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Arithmetic progressions with

common difference divisible by small primes
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N. Saradha (Mumbai) and R. Tijdeman (Leiden)

1. Introduction. For any integer n ≥ 1 let P (n) and p(n) denote the
greatest prime factor and smallest prime factor of n, respectively. Also let
P (1) = p(1) = 1. We consider the equation

(1.1) n(n + d) · · · (n + (k − 1)d) = byl

in positive integers n, k ≥ 2, d > 1, b, y, l ≥ 3 with l prime, gcd(n, d) = 1
and P (b) ≤ k. We write

(1.2) d = D1D2,

where D1 is the maximal divisor of d such that all prime divisors of D1

are congruent to 1 (mod l). Thus D1 and D2 are relatively prime positive
integers such that D2 has no prime divisor which is congruent to 1 (mod l).
Shorey [Sh88] proved that (1.1) implies

(1.3) D1 > 1 if k ≥ C1,

where C1 is a large absolute constant. In [SS01], Saradha and Shorey showed
that C1 = 4 suffices. Thus for all k ≥ 4, there exists a prime ≡ 1 (mod l)
dividing d. Since l ≥ 3, this implies that (1.1) has no solution if d is composed
of the primes 2, 3, and 5 only. For k = 3, Győry [G99] showed that (1.1)
with P (b) < k is impossible. Further, from [SS01], it follows that (1.3) holds
for (1.1) when k = 3 provided 2 or 3 divides d. Shorey and Tijdeman [ST90]
sharpened (1.3) to

(1.4) D1 > C2k
l−2.

The constant C2 turns out to be very small and therefore the above inequal-
ity is trivial for small values of k.
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In [SS01], estimates for D1 which were non-trivial even for small values
of k were given. For example, it was shown that

(1.5) D1 > 1.59θkl/2−3.15 for l ≥ 17,

where

(1.6) θ =

{

1 if l ∤ d,

1/l if l | d.

The reduction in the exponent of k from l − 2 in (1.4) to l/2− 3.15 in (1.5)
is due to using a counting argument of Erdős and Selfridge while covering
small values of k (see [SS01, Lemma 9]). When k ≥ 11380, it was shown in
[SS01, Lemma 7] that

(1.7) D1 > θkl−3+1/l.

The proof of this inequality depends on a graph-theoretic argument due to
Erdős and Selfridge [ES75] and some further refinements in [Sa97]. In this
paper, we improve this graph-theoretic argument (see Lemma 4.2). Using
this improvement we show

Theorem 1.1. Let (1.1) hold with l ≥ 5. Put

E1 = max

(

0.7θkl−3,
lθ

2k
n(l−2)/l

)

, E2 = max

(

0.7θkl−4,
lθ

3k
n(l−3)/l

)

.

(i) Suppose k ≥ 4 and d is divisible by 2 or 3. Then

D1 > E1.

(ii) Suppose 5 | d. Then

D1 > E1 if k ≥ 8 or k = 6 and D1 > E2 if k = 7.

(iii) Suppose 7 | d. Then

D1 > E1 if k ≥ 25 and D1 > E2 if 8 ≤ k ≤ 24.

In [BBGH06], it was shown that (1.1) with 4 ≤ k ≤ 11 and P (b) ≤
k/2 has no solution. This result depends on Galois representation theory of
modular forms. As an immediate consequence of this result and Theorem 1.1
we get the following corollary.

Corollary 1.2. Let (1.1) hold with k ≥ 4, P (b) ≤ k/2 and l ≥ 5. Then

(i) D1 > E1 if 2 or 3 or 5 divides d.
(ii) D1 > E2 if 7 | d.

Remarks. (i) When l = 3, it was shown in [SS01, Theorem 3] that

D1 > 0.41θk1/3.

