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1. Introduction. Mahler’s measure of a polynomial f , denoted by
M(f), is defined as the product of the absolute values of those roots of f
that lie outside the unit disk, multiplied by the absolute value of the leading
coefficient. If f(x) = b

∏d
i=1(x − αi), then M(f) = |b|∏d

i=1 max{1, |αi|}. If
f ∈ Z[x], then M(f) ≥ 1 and it is a result of Kronecker that for f ∈ Z[x],
M(f) = 1 if and only if f is a product of a power of x and cyclotomic
polynomials. In 1933, D. H. Lehmer [3] asked if for every ε > 0 there exists
fε ∈ Z[x] such that 1 < M(fε) < 1 + ε. This is known as Lehmer’s question

and remains an open problem. For an algebraic number α, we let mα,Z be
the minimal polynomial of α over Z and define M(α) ≡ M(mα,Z). It follows
that for an algebraic number α that is not an integer, M(α) ≥ 2. An alge-
braic integer α 6∈ Z is said to be reciprocal if 1/α is a Galois conjugate of α.
Chris Smyth [5] proved that amongst all nonreciprocal, nonzero algebraic
integers the smallest Mahler measure is attained by the roots of x3 − x− 1.
A. Schinzel [4] proved that if f is monic of degree d satisfying f(0) = ±1,
f(±1) 6= 0, and all roots of f real, then

M(f) ≥
(

1 +
√

5

2

)d/2

.

More recently F. Amoroso and R. Dvornicich [1] have extended the work
of Schinzel [4] by establishing that for an algebraic number α, different from
zero and the roots of unity, contained in an abelian Galois extension of Q,

M(α) ≥ 5[Q(α):Q]/12.

In [2], F. Amoroso and U. Zannier establish the following: Let K be any

algebraic number field and let L be any abelian extension of K. Then for
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any nonzero algebraic number α which is not a root of unity , we have

log

(

M(α)

[Q(α) : Q]

)

≥ C2(K)

D

(

log(2D)

log log(5D)

)−13

where D = [L(α) : L] and C2(K) is a positive constant depending only on K.
In this work, for m ∈ N, m ≥ 3, D2m is a group with presentation

〈σ, τ | σm = τ2 = 1, τστ = σ−1〉. A group G is said to be dihedral if there
exists m ∈ N with m ≥ 3 such that G ≈ D2m. This article establishes the
following.

Theorem 1. Amongst all polynomials in Z[x] whose splitting fields over

Q are contained in dihedral Galois extensions of Q, the lowest Mahler mea-

sure (other than 1) is attained by x3 − x − 1.

Since a finite dihedral extension of Q of degree 4m, m ≥ 2, is a quadratic
extension of an abelian extension, by [2] we should expect, in principle, for
such a result to exist. However, it is not known to the author if the constant
C2(K) in Theorem 1 of [2] is strong enough to result in Theorem 1 provided
here, and our Theorem 1 is attained by different methods than those found
in [2].

Amongst the absolute values in a place v of an algebraic number field K,
two will play a role in the development of Theorem 1. If v is Archimedean,
let ‖ · ‖v denote the unique absolute value in v which restricts to the usual
Archimedean absolute value on Q. If v is non-Archimedean and v | p, let ‖·‖v

denote the unique absolute value in v restricting to the usual p-adic absolute
value on Q. For each place v of K, let Kv and Qv denote the completions of
K and Q with respect to v, and define the local degree as dv ≡ [Kv : Qv].

Let | · |v = ‖ · ‖dv/d
v .

The absolute values | · |v satisfy the product formula: if α ∈ K×, then
∏

v |α|v = 1. The absolute (logarithmic) Weil height of α is defined as h(α) =
∑

v log+ |α|v where the sum is over all places v of K. Because of the way
in which the absolute values | · |v are normalized, the absolute Weil height
of α does not depend on the field K in which α is contained. If αi and αj

are algebraic integers, then h(αi · αj) ≤ h(αi) + h(αj), and if αi and αj are
Galois conjugates, then h(αi) = h(αj). Also, if α is an algebraic integer,
then [Q(α) : Q]h(α) = log M(α).

In this article, K/Q will be a finite Galois extension. If α ∈ K, HQ(α)

will denote the subgroup of Aut(K/Q) fixing α. B1, . . . , Bt (where t ∈ N)
will be the prime ideal divisors of 2OK, e their common ramification in-
dex, and f their common residue class degree. For i ∈ {1, . . . , t}, let ZBi

be the decomposition group of Bi. If 2 does not ramify in K, then for
i ∈ {1, . . . , t}, ΦBi will denote the Frobenius automorphism of the exten-
sion (OK/Bi)/(Z/2Z). Since Aut(K/Q) acts transitively by conjugation on
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the ZBi , it is sufficient for our purpose to explicitly consider only the higher
ramification groups of B1. We thus establish the following notations. Let
G0 be the inertia group of B1, and for i ∈ N, let Gi be the ith ramification
group of B1. We have |G0| = e, G0 E ZB1

, ZB1
/G0 is cyclic of order f ,

G1 E G0 is the unique Sylow-2 subgroup of G0, |G0/G1| divides 2f − 1, and
for i ∈ N, Gi+1 E Gi, and Gi/Gi+1 is of exponent 2. Also, ZB1

/G0 is the
Galois group, GB1

, of the cyclic Galois extension (OK/B1)/(Z/2Z).

2. Outline of the proof of Theorem 1. This section provides an
overview of the proof of Theorem 1. The first step, carried out in Section 3,
is the consideration of dihedral Galois extensions of Q of degrees not divisible
by 4. Lemma 1 establishes that we need not consider primitive elements of
Galois extensions, and Lemma 2 concerns Galois extensions of Q of degree
2p where p is a prime number. Lemma 2 is used as the base case for an
induction proof of Proposition 1 establishing M(x3−x−1) as a lower bound
for the Mahler measures, different from 1, in dihedral Galois extensions of Q
of degrees not divisible by 4. Section 3 concludes by pointing out that the
Galois group of x3 − x − 1 is dihedral.

Section 4 begins the analysis of dihedral Galois extensions of Q of de-
grees divisible by 4. We combine the structure of the ZBi as described in
the introduction, assumptions allowed by the results of Smyth and Schinzel
together with the Fundamental Theorem of Galois Theory to identify im-
portant allowable assumptions that are used in later sections.

