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1. Introduction. In this paper we prove the following theorem.

Theorem 1.1. Suppose that N is an integer and A ⊂ {1, . . . , N} is such

that the difference between any two elements of A is never one less than a

prime. Then |A| = O(N exp(−c 4
√

logN)) for some absolute c > 0.

The first explicit upper bounds for |A| are due to Sárközy [Sár78] who
showed, under the same hypotheses, that

|A| = O(N exp(−(2 + o(1)) log log logN)).

Recently, in [Luc07], Lucier improved Sárközy’s argument using the formid-
able methods of Pintz, Steiger and Szemerédi from [PSS88]. Indeed, he
showed that

|A| = O(N exp(−ω(N) log log logN)),

for some function ω(N) tending to infinity as N tends to infinity (1).

Complementing these results, the first author, in [Ruz84], showed that
the bound on |A| cannot be too small. Specifically, that paper contains the
following theorem.

Theorem 1.2. For any integer N , there is a set A ⊂ {1, . . . , N} with

|A| ≥ exp((log 2/2 + o(1)) logN/log logN) such that the difference between

any two elements of A is never one less than a prime.

The gap between the upper and lower bounds is, of course, incredibly
large, but even assuming the Generalized Riemann Hypothesis, which would
simplify our argument considerably, we could only get an upper bound of
the shape

|A| = O(N exp(−c
√

logN)),
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sums.

(1) In fact he gets ω(N) ∼ c log log log log log N for some absolute c > 0.
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for some absolute c > 0. Thus we are led to the following natural question,
asked by the first author in [Ruz82], and with which we close our introduc-
tion.

Question. Assuming the Generalized Riemann Hypothesis, can one
achieve a bound of the shape |A| = O(N1−c+o(1)), for some absolute c > 0,
in Theorem 1.1?

2. An outline of the paper. The driving ingredient behind the proof
of Theorem 1.1 is an energy increment argument which would be made
significantly easier if we had good estimates for the distribution of primes
in arithmetic progressions; the main work of the paper comes from having
to deal with the so-called exceptional zeros of L-functions. Our proof, then,
begins in §4, by recalling some of the tools necessary for dealing with such
zeros.

The argument splits roughly into two cases. If there is no exceptional
zero then we have relatively good estimates for the primes in progressions
and the energy increment method has no complications.

If there is an exceptional zero then, by averaging, we pass to a progression
of common difference equal to the modulus of the character corresponding
to the exceptional zero. We then conduct the energy increment argument
relative to this progression.

The two cases have separate major arcs estimates for the Fourier trans-
form of the primes; these are proved in §5. The minor arcs are then dealt
with in the usual, unified, manner in §6.

It is possible to do away with the above bifurcation if one uses a carefully
weighted version of the primes. However, doing this adds complications to
the minor arcs estimates. Of course, once one has put the work in to get
these minor arc estimates the method can be more easily transferred to
other situations.

Having completed the basic Fourier estimates in §§4, 5 & 6, we prove
some energy increment results in §7 which are used in §8 to prove the main
“iteration” lemma. Finally, we complete the proof of Theorem 1.1 in §9.

3. Notation. Our main tool is the Fourier transform on Z. We identify
the dual group of Z with T via the function e(θ) := exp(2πiθ). Specifically,
every additive character γ : Z → C has the form γ(x) := e(θx) for some
θ ∈ T. Now, we define the Fourier transform ·̂ : ℓ1(Z) → L∞(T) to be the
map which takes f ∈ ℓ1(Z) to

f̂(θ) :=
∑

x∈Z

f(x)e(xθ),
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and similarly convolution to be the map ∗ : ℓ1(Z) × ℓ1(Z) → ℓ1(Z) which
takes f, g ∈ ℓ1(Z) to

f ∗ g(x) =
∑

x∈Z

f(x′)g(x− x′).

As usual with the Fourier transform on Z, we shall decompose the dual
group into major and minor arcs. To this end suppose that η > 0, and a
and q are positive integers. We write (2)

Ma,q,η := {θ ∈ T : |θ − a/q| ≤ η},
M

∗
q,η :=

⋃
{Ma,q,η : 1 ≤ a ≤ q and (a, q) = 1},

Mq,η :=
⋃

{Ma,q,η : 1 ≤ a ≤ q}.
Often will there be a further parameter Q with q ≤ Q, in which case we will
usually have η = 1/qQ and write

Ma,q := Ma,q,(qQ)−1 , M
∗
q := M

∗
q,(qQ)−1, Mq := Mq,(qQ)−1 .