We do not have any improvement over this.
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(ii) Let k = 3. As mentioned earlier, (1.1) with P (b) < 3 does not hold.
Now let P (b) = 3. Suppose 2 | d. Then n(n + d)(n + 2d) = 3αyl for some
integer α > 0. Hence (n, n + d, n + 2d) = (3αyl

1, y
l
2, y

l
3) or (yl

1, 3
αyl

2, y
l
3) or

(yl
1, y

l
2, 3

αyl
3) for some positive integers y1, y2 and y3. Thus

yl
3 − yl

2 = d or yl
3 − yl

1 = 2d or yl
2 − yl

1 = d.

Now we see that (1.3) holds since the difference of two lth powers is always
divisible by a prime congruent to 1 (mod l). Note that 3 ∤ d since gcd(n, d)
= 1. It is still not known if (1.3) holds in the remaining case of d odd
and 3 ∤ d.

(iii) The constant 0.7 in the definitions of E1 and E2 is obtained from
[SS01, Lemma 5] by taking κ = 7, l ≥ 5 and l′ = 2, 3.

2. Basic lemmas

Lemma 2.1 ([SS01, Lemma 1]). For 0 ≤ i < k, let n + id = aia
′
i, where

ai is a positive integer with P (ai) ≤ k for 0 ≤ i < k. Let S = {a0, . . . , ak−1}.
For every prime p ≤ k with gcd(p, d) = 1, choose aip ∈ S such that p does

not appear to a higher power in the factorization of any other element of S.

Let S1 be the subset of S obtained by deleting from S all aip with p ≤ k and

gcd(p, d) = 1. Then

(2.1)
∏

ai∈S1

ai ≤ (k − 1)!
∏

p|d

p−ordp(k−1)!.

Next we combine [SS05, Lemma 10] and [SS01, Lemma 5] to get

Lemma 2.2. Assume that (1.1) holds.

(i) If

(2.2) D1 ≤ min

(

0.7θkl−3,
lθ

2k
n(l−2)/l

)

,

then the products ai1ai2 with 0 ≤ i1 ≤ i2 < k are all distinct.

(ii) If

(2.3) D1 ≤ min

(

0.7θkl−4,
lθ

3k
n(l−3)/l

)

,

then the products ai1ai2ai3 with 0 ≤ i1 ≤ i2 ≤ i3 < k are all distinct.

We assume (2.2) or (2.3) according to the situation we consider. Under
these assumptions ai’s are distinct.

We need to count the number of ai’s composed of certain primes. Several
counting functions have been used earlier. See [Sa97], [SS01] and [SS05]. Let
2 = p1 < p2 < · · · be the sequence of all primes and q1 < q2 < · · · be the
sequence of primes coprime to d. Let π(k) and πd(k) denote the number
of primes ≤ k and the number of primes ≤ k which are coprime to d,
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respectively. Let C(k, m, α1, . . . , αm, r1, . . . , rh) denote the number of ar’s
not divisible by qαi+1

i for 1 ≤ i ≤ m, not divisible by the primes qm+1, . . . ,
and not by certain integers r1, . . . , rh. Obviously,

(2.4) C(k, m, α1, . . . , αm, r1, . . . , rh)

≥ k −
m

∑

i=1

⌈

k

qαi+1
i

⌉

−
∑

qm<p≤k

⌈

k

p

⌉

−
h

∑

s=1

⌈

k

rs

⌉

,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. For h = 0,
we take the last sum to be 0 and write the function as C(k, m, α1, . . . , αm).

3. Sets with distinct products. For any set S, by aS we mean the
set {ax | x ∈ S}. We say that S has property Pi if the products x1 · · ·xi are
all distinct for any i-tuple x1 ≤ · · · ≤ xi with xj ∈ S for 1 ≤ j ≤ i. If S
has property P2, the products xy with x ≤ y, x, y ∈ S, are all distinct. We
observe that if S has property Pi for some i ≥ 2, then S has property Pj for
any j ≤ i. Suppose (1.1) holds with (2.2); then the set of ai’s has property
P2, by Lemma 2.2.