Section 5 establishes Propositions 2 and 3 which constitute the funda-
mental method of drawing conclusions about the height of an algebraic num-
ber from information about the decomposition groups ZBi . These Proposi-
tions are almost obvious to prove, but the language chosen for Proposition 2
along with the Archimedean results described by Lemmas 3, 4, and 5 allow
for the exact nature of our Theorem 1.

Section 6 concerns algebraic integers of degrees ≥ 10 in dihedral Galois
extensions of Q. Proposition 4 establishes lower bounds for the height in
the case that 2 does not ramify in K. Proposition 5 establishes a lower
bound for the height in the case that 2 ramifies in K with ramification
index 2. This case is separated out from the cases in Proposition 7 as it
will be used in Section 7. The cases of larger ramification index are covered
jointly by Propositions 6 and 7. Proposition 7 is divided into five cases:
e ≤ [Q(α) : Q]/4, 3e = [Q(α) : Q], 2e = [Q(α) : Q], e = [Q(α) : Q], and
e = 2[Q(α) : Q]. These cases together with the assumptions allowed from
previous sections establish Theorem 1 in the case of [Q(α) : Q] ≥ 10.

Section 7 concerns the cases [Q(α) : Q] ∈ {4, 6, 8}. This section once
again uses the structure of ZBi to obtain lower bounds on the height. Since
[Q(α) : Q]h(α) = log M(α), in order to achieve the desired lower bound of
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M(x3 − x − 1) we must use Lemmas 3, 4 and 5 to obtain improved esti-
mates for the quantity A defined by equation (1) in Proposition 2. Section
7 is thus complex in that we simultaneously consider possibilities for the
angular and radial distribution of the conjugates of α together with the
possibilities for the ZBi .

3. Dihedral Galois groups of degrees not divisible by 4. As a nec-
essary step, dihedral extensions of degrees not divisible by 4 are considered
first. Let m ∈ N, m ≥ 3 and G = 〈σ〉 ⋊̺ 〈τ〉 ≈ D2m. The distinct elements
of G are 1, σ, σ2, . . . , σm−1, τ, στ, . . . , σm−1τ . Consequently, if a subgroup H
of a dihedral group G is of order 3 or larger, then H ∩ 〈σ〉 6= {1}. For a
reciprocal algebraic integer α 6∈ Z, [Q(α) : Q] is even.

Let K be a non-totally real finite Galois extension of Q and fix an embed-
ding η of K into C. There exists ξ ∈ Aut(K/Q) corresponding to complex
conjugation with respect to η. Suppose that ξ ∈ C(Aut(K/Q)). Then, for
all embeddings of K into C, ξ corresponds to complex conjugation. The sub-
field of K fixed by ξ is thus totally real. Let α ∈ OK be nonreal and different
from the roots of unity. By the result of Kronecker, there exists a Galois
conjugate γ of α such that β ≡ γ · ξ(γ) > 1. Q(β) is totally real. Since
ξ ∈ C(Aut(K/Q)), 2[Q(β) : Q] ≤ [Q(γ) : Q], so h(β) ≤ 2h(γ). It follows
that M(β) ≤ M(α). By the result of Schinzel, M(x3 − x − 1) < M(α).
As a result, we only consider nonabelian algebraic integers. It is elemen-
tary to prove that the quotients of dihedral groups by normal subgroups
are either abelian or dihedral. Consequently, by the Fundamental Theorem
of Galois Theory, we only consider elements in dihedral extensions whose
Galois closures are dihedral extensions of Q.

Lemma 1 (Primitive elements in Galois extensions). Let K/Q be a non-

abelian, non-totally real , finite Galois extension. Let ω ∈ OK be a primitive

element. Then there exists a nonprimitive element β ∈ O
×
K, different from

the roots of unity , such that M(β) ≤ M(ω).

Proof. The element ω is not a root of unity. Let η : K →֒ C be an
embedding and let ξ ∈ Aut(K/Q) correspond to complex conjugation with
respect to η. By the result of Kronecker, there exists a Galois conjugate γ
of ω such that β = γ · ξ(γ) > 1. Moreover, h(β) ≤ 2h(ω). Since β ∈ R and K
is not totally real, [K : Q(β)] ≥ 2. Thus [Q(β) : Q]h(β) ≤ 2[Q(β) : Q]h(ω) ≤
[Q(ω) : Q]h(ω).

Lemma 2 (Galois extensions of Q of degree 2p). Let p ∈ N be a prime.

Let K/Q be a Galois extension of degree 2p. If ω ∈ O
×
K is not a root of 1

then M(x3 − x − 1) ≤ M(ω).

Proof. If p = 2 then Aut(K/Q) is abelian. By Lemma 1 and the result of
Schinzel, we can assume that d ≡ [Q(ω) : Q] ∈ {1, 2, p}. If d = 1 then ω ∈ Z



Mahler measure of dihedral extensions 205

and M(ω) ≥ 2. If d = 2, then ω is an abelian algebraic integer different from
the roots of unity. If d = p and p 6= 2, then the result of Smyth yields the
assertion.

Proposition 1 (Dihedral Galois groups not divisible by 4). Let m ∈ N
be odd and m ≥ 3. Let K/Q be a Galois extension with G ≡ Aut(K/Q) =
〈σ〉⋊̺ 〈τ〉 ≈ D2m. If ω ∈ O

×
K is not a root of 1, then M(x3−x−1) ≤ M(ω).

Proof. By the result of Schinzel, we assume that K is not totally real. The
proof will be by induction on the number of prime factors of 2m, counting
multiplicity. By Lemma 2, if m is a prime, M(x3−x−1) ≤ M(ω). Let n ∈ N
be the number of prime factors of 2m, counting multiplicity. Assume that
for all l ∈ N, l ≥ 3 such that 2l has fewer than n prime factors, counting
multiplicity, if F/Q is a Galois extension such that Aut(F/Q) ≈ D2l ≈
〈β〉 ⋊φ 〈η〉 and γ ∈ O

×
F is not a root of 1, then M(x3 − x − 1) ≤ M(γ). By

Lemma 1, we can assume that ω is not a primitive element. If [Q(ω) : Q]
is odd then, by the result of Smyth, M(x3 − x − 1) ≤ M(ω). If [Q(ω) : Q]
is even, then HQ(ω) contains a nontrivial subgroup of 〈σ〉. Consequently, by
the Fundamental Theorem of Galois Theory, either ω ∈ OV where V is a
dihedral Galois extension of Q of order containing fewer than n prime factors
(counting multiplicity) or ω is abelian. Hence, by the induction hypothesis,
M(x3 − x − 1) ≤ M(ω).