The quantity Q will always be clear from the context.

4. A prime number theorem for arithmetic progressions. In this
section we shall develop the small amount of number theory which we re-
quire. All the results we use are well known, although they are not always
stated in the most useful fashion. We shall refer to the book [Dav00] of
Davenport.

Suppose that x is real and a and q are positive integers. Then we write

ψ(x; q, a) :=
∑

n≤x
n≡a (mod q)

Λ(n),

where Λ is the usual von Mangoldt function.

Estimating ψ(x; q, a) is one of the central problems in analytic number
theory and to do so we introduce some auxiliary functions: For a Dirichlet
character χ define

ψ(x, χ) :=
∑

n≤x

χ(n)Λ(n).

The analysis of ψ(x, χ) is, in turn, bound up in the analysis of the zeros of the
corresponding L-function, L(s, χ), which is complicated by the possibility
of a so-called exceptional zero; the following theorem limits the number of
possible exceptions for a given Dirichlet character.

(2) Technically, elements of T are equivalence classes and so | · | is not well defined.
We adopt the usual conventions in this regard.
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Theorem 4.1 ([Dav00, Chapter 14]). There is an absolute constant

c1 > 0 such that for any non-principal Dirichlet character χ of modulus q,
L(s, χ) has at most one zero in the region

Re s ≥ 1 − c1
log q(|Im s| + 3)

.

This exceptional zero may only occur if χ is real , and then it is a simple real

zero.

As usual, the analysis of the zeros of L(s, χ) can be reduced to the case
when χ is primitive. Indeed, if χ has modulus q and is induced by χ′ then,
by the Euler product formula, we have

L(s, χ) =
∏

p|q

(1 − χ′(p)p−s)L(s, χ′) for Re s > 1.

Analytic continuation then tells us that in the region Re s > 0 we have
L(s, χ) = 0 iff L(s, χ′) = 0. Now, Landau showed that an exceptional zero
can only occur for at most one primitive Dirichlet character:

Theorem 4.2 ([Dav00, Chapter 14]). There is an absolute constant

c2 > 0 such that for any distinct primitive real Dirichlet characters χ1 and

χ2 with moduli q1 and q2, and real zeros β1 and β2 respectively , we have

min{β1, β2} ≤ 1 − c2
log q1q2

.

Write cE = min{c1, c2} and suppose that D ≥ 2 and χ, a Dirichlet
character, are given. We say that βχ is an exceptional zero for χ at level D
if

L(βχ, χ) = 0 and Reβχ ≥ 1 − cE
log 3D

.

The following corollary is an immediate consequence of Theorems 4.1 and 4.2.

Corollary 4.3. Suppose that D ≥ 2. Then there is at most one primi-

tive Dirichlet character χD and zero βD such that βD is an exceptional zero

for χD at level D and χD has modulus qD ≤ D.

If it exists, we call the Dirichlet character χD of the corollary the excep-

tional Dirichlet character at level D and βD the exceptional zero at level D.
In this event we shall need a bound on (1 − βD)−1.

Proposition 4.4 ([Dav00, Chapter 14]). Suppose that D ≥ 2 and the

exceptional Dirichlet character at level D exists and has zero βD and mod-

ulus qD. Then (1 − βD)−1 = O(q
1/2
D log2 qD).

We require the following two prime number theorems.

Theorem 4.5 ([Dav00, Chapter 20]). There is an absolute constant

c3 > 0 such that if D ≥ 2 and χ is a non-principal Dirichlet character of

modulus q ≤ D, then:
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(i) if the exceptional Dirichlet character χD exists and χ is induced by

χD then for any real x ≥ 1 we have

ψ(x, χ) = −x
βD

βD
+O

(
x exp

(
− c3 log x√

log x+ logD

)
(logD)2

)

where βD is the exceptional zero;
(ii) if the exceptional Dirichlet character χD does not exist or χ is not

induced by χD then for any real x ≥ 1 we have

ψ(x, χ) = O

(
x exp

(
− c3 log x√

log x+ logD

)
(logD)2

)
.

Theorem 4.6 ([Dav00, Chapter 20]). There is an absolute constant

c4 > 0 such that if χ′ is the principal Dirichlet character of modulus q, then

for all real x ≥ 1 we have

ψ(x, χ′) = x+O(x exp(−c4
√

log x) + log q log x).