Lemma 3.1. Let X ⊆ {1, a, . . . , ar} with r ≤ 5 and let n1, β1, . . . , βn1
be

positive integers with

Y =

n1
⋃

i=1

βiX.

Let S ⊆ Y be any subset of Y having property P2. Let Si = βiX ∩ S for

i = 1, . . . , n1 and assume |S1| ≥ |S2| ≥ · · · . Then

(3.1) |S| ≤

{

min{2n1 + 1, n1 + r − 1} if |S1| = 3,

min{2n1, n1 + r} if |S1| = 2.

Proof. Let 1 ≤ i ≤ n1. Let ti be the least non-negative integer such that

atiβi ∈ Si.

Put γi = atiβi. Then Si ⊆ γi{1, a, . . . , a5} and γi ∈ Si. Since S has prop-
erty P2, each Si has property P2. Observe that all the differences of the
exponents of a of pairs of elements from some Si have to be distinct, i.e.,
there are no non-negative integers x1 < y1 and x2 < y2 with

(3.2) γi1a
x1 , γi1a

y1 ∈ Si1 , γi2a
x2 , γi2a

y2 ∈ Si2 and y1 − x1 = y2 − x2,

for some i1 and i2 with 1 ≤ i1, i2 ≤ n1. This is because if (3.2) holds, then

γi1a
x1 · γi2a

y2 = γi1a
y1 · γi2a

x2 ,

contradicting property P2. As S ⊆ {1, a, a2, a3, a4, a5}, only the five dif-
ferences 1, 2, 3, 4, 5 are available. Observe that if |S1| = 4 it generates 6
differences, and if |S1| = 3 then 3 differences. Hence we obtain |S1| ≤ 3 and
|Si| ≤ 2 for i > 1. Thus |S| ≤ 2n1 + 1 if |S1| = 3 and |S| ≤ 2n1 if |S1| ≤ 2.
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Moreover, if S = {1, a, a2, . . . , ar}, then the number of sets Si with |Si| = 2
is at most r − 3 if |S1| = 3 and at most r if |S1| = 2. Thus

|S| ≤ 3 + 2(r − 3) + (n1 − r + 2) = n1 + r − 1

if |S1| = 3, and otherwise

|S| ≤ 2r + n1 − r = n1 + r.

Lemma 3.2. Let X ⊆ {1, a, . . . , ar} with r ≤ 5 and let n1, β1, . . . , βn1
be

positive integers with

Y =

n1
⋃

i=1

βiX.

Let S ⊆ Y be any subset of Y having property P3. Let Si = βiX ∩ S for

i = 1, . . . , n1 and assume |S1| ≥ |S2| ≥ · · · . Then

(3.3) |S| ≤











n1 + 3 if X ⊆ {1, a, a2, a3, a4, a5},

n1 + 2 if X ⊆ {1, a, a2, a3, a4},

n1 + 1 if X ⊆ {1, a, a2}.

Proof. As seen in Lemma 3.1, there exists γi such that Si ⊆ γi{1, a,
. . . , a5} and γi ∈ Si and

|S1| ≤ 3 and |Si| ≤ 2 for i > 1.

Also, there are no positive integers x1, y1 and x2, y2 for which (3.2) holds
for any i1, i2 with 1 ≤ i1, i2 ≤ n1. Further, property P3 implies that there
are no positive integers x, y and z with γi1a

x ∈ Si1 , γi2a
y ∈ Si2 , γi3a

z ∈ Si3

for some i1, i2, i3 with 1 ≤ i1, i2, i3 ≤ n1 such that

x + y = z or x = 2y.

Suppose the first possibility occurs; then

(γi1a
x)(γi2a

y)(γi3) = (γi1)(γi2)(γi3a
z),

contradicting P3. Suppose the second possibility occurs; then,

(γi1a
x)(γi2)

2 = (γi1)(γi2a
y)2,

again contradicting P3. Using the above observations we find that if |S1| = 3,
then |Si| ≤ 1 for i ≥ 2, giving |S| ≤ n1 + 2. This can only happen if r > 2.
Let |S1| = 2. In this case if X ⊆ {1, a, a2, a3, a4}, then |Si| ≤ 1 for i ≥ 2. If
X ⊆ {1, a, a2, a3, a4, a5}, then |S3| ≤ |S2| ≤ 2 and |Si| ≤ 1 for i ≥ 4. The
lemma follows.