The polynomial x3 −x−1. Let K be the splitting field of the polynomial
f(x) = x3−x−1. Then K/Q is a Galois extension and [K : Q] ∈ {3, 6}. The
discriminant of f is −23, (−23)1/2 ∈ K, and [Q(−23)1/2 : Q] = 2. Hence,
2 | [K : Q] and thus [K : Q] = 6. Consequently, Aut

(

K/Q
)

≈ S3 ≈ Z/(3Z)⋊̺

Z/2Z. We thus know, by Proposition 1, that amongst all polynomials in
Z[x] whose splitting fields are contained in dihedral Galois extensions of Q
of degree not divisible by 4, x3 − x − 1 has the smallest Mahler measure
(other than 1).

4. Subgroups of dihedral groups. By Section 3, we restrict to con-
sideration of dihedral Galois groups of orders divisible by 4. The subgroups
of such groups will be used in the proof of Theorem 1 and the purpose of this
section is to identify relevant properties of these subgroups. If m ∈ N, m ≥ 2
and K/Q is a Galois extension such that G=Aut(K/Q)=〈σ〉⋊̺ 〈τ〉≈D2·2m,
then the distinct elements of G are 1, σ, σ2, . . . , σ2m−1, τ, στ, . . . , σ2m−1τ . It
follows that if H ≤ G and |H| ≥ 3 then H ∩ 〈σ〉 6= {1}. The elements
of G of order 2 are σm and σiτ for i ∈ {0, . . . , 2m − 1}, and the center
of G is 〈σm〉. If H E 〈σ〉, then H is characteristic in 〈σ〉 E G so that
H ⊳ G. For i ∈ {0, . . . , 2m − 1}, NG(〈σiτ〉) = 〈σm, σiτ〉 and [NG(〈σiτ〉) :
〈σiτ〉] = 2. The cyclic subgroups of G are the subgroups of 〈σ〉 and 〈σiτ〉
for i ∈ {0, . . . , 2m−1}. If H < G is such that there exist i ∈ {0, . . . , 2m−1}
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and σiτ ∈ H, then [NG(H) : H] = 2 so that either [G : H] = 2 or H 5 G. As
a result, if G0 * 〈σ〉, then f ≤ 2, and if f ≥ 3, then G0 E 〈σ〉 and ef ≤ 2m.

Let η : K →֒ C be an embedding and let ξ ∈ G correspond to complex
conjugation with respect to η. By Section 3, assume ξ 6∈ C(G). If α ∈ OK

is reciprocal such that K is the Galois closure of Q(α), we can assume,
by Lemma 1, the above remarks, and the Fundamental Theorem of Galois
Theory, that there exists i ∈ {0, . . . , 2m − 1} such that HQ(α) = 〈σiτ〉.
Consequently, NG(HQ(α)) = 〈HQ(α), σ

m〉 and [NG(HQ(α)) : HQ(α)] = 2. It
then follows from the Fundamental Theorem of Galois Theory that σm(α) =
1/α, [Q(α) : Q] = 2m, and that the only Galois conjugates of α in Q(α)
are α and 1/α. Since ξ 6∈ C(G), we can deduce, using Galois theory and
the above remarks, that α can have at most two Galois conjugates on the
Archimedean unit circle. Suppose there exists j ∈ N such that Q(α2j−1

) =

Q(α) but Q(α2j
) ( Q(α). Then −α2j−1

is a Galois conjugate of α2j−1

and

H
Q(α2j−1

)
= HQ(α). Since α2j−1

and 1/α2j−1

are the only Galois conjugates

of α2j−1

in Q(α2j−1

), we have a contradiction. Consequently, for a Galois

conjugate γ of α (γ 6= α) and for all j ∈ N, γ2j 6= α2j
.

5. Dedekind’s theory and Mahler measure. Propositions 2 and 3
below allow for the use of Dedekind’s theory in the analysis of the Mahler
measure of algebraic integers. In Proposition 2, we will use the fact that if
K is an algebraic number field and α ∈ O

×
K, then, for all non-Archimedean

places v, |α|v ≤ 1 and h(α) =
∑

v|∞ log+ |α|v. We recall the useful fact that
if D1, . . . , Dt are distinct prime ideals of OK then D1 · · ·Dt = D1 ∩ · · · ∩Dt.

Proposition 2. Let m, n ∈ N. Let ω ∈ Q
×

be an algebraic integer and

let ω1, . . . , ωn be n distinct Galois conjugates of ω. For each k ∈ {1, . . . , m}
and j ∈ {1, . . . , n} let ck ∈ Z − {0} and let bj,k ∈ N ∪ {0} be such that
∑n

j=1

∑m
k=1 bj,k ≥ 1. Define

δ ≡
m

∑

k=1

ck

n
∏

j=1

ω
bj,k

j , Mj ≡ max{bj,k | 1 ≤ k ≤ m},

M ≡
n

∑

j=1

Mj , s ≡
∏

v∤∞

|δ|v, L ≡
m

∑

k=1

|ck|.

For each place v |∞, let av ∈ R be defined via

‖δ‖v = av

n
∏

j=1

max{1, ‖ωMj

j ‖v}

and let

(1) A ≡
∏

v|∞

adv/d
v .
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If δ 6= 0, then

sA ≤ 1, A ≤ L and Mh(ω) = log(1/sA).

Proof. By the triangle inequality, we have av ≤ L for all v |∞, so that
A ≤ L.

By the product formula,
∑

v log |δ|v = 0. Since
∑

v∤∞ log |δ|v = log s, we

have
∑

v|∞ log |δ|v = − log s. At this point, we remember that ‖·‖dv/d = |·|v.
Fix v |∞. Then ‖δ‖v = |δ|d/dv = av

∏n
j=1 max{1, ‖ωj‖Mj

v }. Consequently,

log |δ|v = (dv/d)
(

log av +
n

∑

j=1

Mj log+ ‖ωj‖v

)

.

