ0(G,µn(L))|
|Ĥ1(G,µn(L))|

=
n

|G| ,

n = exp(G). Since for G cyclic and for the finite G-module µn(L), the
quotient h(G,µn(L)) (called the Herbrand quotient) is always 1, we get
Theorem 4.4 in a more conceptual way. Let us also mention the classical
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description of the cohomology group Ĥ1(G,µn(L)) = H1(G,µn(L)) as

Ĥ1(G,µn(L)) = L×n ∩K×/K×n

derived from the exact sequence 1 → µn(L) → L× n→ L×n → 1 and

Ĥ1(G,L×) = 1.
If L|K is an extension of finite fields with |K| = q and |L| = qn then

|µer(n)(K)| = er(n) is equivalent with q ≡ 1 mod er(n). Of course, this
condition implies qn ≡ 1 modn, i.e. |µn(L)| = n. Theorem 4.4 has therefore
the following corollary which can also be proved more directly.

Corollary 4.6. An extension L|K of finite fields of degree n with

q = |K| has a unitary grading if and only if q ≡ 1 mod er(n). In this case,
the grading is a co-Galois grading with cyclic grading group and in particular

essentially unique.

Example 4.7. A cyclotomic field Q[ζn] over Q can have a co-Galois
grading only in the case er(ϕ(n)) ≤ 2 which implies n | 24. In this case it has
a co-Galois grading for trivial reasons (cf. also [1, Corollary 7.4.5]).

A little more complicated is to determine the n for which Q[ζn]|Q has a
unitary (not necessarily co-Galois) grading. This is the case exactly for

n = 2α · 3β , α ∈ N, β ∈ {0, 1}.
To see this, one can use the following strategy (for a more detailed account
see [5]): Let L := Q[ζn] be a cyclotomic field which is unitarily D-graded
over Q. First consider the case that n = pα is a prime power. For p = 2
there is nothing to prove, so let p ≥ 3. By considering roots of unity one gets
(pα − pα−1) | 2pα, which yields p = 3. Because the cyclic extension Q[ζ9]|Q
contains the real subfield Q[ζ9] ∩ R of degree 3 over Q we get n = 3.

Now we treat the general case. We can assume that n is even, n > 2
and ϕ(n) |n. We show that ϕ(n) has to be a power of 2, i.e. n = 2αp1 · · · pr

with Fermat primes pj , j = 1, . . . , r. Assume there is an odd prime divisor p

of ϕ(n). Then there exists a subgroup D̃ of D of order p and Q[ζp] ⊆ L
D̃

.
But this is a contradiction. Hence the grading group D is a 2-group and
moreover exp(D) ≤ 2α. Now let D = D1 × · · · × Ds be a decomposition
of D into cyclic groups. Then the subfields LDj

, j = 1, . . . , s, are linearly
disjoint over Q. Hence D has to be of the form D ∼= Z2e×Z2×· · ·×Z2 with
2e = exp(D). This also yields exp(G(L|Q)) ≤ exp(D).

If α = 1 we get obviously n = 6 and for α = 2 one easily checks that
n = 4 or n = 12. Now let α ≥ 3. By comparing the Galois group

G(L|Q) = (Z/Zn)× ∼= Z2 × Z2α−2 × Zp1−1 × · · · × Zpr−1

and the grading group D one finds that n = 2α (· 3) · 5 (the factor 3 is
optional) and exp(D) = 2α is the only critical case. Then we consider the
tower of fields Q ⊆ Q[ζ2α] ⊆ LZ2α ⊆ L. By Galois theory we see that
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LZ2α ∩ Q[ζ5] = Q[
√

5]. Hence E := Q[i,
√

2,
√

5] ⊆ LZ2α and G(E|Q) ∼=
Z2 × Z2 × Z2. But this is a contradiction to G(LZ2α |Q) ∼= Z2α−2 × Z4.
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