4. Lemmas based on graph theory. Let X ≥ 1 and S ⊆ [1, X]
be a set of integers. Let U and V be such that every integer in S can be
expressed as uv with u ∈ U and v ∈ V . We call such a pair of sets (U, V )
a multiplicative covering for S. This construction was first given in [ES75]
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when S = [1, X] and it was refined in [Sa97, p. 157]. Let i ≥ 1 be an integer.
In the lemma below we construct a multiplicative covering (U, V ) for a set
S of integers not divisible by some given prime.

Lemma 4.1. Let i ≥ 1 be an integer and S be the set of positive integers

≤ X not divisible by pi. Take integers m ≥ 1 and T ≥ 1. Let U = U(m, T )
denote the set of integers < T composed of p1, . . . , pm and not divisible by pi.
With every prime pj , j 6= i, let the integer rj(T ) denote the smallest integer

≥ T not divisible by pi with P (rj(T )) = pj. Define

Vj = {w | w ≤ pjX/rj(T ), p(w) = pj and pi ∤ w for 1 ≤ j ≤ m},

Vm+1 = {w | w ≤ X, w = 1 or p(w) ≥ pm+1 and pi ∤ w}.

Put

V =

m+1
⋃

j=1

Vj .

(Note that Vi = ∅ if i ≤ m.) Then

|V | =
m+1
∑

j=1, j 6=i

(

ϕ(p1 · · · pj−1p
(j)
i )

p1 · · · pj−1p
(j)
i

X

rj(T )
+ Ej

)

where for 1 ≤ j ≤ m + 1, j 6= i, we define

p
(j)
i =

{

pi if j < i ≤ m or m < i,

1 otherwise,

and

Ej ≤ max

{

̺(z) −
ϕ(p1 · · · pj−1p

(j)
i )z

p1 · · · pj−1p
(j)
i

}

,

where ̺(z) is the number of integers ≤ z and coprime to p1, . . . , pj−1, p
(j)
i

and the maximum is taken over all z with 0 ≤ z < p1 · · · pj−1p
(j)
i and

gcd(z, p1 · · · pj−1p
(j)
i ) = 1.

We refer to [Sa97] for the above construction. The fact that such a pair
(U, V ) is a multiplicative covering for S can be easily checked.

The following is a refinement of Lemma 3 of [ES75] which depends on
graph theory. Let R be a given set of integers having property P2, i.e. all
products r1r2 with r1 ≤ r2 and r1, r2 ∈ R are distinct. Let (U, V ) be a
multiplicative covering for [1, X]. We draw a bipartite graph GR = GR(U, V )
as follows. The vertices of the bipartite graph are the integers in U and the
integers in V . We draw an edge between a vertex u ∈ U and a vertex v ∈ V
if uv equals an integer r ∈ R. Since R satisfies P2, the graph GR contains
no rectangle. In [ES75], it was shown that ER, the number of edges in GR,
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satisfies

ER ≤ |V | +

(

|U |

2

)

.

We improve the inequality as follows.

Lemma 4.2. Let R be a set of integers having property P2. Let GR be

the graph drawn as above. Then

ER ≤ |V | + |W (U)|,

where W (U) is the set of ratios > 1 of pairs of integers from U .

Remark 4.3. Obviously we have |W (U)| ≤
(|U |

2

)

, but in our applications

|W (U)| is much smaller than
(

|U |
2

)

.

Remark 4.4. By using Lemma 3 of [ES75], it has been shown in [Sa97]
that (1.1) implies that k ≤ 11380 as compared to ≤ 30000 obtained in
[ES75]. It is clear that the improvement obtained in Lemma 4.2 will further
reduce the bound for k.