Summing over all the Archimedean places, we obtain

∑

v|∞

log |δ|v =
∑

v|∞

log adv/d
v +

∑

v|∞

n
∑

j=1

Mj log+ |ωj |v.

Using the Galois action on places gives

log(1/s) = log A + M
∑

v|∞

log+ |ωj |v.

Since h(ωi) = h(ωj) for all i, j ∈ {1, . . . , n}, we obtain log(1/sA) = Mh(ω).

Proposition 3. Let K/Q be a finite Galois extension. Let ω ∈ O
×
K. Let

p ∈ N be prime. Let D1, . . . , Dt be the distinct prime ideal divisors of pOK.

Let e be the common ramification index of the Di. Let a1, . . . , at ∈ N ∪ {0}.
If ω ∈ ∏t

i=1 D
ai
i , then

∑

v|p

log |ω|v ≤ (− log p) ·
(

1

et

)

·
(

t
∑

i=1

ai

)

.

Proof. There exists a one-to-one correspondence between the prime ideal
divisors of pOK and the places of K extending the unique place of Q con-
taining the usual p-adic absolute value. We have pOK = D

e
1 · · ·De

t . For
i ∈ {1, . . . , t} let vDi be the exponential valuation associated to Di. Then
vDi(p) = e. Let vi denote the place of K defined by φ ∈ vi if and only if

there exists ̺ ∈ (0, 1) such that for all γ ∈ K×, φ(γ) = ̺vDi
(γ). Let ‖ · ‖vi

be the unique absolute value in vi such that ‖p‖vi = 1/p. The ̺ associated
to ‖ · ‖vi is 1/ e

√
p. The local degrees are all equal and their sum is [K : Q].

Consequently, each local degree is [K : Q]/t and the ̺ associated to | · |vi is
1/ et

√
p. Let πi ∈ Di be such that |πi|vi is a generator of the valuation group

of | · |vi . Then vDi(πi) = 1 and |πi|vi = 1/ et
√

p. For all i ∈ {1, . . . , t} we have

|ω|vi ≤ |πi|ai
vi

. As a result,
∏

v|p |ω|v ≤
∏t

i=1(1/ et
√

p)ai .



208 J. Garza

Lemma 3. Let ‖ · ‖∞ be the usual Archimedean absolute value on C. Let

z = reiθ ∈ C be such that θ ∈ [−π/3, π/3]. Then ‖z− 1‖∞ ≤ max{1, ‖z‖∞}.
Proof. If ‖z‖∞ ≤ 1 the conclusion is trivial. Assume ‖z‖∞ > 1. We have

reiθ = r cos θ + ir sin θ, Re z > 0.5 and |Re(z − 1)| < |Re z|. As Im(z − 1)
= Im z,

‖z − 1‖2
∞ = (Re(z − 1))2 + (Im z)2 ≤ (Re z)2 + (Im z)2 = ‖z‖2

∞.

Lemma 4. Let ‖ · ‖∞ be the usual Archimedean absolute value on C. Let

z = reiθ be such that θ ∈ [π/2, 3π/2]. Then

(2) ‖z − 1‖∞ ≤
√

2 ·
√

1 − cos θ · max{1, ‖z‖∞}.
Proof. If ‖z‖∞ ≤ 1, the conclusion is trivial. Assume ‖z‖∞ > 1. Let

a = tan θ. Then cos θ = −1/
√

a2 + 1. We have z = Re z + i(aRe z) and
‖z‖2

∞ = (a2 + 1)(Re z)2. Inequality (2) is equivalent to

0 ≤ (a2 + 1)(2 +
√

a2 + 1)(Re z)2 + 2
√

a2 + 1 · Re z −
√

a2 + 1.

Let A = (a2 + 1)(
√

a2 + 1 + 2), B = 2
√

a2 + 1, C = −
√

a2 + 1, and
f(x) = Ax2 + Bx + C. Then f(−1/

√
a2 + 1) = 0, f(0) < 0 and f(1) ≥ 0.

By the Intermediate Value Theorem it follows that if Re z ≤ −1/
√

a2 + 1 =
cos θ, then

‖z − 1‖∞ ≤
√

2 +
2√

a2 + 1
· ‖z‖∞.

Since ‖z‖∞ ≥ 1, Re z ≤ −1/
√

a2 + 1 and we have inequality (2).

Lemma 5. Let ‖ · ‖∞ be the usual Archimedean absolute value on C. Let

z = reiθ be such that θ ∈ [π/3, π/2] ∪ [−π/2,−π/3]. Then inequality (2)
holds.

Proof. If ‖z‖∞ ≤ 1 the conclusion is trivial. Assume ‖z‖∞ ≥ 1. Let
a = tan θ. Then cos θ = 1/

√
a2 + 1. We have z = Re z + i(aRe z), ‖z‖2

∞ =
(a2 + 1)(Re z)2, and ‖z − 1‖2

∞ = (a2 + 1)(Re z)2 − 2Re z + 1. Inequality (2)
is thus equivalent to

0 ≤ (a2 + 1)(
√

a2 + 1 − 2)(Re z)2 + 2
√

a2 + 1 · Re z −
√

a2 + 1.

Let A = (a2 + 1)(
√

a2 + 1 − 2), B = 2
√

a2 + 1, C = −
√

a2 + 1, and
f(x) = Ax2 + Bx + C. Then f(1/

√
a2 + 1) = f(cos θ) = 0. Since θ ∈

[π/3, π/2]∪ [−π/2,−π/3], we have a2 ≥ 3 and therefore A ≥ 0. Since B > 0,
for Re z ≥ cos θ = 1/

√
a2 + 1, f(Re z) ≥ 0.

Lemmas 3, 4, and 5 each have symmetric versions where z + 1 is consid-
ered as opposed to z − 1. These symmetric versions have the same proofs
and will be used in Propositions 9 and 10.
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6. [Q(α) : Q] ≥ 10

Proposition 4. Let m ∈ N, m ≥ 2. Let K/Q be a Galois extension

such that G ≡ Aut(K/Q) = 〈σ〉 ⋊̺ 〈τ〉 ≈ D2·2m. Let α ∈ OK be reciprocal

such that K is the Galois closure of Q(α). If 2 does not ramify in K, then

h(α) ≥ 1
24 log 2. If 2 does not ramify in K and f ≤ 2, then h(α) ≥ 1

6 log 2.