Proof of Lemma 4.2. We follow the proof of [ES75]. If a pair of edges
emanate from the same vertex, we call the pair a concurrent pair. For i ≥ 1,
let si denote the number of vertices in V from which i edges emanate. Then

ER =
∑

i≥1

isi =
∑

i≥1

si +
∑

i≥2

(i − 1)si ≤ |V | +
∑

i≥2

(

i

2

)

si.

Let us consider a vertex v ∈ V from which i edges emanate. The number
of concurrent pairs is

(i
2

)

. Thus the total number of concurrent pairs in the
graph is

∑

i≥2

(

i

2

)

si.

Let u1, u
′
1, u2, u

′
2 be elements of U such that

u′
1

u1
=

u′
2

u2
.

Suppose u1 and u′
1 are the end points of a concurrent pair of edges, as also

are u2 and u′
2. Then there exist v1, v2 ∈ V such that

u1v1 = r1, u′
1v1 = r2, u2v2 = r3, u′

2v2 = r4

with r1, r2, r3, r4 ∈ R. Hence

r1r4 = u1v1u
′
2v2 = u′

1u2v1v2 = r2r3,

a contradiction. Therefore there can be at most one concurrent pair among
the pairs having the same ratio. Thus the number of concurrent pairs is at
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most |W (U)|. Hence
∑

i≥2

(

i

2

)

si ≤ |W (U)|.

This proves the lemma.

We now specialize R to be the set of ai’s. Under condition (2.2) or (2.3)
we see from Lemma 2.2 that R has property P2 or P3. We apply Lemmas 4.1
and 4.2 to show

Lemma 4.5. Let m, i and T be given positive integers. Suppose the aj’s

are not divisible by pi and are arranged in the increasing order as

(4.1) b1 < b2 < · · · .

Suppose further that the aj’s have property P2. Assume that (U, V ) is a

multiplicative covering for the set S of all integers in [1, bh] not divisible

by pi as constructed in Lemma 4.1. Then

(4.2) bh ≥ α(h − β)

where

α−1 =

m+1
∑

j=1, j 6=i

ϕ(p1 · · · pj−1p
(j)
i )

p1 · · · pj−1p
(j)
i rj(T )

, β = |W (U)| +
m+1
∑

j=1, j 6=i

Ej .

Proof. Let R be the set of bi’s. Then the number of bi’s less than or
equal to bh is h. This number does not exceed the number of edges in GR,
since (U, V ) is a multiplicative covering for S. Thus by Lemma 4.2,

h ≤ |V | + |W (U)|.

Now the result follows from Lemma 4.1 with X = bh.

We apply Lemma 4.5 when 2, 3, 5 or 7 divides d. Recall gcd(n, d) = 1.

Lemma 4.6. Let (1.1) hold. Suppose that the bh’s have property P2.

(i) Let 2 | d. Then (4.2) holds with

(α, β) = (2.571, 2.17), (2.842, 3.17), (3.253, 7.1), (3.349, 8.1).

(ii) Let p(d) = 3. Then (4.2) holds with

(α, β) = (2.4, 3.34), (2.666, 4.34), (2.823, 5.34), (2.909, 6.34), (2.953, 7.34).

(iii) Let p(d) = 5. Then (4.2) holds with

(α, β) = (1.666, 3.6), (2, 4.6), (2.222, 5.6), (2.352, 6.6), (2.769, 10.54),

(3.185, 18.54), (3.262, 20.54), (3.534, 36).

(iv) Let p(d) = 7. Then (4.2) holds with

(α, β) = (1.867, 3.27), (2.074, 4.72), (2.196, 5.72), (2.263, 6.72),

(2.584, 10.86), (2.973, 18.86), (3.407, 38.52).
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Proof. We need only specify the parameters m and T . Then U is the
set of positive integers composed of p1, . . . , pi−1, pi+1, . . . , pm and V is con-
structed as in Lemma 4.1. The numbers α, β are computed from Lem-
ma 4.5.