Proof. If f ≤ 2, then α − α4 ∈ 2OK. Since α is a unit, 1 − α3 ∈ 2OK.
By the difference of squares formula, 1 − α6 ∈ 4OK. By Propositions 2
and 3, h(α) ≥ 1

6 log 2. If f ≥ 3 then ΦB1
∈ 〈σ〉 and [G : CG(ΦB1

)] ≤ 2.
Since G acts transitively by conjugation on the set of Frobenius automor-
phisms of the Bi, we may suppose that ΦB1

= · · · = ΦBt/2
. As a result,

ΦB1
(α) − α2 ∈ B1 · · ·Bt/2. Since α is not a root of unity and by the differ-

ence of squares formula, 0 6= ΦB1
(α4)−α8 ∈ B

3
1 · · ·B3

t/2. By Propositions 2

and 3, h(α) ≥ 1
24 log 2.

Proposition 5. Let m ∈ N, m ≥ 2. Let K/Q be a Galois extension

such that G ≡ Aut(K/Q) = 〈σ〉 ⋊̺ 〈τ〉 ≈ D2·2m. Let α ∈ OK be reciprocal

such that K is the Galois closure of Q(α). If 2 ramifies in K and e = 2,
then h(α) ≥ 1

12 log 2.

Proof. Suppose that there exists i ∈ {0, . . . , 2m − 1} such that G0 =
〈σiτ〉. By Section 3, f = 1 or f = 2 and α − α4 ∈ B1 · · ·Bt. Since α is a
unit, 1−α3 ∈ B1 · · ·Bt. By the difference of squares formula, 1−α12 ∈ 4OK.
By Propositions 2 and 3, h(α) ≥ 1

12 log 2.

If e = 2 and there does not exist i ∈ {0, . . . , 2m−1} such that G0 = 〈σiτ〉,
then G0 = G1 = 〈σm〉. Since G acts transitively by conjugation on the inertia
groups of the Bi and σm ∈ C(G), we have α − σm(α) ∈ B

2
1 · · ·B2

t = 2OK.
By Section 3 and the difference of squares formula, 0 6= α2 −σm(α2) ∈ 4OK.
By Propositions 2 and 3, h(α) ≥ 1

4 log 2.

Proposition 6. Let K/Q be a finite Galois extension.Let G=Aut(K/Q).
Let γ ∈ G be such that γ 6= 1 and 〈γ〉 E G. Let B be a prime ideal divisor of

2OK. Suppose that 2 ramifies in K and let e be the ramification index of B.

Suppose that 〈γ〉 is in the nth ramification group of B. Let r ∈ N ∪ {0} be

minimal such that (n + 1) · 2r ≥ e. Let α ∈ OK be such that 0 6= γ(α2r+1

) −
α2r+1

. Then h(α) ≥ 1
2r+2 log 2.

Proof. Since G acts transitively by conjugation on the ramification groups
of the Bi, 〈γ〉 is in the nth ramification group of each of the Bi. Conse-
quently, γ(α) − α ∈ B

n+1
1 · · ·Bn+1

t . By the difference of squares formula,

0 6= γ(α2r+1

) − α2r+1 ∈ 4OK. By Propositions 2 and 3, h(α) ≥ 1
2r+2 log 2.

Proposition 7. Let m ∈ N, m ≥ 5. Let K/Q be a Galois extension such

that G ≡ Aut(K/Q) = 〈σ〉 ⋊̺ 〈τ〉 ≈ D2·2m. Let α ∈ OK be reciprocal such
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that K is the Galois closure of Q(α). If 2 ramifies in K with ramification

index greater than 2, then

(3) M(α) ≥ M(x3 − x − 1).

Proof. Let η : K →֒ C be an embedding and recall the last paragraph of
Section 4.

Case 1: e ≤ [Q(α) : Q]/4. By considering the distinct elements of G,
there exists i ∈ {1, . . . , 2m−1} such that σi ∈ G0. Let r ∈ N be smallest such
that 2r ≥ e. Then 2r < 2e ≤ [Q(α) : Q]/2. As a result, 2r+2 ≤ 2[Q(α) : Q].
By Proposition 6, h(α) ≥ 1

2r+2 log 2, and (3) follows.

Case 2: 3e = [Q(α) : Q]. Since [Q(α) : Q] is even, it follows that 2 | e.
Suppose that σm ∈ G1 and let r ∈ N be smallest such that 2r ≥ e. Then
2r+1 < 4e = (4/3) · [Q(α) : Q]. Since σm(α) = 1/α and α is a unit, it follows
that α2 − 1 ∈ B

2
1 · · ·B2

t . By the difference of squares formula and since α is

not a root of unity, 0 6= α2r+1 − 1 ∈ B
2e
1 · · ·B2e

t . By Propositions 2 and 3
and since 2r+1 < (4/3)[Q(α) : Q], we have h(α) ≥ 3 log 2/(4[Q(α) : Q]), and
(3) follows again.

Suppose that σm 6∈ G1. Then, from Section 3, e = 6 and so [Q(α) : Q]
= 18. Since e = 6, there exists j ∈ {1, . . . , 2m − 1} such that σj ∈ G0.
It follows that 0 6= α − σj(α) ∈ B1 · · ·Bt. From the difference of squares
formula and Section 3, 0 6= α16 − σj(α16) ∈ B

2e
1 · · ·B2e

t . By Propositions 2
and 3, h(α) ≥ 1

32 log 2, and (3) follows.

Case 3: 2e = [Q(α) : Q]. Let r ∈ N be minimal such that 2r ≥ e. Then
2r+1 < 4e. If σm acts as the Frobenius automorphism on the Bi, then e = 6
and [Q(α) : Q] = 12. As a result, σ4(α) − α ∈ B1 · · ·Bt. By the difference
of squares formula, σ4(α16) − α16 ∈ B

14
1 · · ·B14

t . By Propositions 2 and 3,
h(α) ≥ 1

24 log 2, which yields (3).