(i) Let 2 | d. Take i = 1 and (m, T ) = (2, 9), (2, 27), (3, 15), (3, 25), re-
spectively.

(ii) Let p(d) = 3. Take i = 2 and (m, T ) = (1, 8), (1, 16), (1, 32), (1, 64),
(1, 128), respectively.

(iii) Let p(d) = 5. Take i = 3 and (m, T ) = (1, 8), (1, 16), (1, 32), (1, 64),
(2, 9), (2, 18), (2, 27), (4, 21), respectively.

(iv) Let p(d) = 7. Take i = 4 and (m, T ) = (1, 8), (1, 16), (1, 32), (1, 64),
(2, 9), (2, 18), (3, 18), respectively.

5. Application of Lemma 2.1. Inequality (2.1) proves to be basic in
the problems of perfect powers in arithmetic progression, as is evident from
the papers [Sa97], [SS01] and several other papers by Laishram, Mukhopad-
hyaya and Shorey. We refer to the survey article [Sh06] of Shorey for these
references. We apply in (2.1) the lower estimates for bh obtained in Lem-
ma 4.6 to get

Lemma 5.1. Suppose (1.1) holds with (2.2).

(i) The case p(d) = 2 cannot occur.

(ii) Let p(d) = 3. Then k ≤ 124.
(iii) Let p(d) = 5. Then k ≤ 374.
(iv) Let p(d) = 7. Then k ≤ 538.

Proof. We see from Lemma 2.1 that

|S1| ≥ k − πd(k).

Since the ai’s satisfy P1, we get

∏

ai∈S1

ai ≥

k−πd(k)
∏

i=1

bi.

Hence, by Lemma 2.1,

(5.1)

k−πd(k)
∏

i=1

bi ≤ (k − 1)!
∏

p|d

p−ordp(k−1)!.

(i) Let 2 | d. Then

k−π(k)+1
∏

i=1

bi ≤

k−πd(k)
∏

i=1

bi ≤ (k − 1)!/2ord2(k−1)!.
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Put

(5.2) δh =



























2h − 1 for h ≤ 8,

2.571(h − 2.17) for 9 ≤ h ≤ 12,

2.842(h − 3.17) for 13 ≤ h ≤ 34,

3.253(h − 7.1) for 35 ≤ h ≤ 41,

3.349(h − 8.1) for h ≥ 42.

Then by Lemma 4.6(i) we get, for every k,

k−π(k)+1
∏

h=1

δh ≤ (k − 1)!/2ord2(k−1)!.

As is standard now, we first bound k using approximate values of π(k) and
(k − 1)!. For the remaining finite number of values of k, we check that the
above inequality is not valid.

The proofs for (ii), (iii), and (iv) are similar. For the initial values of δh

we take the hth positive integer not divisible by pi. For the other values of h
we choose the largest values of α(h − β) for (α, β) given in Lemma 4.6(ii),
(iii), (iv), respectively.

6. Proof of the theorem. (i) Let 2 | d. Then the assertion follows
immediately from Lemma 4.6(i).

Now suppose p(d) = 3. By Lemma 5.1(ii) we obtain k ≤ 124. We apply
(2.4) with m = 3, q1 = 2, q2 = 5, q3 = 7, α1 = 4, α2 = α3 = 1, h = 1,
r1 = 5 · 7, i.e., we estimate from below the number of ai’s composed of 2, 5
and 7 with their powers not exceeding 4, 1, 1 and not divisible by 35. This
yields

(6.1) C(k, 3, 4, 1, 1, 5 · 7) ≥ 8 for 16 ≤ k ≤ 124.

For any k, we denote by S(k) = S(k, β1, . . . , βn1
, X) the set of ai’s ⊆ Y

where X, Y, β1, . . . , βn1
are as in Lemma 3.1. In the notation of Lemma 3.1,

we take X = {1, 2, 22, 23, 24}, with r = 4 and n1 = 3, {β1, β2, β3} = {1, 5, 7}.
By (6.1), we get

|S(k)| ≥ 8 > n1 + r,

a contradiction to Lemma 3.1.

Now we consider 4 ≤ k ≤ 15. We take m = 1, q1 = 2, α1 = 2, h = 0 to
find

C(k, 1, 2) ≥ 3.

This means that there are at least three ai’s belonging to {1, 2, 22}. Since
ai’s are distinct this means property P2 is not satisfied.

(ii) Let p(d) = 5. By Lemma 5.1(iii), we have k ≤ 374.
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Let 65 ≤ k ≤ 374. Take X = {1, 2, 22, 23, 24, 25}, n1 = 15,

{β1, . . . , β15} = {1, 3, 7, 11, 13, 3 · 7, 3 · 11, 3 · 13, 7 · 11, 7 · 13,

11 · 13, 32, 32 · 7, 32 · 11, 32 · 13}.

We apply (2.4) with m = 5, q1 = 2, q2 = 3, q3 = 7, q4 = 11, q5 = 13, α1 = 5,
α2 = 2, α3 = α4 = α5 = 1, h = 4, r1 = 3 · 7 · 11, r2 = 3 · 7 · 13, r3 = 3 · 11 · 13,
r4 = 7 · 11 · 13 to get

|S(k)| ≥ 21.

This contradicts Lemma 3.1 with r = 5.
For 25 ≤ k ≤ 64, take X = {1, 2, 22, 23, 24}, n1 = 4, {β1, β2, β3, β4} =

{1, 3, 32, 7}. Apply (2.4) with m = 3, q1 = 2, q2 = 3, q3 = 7, α1 = 4, α2 = 2,
α3 = 1, h = 1, r1 = 3 · 7 to get

|S(k)| ≥ 9,

contradicting Lemma 3.1 with r = 4.
Let 9 ≤ k ≤ 24. Take X = {1, 2, 22, 23}, n1 = 2, {β1, β2} = {1, 3}. Apply

(2.4) with m = 2, q1 = 2, q2 = 3, α1 = 3, α2 = 1, h = 0 to get

|S(k)| ≥ 5,

except for k = 19, 20, 23, 24 in which cases |S(k)| ≥ 4. By Lemma 3.1,we have
|S(k)| ≤ 4 (= 2n1). Thus we need to consider k = 19, 20, 23, 24 with |S(k)|
= 4. Let k = 24. Then 23 divides a0, a23; 7 divides a1, a8, a15, a22; 19 divides
a2, a21; and 17 divides a3, a20. Then 16 divides one of a0, a1, a2, a3, a20, a21,
a22, a23. Thus the number of ai’s divisible by 16 and not by the primes 7,
17, 19 and 23 is at most 1. Hence |S(k)| ≥ 5, a contradiction. We give for
other values of k the combination of ai’s divisible by certain primes or 16
or 9, by which |S(k)| ≥ 5, to get a contradiction.

• k = 23: 11 divides a0, a11, a22, but no distinct placings for 4 multiples
of 7.

• k = 20: 19 divides a0, a19; 17 divides a1, a18; no place for 2 multiples
of 16.

• k = 19: 9 divides a0, a9, a18, no place for 2 multiples of 17.

This proves that D1 > E1 if k ≥ 9.
Let k = 6. There are at most three multiples of 2 and two multiples

of 3 among the ai’s, but they cannot be distinct. Hence at least two ai’s are
equal to 1.

Let k = 8. If there are two multiples of 7, then 7 divides a0 and a7 and
we can apply the case k = 6 to a1, . . . , a6. Otherwise there is at most one
multiple of 7, of 8, and of 9. Hence there are at least five ai’s with values
in {1, 2, 4, 3, 6, 12}. But the ai’s are distinct and they cannot assume all the
three values from either {1, 2, 4} or {3, 6, 12}. This yields a contradiction.
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Let k = 7. There is at most one multiple of 7, one multiple of 8 and one
multiple of 9. Hence there are at least four ai’s in {1, 2, 3, 4, 6, 12}. A simple
check shows that this cannot happen if P3 holds.