If σm ∈ G1 then α−σm(α) = α−1/α ∈ B
2
1 · · ·B2

t . Since α is an integer,

α2 − 1 ∈ B
2
1 · · ·B2

t . By the difference of squares formula, α2r+1 − 1 ∈ 4OK.
If f = 1, then α2 − α ∈ B1 · · ·Bt. Since α is a unit, α − 1 ∈ B1 · · ·Bt. By
the difference of squares formula, α2r+1 −1 ∈ 4OK. In either case, (3) follows
from Propositions 2 and 3. Since |G0/G1| divides 2f − 1, we are thus left
with f = 2 and e = 3, which implies that [Q(α) : Q] = 6 < 10.

Case 4: e = [Q(α) : Q]. Then f ∈ {1, 2}. Let r ∈ N be minimal such that
2r ≥ 2e. Since [Q(α) : Q] ≥ 10 and is even, if f = 1, then G is a 2-group,
[Q(α) : Q] ≥ 16 and α−α2 ∈ B1 · · ·Bt. Since α is a unit, 1−α ∈ B1 · · ·Bt.
By the difference of squares formula, 1 − α2[Q(α):Q] ∈ B

2e
1 · · ·B2e

t . From
Propositions 2 and 3, h(α) ≥ log 2/(2[Q(α) : Q]), proving (3).

If f = 2 then the only odd prime power possibly dividing e is 3, and
t = 1. If f = 2 and 3 ∤ e then G is a 2-group, e ≥ 16, σm ∈ G3 and
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α − σm(α) = α − 1/α ∈ B
4
1. Since α is an integer, α2 − 1 ∈ B

4
1. By the

difference of squares formula, α[Q(α):Q] − 1 ∈ B
2e
1 . By Propositions 2 and 3,

h(α) ≥ log 2/[Q(α) : Q] and (3) holds.
If f = 2 and 3 | e, then [Q(α) : Q] ≥ 12 and there exists s ∈ N such that

[Q(α) : Q] = 2s · 3. In this case, σm ∈ G1 and α − σm(α) = α − 1/α ∈ B
2
1.

Since α is a unit, α2 − 1 ∈ B
2
1. Suppose that e = 12. By the difference

of squares formula, α32 − 1 ∈ B28
1 . By Propositions 2 and 3 we deduce

h(α) ≥ 1
24 log 2 and so (3) holds.

If e ≥ 24 then σm ∈ B
3
1 and α − σm(α) = α − 1/α ∈ B

3
1. Since α

is an integer, α2 − 1 = (α + 1)(α − 1) ∈ B
3
1. Since B1 is a prime ideal

divisor of 2OK, we can assume that α+1 ∈ B
2
1. By the difference of squares

formula, α2s+1 − 1 ∈ B
2s+2

1 and α2s+2 − 1 ∈ B
2e
1 . Since 2s+2 = 4[Q(α) : Q]/3

it follows from Propositions 2 and 3 that h(α) ≥ 3 log 2/(4[Q(α) : Q]), and
we obtain (3).

Case 5: e = 2[Q(α) : Q]. Then f = 1, t = 1, G is a 2-group, and
[Q(α) : Q] ≥ 16. Consequently, σm ∈ G3 and α − σm(α) = α − 1/α ∈ B

4
1.

Since α is an integer, α2 − 1 ∈ B
4
1. By the difference of squares formula,

α2[Q(α):Q] − 1 ∈ 4OK. By Propositions 2 and 3, h(α) ≥ log 2/(2[Q(α) : Q]),
and (3) follows.

7. [Q(α) : Q] ∈ {4, 6, 8}
Proposition 8 ([Q(α) : Q] = 4). Let K/Q be a Galois extension such

that G ≡ Aut(K/Q) = 〈σ〉⋊̺ 〈τ〉 ≈ D2·4. Let α ∈ OK be reciprocal such that

K is the Galois closure of Q(α). Then inequality (3) holds.

Proof. The element α is not a root of unity. Let η : K →֒ C be an
embedding and let ξ ∈ G correspond to complex conjugation with respect
to η. By the result of Schinzel, we suppose that K is not totally real and,
by Section 4, that ξ 6∈ C(G). Suppose that α does not have a real Galois
conjugate. By the theorem of Kronecker, we can assume that α has a Galois
conjugate γ such that β = γ ·ξ(γ) > 1. Recall the last paragraph of Section 3.
Since σ2(β) = 1/β, [Q(β) : Q] = 4. We can deduce that M(α) = M(β). It
follows that we may assume α to be real and positive. In this case, M(α) = α.

Case 1: 2 does not ramify in K. By Proposition 4, we assume that
f = 4. Thus, 2OK = B1B2 and Φ2

B1
= Φ2

B2
= σ2. As a result, σ2(α)− α4 =

1/α − α4 ∈ 2OK. Since α is an integer, 1 − α5 ∈ 2OK. By the difference of
squares formula, 1 − α10 ∈ 4OK. Let δ ≡ 1 − α10 and let A be as defined
in (1). By Lemma 3, A ≤

√
2. By Propositions 2 and 3, h(α) ≥ 1

10 log(4/
√

2),
and (3) holds.

Case 2: 2 ramifies in K. If e = 2 and σ2 ∈ G1 then α − σ2(α) =
α − 1/α ∈ 2OK. Since α is an integer, α2 − 1 ∈ 2OK. By the difference of
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squares formula, α4 − 1 ∈ 4OK. By Propositions 2 and 3, h(α) ≥ 1
4 log 2,

proving (3).

If e = 2 and f ≤ 2, then α4 − α ∈ B1 · · ·Bt. Since α is a unit and
the Bi are prime, α3 − 1 ∈ B1 · · ·Bt. By the difference of squares formula,
α12 − 1 ∈ 4OK. Let δ ≡ α12 − 1 and let A be as defined in (1). By Lemma 3,
A ≤

√
2. By Propositions 2 and 3, h(α) ≥ 1

12 log(4/
√

2), and (3) follows.

If e = 4, then σ2 ∈ G1 and α − σ2(α) = α − 1/α ∈ B
2
1 · · ·B2

t . Since
α is an integer, α2 − 1 ∈ B

2
1 · · ·B2

t . By the difference of squares formula,
α8 − 1 ∈ 4OK. By Propositions 2 and 3, h(α) ≥ 1

8 log 2, so (3) holds.