(iii) Let p(d) = 7. By Lemma 5.1(iv), we have k ≤ 538. As seen in the
case 5 | d, we will be applying (2.4) and Lemmas 3.1 and 3.2 with suitable
choices of parameters for various ranges of values of k so that the lower
bound for C(k, m, α1, . . . , αm, r1, . . . , rh) and the upper bound for |S(k)|
contradict each other. We give below the range of k and the choice of the
parameters.

(a) 118 ≤ k ≤ 538: By (2.4) we have

C(k, 5, 5, 4, 2, 1, 1, 3 · 5 · 11, 3252, 3 · 5 · 13, 3 · 11 · 13) ≥ 35.

Now take X ={1, 2, 22, 23, 24, 25}, Z ={1, 3, 32, 33, 34}, n1 = 29, {β1, . . . , β29}
= {Z, 5Z, 52, 3·52, 11Z, 5·11, 5211, 13Z, 5·13, 5213, 11·13, 5·11·13, 52 ·11·13}
to get

|S(k)| ≤ 29 + 5 = 34,

by Lemma 3.1, which gives the necessary contradiction.

(b) 36 ≤ k ≤ 117: By (2.4) we have C(k, 3, 4, 3, 1) ≥ 13. Now take
X = {1, 2, 22, 23, 24}, Z = {1, 3, 32, 33}, n1 = 8, {β1, . . . , β8} = {Z, 5Z}.
Thus |S(k)| ≤ 8 + 4 = 12, by Lemma 3.1, which gives a contradiction.

(c) 25 ≤ k ≤ 35: By (2.4) we have C(k, 3, 3, 2, 1) ≥ 10. Now take X =
{1, 2, 22, 23}, Z = {1, 3, 32}, n1 = 6, {β1, . . . , β6} = {Z, 5Z}. Thus |S(k)| ≤
6 + 3 = 9, by Lemma 3.1, which gives a contradiction.

(d) 15 ≤ k ≤ 24: By (2.4) we have C(k, 2, 4, 2) ≥ 6. Now take X =
{1, 2, 22, 23, 24}, Z = {1, 3, 32}, n1 = 3, {β1, β2, β3} = {Z}. Thus |S(k)| ≤ 5,
by Lemma 3.2, which gives a contradiction.

(e) 8 ≤ k ≤ 14: By (2.4) we have C(k, 2, 2, 1) ≥ 4 if k = 8, 9, 10 and
C(k, 2, 2, 1) ≥ 3 if 11 ≤ k ≤ 14. Using the argument as in the case 5 | d,
k ∈ {19, 20, 23, 24}, we can improve this as

C(k, 2, 2, 1) ≥ 4 if 11 ≤ k ≤ 14.

Suppose C(k, 2, 2, 1) = 3. We give the combination of ai’s divisible by certain
primes or 8 or 9 which shows that there is a coincidence among the ai’s.

• k = 14: 13 divides a0, a13; 11 divides a1, a12; no place for 3 multiples
of 5.

• k = 13: 11 divides a0, a11; 5 divides a2, a7, a12; 9 divides a1, a10; or 11
divides a1, a12; 5 divides a0, a5, a10; 9 divides a2, a11; in both cases no
place for 2 multiples of 8.

• k = 12: 11 divides a0, a11; no place for 3 multiples of 5.
• k = 11: 5 divides a0, a5, a10; no place for 2 multiples of 9.
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Thus for 8 ≤ k ≤ 14,
|S(k)| ≥ 4,

a contradiction to Lemma 3.2.
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[G99] K. Győry, Power values of products of consecutive integers and binomial coef-

ficients, in: Number Theory and its Applications, S. Kanemitsu and K. Győry
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