If e = 8, then σ2 ∈ G2 and α−1/α ∈ B
3
1. Since α is an integer, α2 −1 =

(α + 1)(α − 1) ∈ B
3
1. Since B1 is a prime ideal divisor of 2OK, α − 1 ∈ B

2
1.

By the difference of squares formula, α8−1 ∈ 4OK. By Propositions 2 and 3,
h(α) ≥ 1

8 log 2, proving (3).

Proposition 9 ([Q(α) : Q] = 6). Let K/Q be a Galois extension such

that G ≡ Aut(K/Q) = 〈σ〉⋊̺ 〈τ〉 ≈ D2·6. Let α ∈ OK be reciprocal such that

K is the Galois closure of Q(α). Then inequality (3) holds.

Proof. Let η : K →֒ C be an embedding and let ξ ∈ G correspond to
complex conjugation with respect to η. By the result of Schinzel, we can
assume that K is not totally real and, by Section 3, that ξ 6∈ C(G). Recall
the last paragraph of Section 4.

Case 1: 2 ramifies in K. By Proposition 5, we assume e ≥ 3.

If e = 4, then σ3 ∈ G1 and, by Proposition 6, h(α) ≥ 1
8 log 2, so (3)

holds.

If e = 3, then σ2 ∈ G0 and σ2(α) − α ∈ B1 · · ·Bt. By the difference of
squares formula and Section 3, 0 6= σ2(α8) − α8 ∈ B

7
1 · · ·B7

t . By Proposi-
tions 2 and 3, h(α) ≥ 1

12 log 2, yielding (3).

If e = 6 then f = 2 and there exists a unique prime ideal divisor B1

of 2OK. If σ3 ∈ G1, α − σ3(α) = α − 1/α ∈ B
2
1. Since α is an integer,

α2 − 1 ∈ B
2
1. By the difference of squares formula, α16 − 1 ∈ B

14
1 . By

Propositions 2 and 3, h(α) ≥ 1
12 log 2, giving (3). If e = 6 and σ3 6∈ G1,

then G0 ≈ D2·3. By Section 3, we can assume that τ ∈ G1 and τ 6∈ HQ(α).

Thus, 0 6= α − τ(α) ∈ B
2
1. By the difference of squares formula and Sec-

tion 3, 0 6= α8 − τ(α8) ∈ B
14
1 . By Propositions 2 and 3, h(α) ≥ 1

12 log 2,
which proves (3).

Case 2: 2 does not ramify in K. By Proposition 4, we assume that
f ≥ 3. If f = 3 then α − α8 ∈ 2OK. Since α is a unit and the Bi are prime
ideal divisors of 2OK, 1 ± α7 ∈ 2OK. By the difference of squares formula,
1 − α14 ∈ 4OK. By Propositions 2 and 3, h(α) ≥ 1

14 log 2, which proves (3).
If f = 6, then 2OK = B1B2 and Φ3

B1
= Φ3

B2
= σ3. Since α is an integer and
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σ3(α) = 1/α, and the Bi are prime ideal divisors of 2OK, it follows from

Φ3
B1

(α) − α23

= 1/α − α8 ∈ 2OK that 1 ± α9 ∈ 2OK.

Assume that α is not real and is outside the Archimedean unit circle.
Since α is reciprocal of degree 6, α has either two Galois conjugates on the
Archimedean unit circle, or two Galois conjugates that are real and none on
the Archimedean unit circle.

Case 2(a): No real Galois conjugates. Suppose that α has no real Galois
conjugates. Let γ ≡ α9. By considering −γ,−γ, and γ if necessary, assume
that γ is in the first quadrant. By the Fundamental Theorem of Galois The-
ory, there exists a subfield F of Q(γ) that is quadratic over Q. Let g1, g2, g3

be a complete set of distinct coset representatives of HQ(γ) in HF. Since
h(g1(α)g2(α)g3(α)) ≤ 3h(α), 3[Q(g1(α)g2(α)g3(α)) : Q] ≤ [Q(α) : Q], 2 does
not ramify, and g1(α)g2(α)g3(α) is an abelian integer of degree less than or
equal to 2, we assume that g1(γ)g2(γ)g3(γ) = (g1(α)g2(α)g3(α))9 = ±1. It
then follows that γu ≡ γ/γ is a Galois conjugate of γ on the Archimedean
unit circle. Consequently, the argument of either γu or γu is twice that
of γ. Let δ1 ≡ γ − 1 and let A1 be defined as in (1). If γ is in the sector
[0, 17.75π/48], then, by Lemmas 4 and 5,

A1 ≤ 6
√

2 − 2 cos(35.5π/48) · 3
√

2 − 2 cos(17.75π/48).

By Propositions 2 and 3, h(α) ≥ 1
9 log(2/A1), proving (3).

Let δ2 ≡ γ + 1 and let A2 be defined as in (1). If γ is in the sector
[17.75π/48, π/2], then by the symmetric version of Lemma 4 and since γu is
on the Archimedean unit circle,

A2 ≤ 6
√

2 + 2 cos(35.5π/48) · 3
√

2 + 2 cos(17.75π/48).

By Propositions 2 and 3, h(α) ≥ 1
9 log(2/A2), giving (3). This completes the

proof of Case 2(a).

Case 2(b): Real Galois conjugates. Suppose now that γ ≡ α9 has a real
Galois conjugate β. One can assume that β ≤ 1.339/2. Let γ3 be a Galois
conjugate of γ that is not real. By considering −γ3,−γ3, and γ3 if necessary,
we can assume that γ3 is in the first quadrant. Let δ ≡ γ − 1 and let A be
defined as in (1). Suppose γ3 is in the sector [0, π/3]. By Lemma 3, A ≤ 21/3.
By Propositions 2 and 3, h(α) ≥ 1

9 log(2/A), so (3) holds.

Suppose β < 0 and γ3 is in the sector [π/3, π/2]. Let δ ≡ γ + 1 and
let A be defined as in (1). By the symmetric version of Lemma 3, A ≤
31/3(1 + 1/β)1/3. By Propositions 2 and 3, h(α) ≥ 1

9 log(2/A), giving (3).

Suppose β > 0 and γ3 is in the sector [π/3, π/2]. Let δ ≡ γ − 1 and let
A be defined as in (1). Then A ≤ 21/3(1−1/β)1/3. By Propositions 2 and 3,
h(α) ≥ 1

9 log(2/A), which proves (3).
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Proposition 10 ([Q(α) : Q] = 8). Let K/Q be a Galois extension such

that G ≡ Aut(K/Q) = 〈σ〉⋊̺ 〈τ〉 ≈ D2·8. Let α ∈ OK be reciprocal such that

K is the Galois closure of Q(α). Then inequality (3) holds.

Proof. Let η : K →֒ C be an embedding and let ξ ∈ G correspond to
complex conjugation with respect to η. By the result of Schinzel, we can
assume that K is not totally real, and by Section 3, that ξ 6∈ C(G). Recall
the last paragraph of Section 4.

Case 1: 2 ramifies in K. By Proposition 5, we assume e ≥ 4.

If e = 4, then σ4 ∈ G1 and α − 1/α ∈ B
2
1 · · ·B2

t . Since α is an integer,
α2 − 1 ∈ B

2
1 · · ·B2

t . By the difference of squares formula, α8 − 1 ∈ 4OK. By
Propositions 2 and 3, h(α) ≥ 1

8 log 2, which gives (3).

If e = 8, then σ4 ∈ G2 and α − 1/α ∈ B
3
1 · · ·B3

t . Since α is an integer,
α2 − 1 = (α + 1)(α − 1) ∈ B

3
1 · · ·B3

t . Since the Bi are prime ideal divisors
of 2OK, one and hence both of α ± 1 are in B

2
1 · · ·B2

t . By the difference of
squares formula, α8−1 ∈ 4OK. By Propositions 2 and 3, h(α) ≥ 1

8 log 2, and
(3) follows.

If e = 16, then σ4 ∈ G3 and α − σ4(α) = α − 1/α ∈ B
4
1 · · ·B4

t . Since
α is an integer, α2 − 1 ∈ B

4
1 · · ·B4

t . By the difference of squares formula,
α16 − 1 ∈ 4OK. By Propositions 2 and 3, h(α) ≥ 1

16 log 2, proving (3).

Case 2: 2 does not ramify in K. By Proposition 4, we assume that
f ≥ 4 so that ΦB1

∈ 〈σ〉, [G : CG(ΦB1
)] = 2. We may assume ΦB1

=
· · · = ΦBt/2

. Thus, α2 − ΦB1
(α) ∈ B1 · · ·Bt/2. By the difference of squares

formula, α8 − ΦB1
(α4) ∈ B

3
1 · · ·B3

t/2 and α16 − ΦB1
(α8) ∈ B

4
1 · · ·B4

t/2.

Let γ ≡ α8/ΦB1
(α4). Then, since α is a unit, γ − 1 ∈ B

3
1 · · ·B3

t/2 and

γ2 − 1 ∈ B
4
1 · · ·B4

t/2.

It follows from the result of Kronecker that γ is not a root of unity. Since
σ4(γ) = 1/γ, [Q(α) : Q] ≥ 8. Let δ1 ≡ γ − 1 and δ2 ≡ γ2 − 1 and let A1

and A2 be defined as in (1). Since [Q(α) : Q] = 8, by Propositions 2 and 3,
log M(α) ≥ 2

3 log(
√

8/A1) and log M(α) ≥ 1
3 log(4/A2).

Suppose that [Q(γ) : Q] = 8 and that γ has a real Galois conjugate.
Then A1 ≤ 23/4 and (3) holds. Suppose that [Q(γ) : Q] = 16 and that α
has a real Galois conjugate; then K is totally real. Thus, in either case, we
can assume that γ has no real Galois conjugates. If [Q(γ) : Q] = 16 and γ
has a Galois conjugate on the Archimedean unit circle then ξ ∈ C(G) from
Section 3. By Section 3, if [Q(γ) : Q] = 8, there can exist at most two Galois
conjugates of γ on the Archimedean unit circle, in which case there would
exist two real Galois conjugates. Consequently, we can assume that γ has
no Galois conjugates on the Archimedean unit circle. As a result, the Galois
conjugates of γ can be grouped together in sets of four, γ, 1/γ, γ, 1/γ.
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If half the Galois conjugates of γ lie in the sector [3π/4, 5π/4] then
half the Galois conjugates of γ2 lie in the sector [−π/2, π/2]. By Lemma 5,
A2 ≤ 23/4, which implies (3).

We consequently assume that at most 1/4 of the Galois conjugates of γ
lie in the sector [3π/4, 5π/4]. If 1/4 of the Galois conjugates of γ lie in
[5π/6, 7π/6], then 1/4 of the Galois conjugates of γ2 lie in [−π/3, π/3]. By
Lemma 3, A2 ≤ 23/4, and (3) follows.

If all the Galois conjugates of γ lie in the sector [−3π/4, 3π/4], it follows

from Lemmas 3–5 that A1 ≤
√

2 +
√

2, which yields (3). We consequently
assume that 3/4 of the Galois conjugates of γ are in [−3π/4, 3π/4] and 1/4
are in [3π/4, 5π/6]∪ [7π/6, 5π/4]. Suppose that 1/4 of the Galois conjugates

of γ are in [−2π/3, 2π/3]. In this case, by Lemmas 3–5, A1 ≤ 4
√

2 +
√

2 ·
8
√

2 +
√

3 · 8
√

3, and (3) holds.
We consequently assume that 3/4 of the Galois conjugates of γ lie in

the sectors [2π/3, 3π/4] ∪ [−3π/4,−2π/3] and that the other 1/4 lie in
[3π/4, 5π/6] ∪ [7π/6, 5π/4]. Consequently, 1/4 of the Galois conjugates of
γ2 lie in [3π/2, 5π/3]∪ [7π/3, 5π/2] and all of them lie in [−2π/3, 2π/3] from
which it follows that A2 ≤ 33/821/8, giving (3).

Proof of Theorem 1. By the results of Smyth and Schinzel and Proposi-
tions 1, 4, 5, and 7, we assume that [Q(α) : Q] ∈ {4, 6, 8}. Theorem 1 then
follows from the results of Smyth and Schinzel together with Propositions
8–10.
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