Getting a handle on ψ(x; q, a) is now done via the identity

(4.1) ψ(x; q, a) =
1

φ(q)

∑

χ

χ(a)ψ(x, χ),

where the summation is over all Dirichlet characters of modulus q. We can
now prove the following proposition which is to be regarded as definitive for
the terms (D1, D0) is exceptional and (D1, D0) is unexceptional.

Proposition 4.7. There is an absolute constant c5 > 0 such that if

D1 ≥ D0 ≥ 2, then at least one of the following two possibilities holds:

(i) ((D1, D0) is exceptional) There is a character χD of modulus

qD ≤ D0 and a real βD with (1 − βD)−1 = O(q
1/2
D log2 qD) such that

for any real x ≥ 1 and integers a and q with 1 ≤ qqD ≤ D1 we have

ψ(x; qqD, a) =
χ′(a)x

φ(qqD)
− χ′χD(a)xβD

φ(qqD)βD

+O

(
x exp

(
− c5 log x√

log x+ logD1

)
(logD1)

2

)
,

where χ′ is the principal character of modulus qqD.

(ii) ((D1, D0) is unexceptional) For any real x ≥ 1 and integers a and q
with 1 ≤ q ≤ D0 we have

ψ(x; q, a) =
χ′(a)x

φ(q)
+O

(
x exp

(
− c5 log x√

log x+ logD1

)
(logD1)

2

)
,

where χ′ is the principal Dirichlet character of modulus q.

Proof. Let c5 :=min{c3, c4}. We split into two cases according to whether
or not there is an exceptional character χD with modulus at most D0.
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First, suppose that χD does exist, has zero βD and has modulus qD ≤ D0.
By Proposition 4.4, (1−βD)−1 satisfies the appropriate bound. Now suppose
that x ≥ 1 is real and a and q are integers with 1 ≤ qqD ≤ D1. Write χ′

for the principal character of modulus qqD. There is exactly one character
of modulus qqD induced by χD and that is χ′χD. For this character, by
Theorem 4.5(i), we have

ψ(x, χ′χD) = −x
βD

βD
+O

(
x exp

(
− c5 log x√

log x+ logD1

)
(logD1)

2

)
.

For all other non-principal characters χ we have, by Theorem 4.5(ii),

ψ(x, χ) = O

(
x exp

(
− c5 log x√

log x+ logD1

)
(logD1)

2

)
.

Finally, by Theorem 4.6 we have

ψ(x, χ′) = x+O(x exp(−c5
√

log x) + logD1 log x).

Inserting these into (4.1) gives the first case of the proposition.

In the second case we suppose that either χD does not exist or, if it does,
then it has modulus greater than D0. Now suppose that x ≥ 1 is real and
a and q are integers with 1 ≤ q ≤ D0. Since q is smaller than the modulus
of χD, if it exists at all, no character of modulus q is induced by χD, and
we can apply Theorem 4.5(ii) to conclude that

ψ(x, χ) = O

(
x exp

(
− c5 log x√

log x+ logD1

)
(logD1)

2

)

for every non-principal χ of modulus q. Once again Theorem 4.6 gives

ψ(x, χ′) = x+O(x exp(−c5
√

log x) + logD1 log x),

for χ′ the principal character of modulus q. Now inserting these estimates
into (4.1) we find ourselves in the second case of the proposition.

5. The major arcs. We are interested in the Fourier transform of the
von Mangoldt function Λ and some closely related functions. Suppose that
N and d are positive integers. We write

ΛN,d :=

{
Λ(dx+ 1) if 1 ≤ x ≤ N ,

0 otherwise.

We write ΛN as shorthand for ΛN,1. There will be two types of estimate for

Λ̂N,d depending on whether or not a given pair of parameters D1 ≥ D0 ≥ 2
is exceptional or unexceptional. The reader may care to recall the definition
from Proposition 4.7.

Before we begin, it will be useful to recall some standard definitions; the
reader unfamiliar with this material may wish to consult the book [MV07].
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For an integer a and positive integer q the Ramanujan sum cq(a) is defined
by

cq(a) :=

q∑

h=1
(h,q)=1

e

(
ha

q

)
,

and moreover, cq(1) = µ(q).

If positive integers q and d are coprime, write md,q for a solution to
md,qd + 1 ≡ 0 (mod q). Then for any integers a, q and d with q and d
positive we put

τa,d,q :=

q−1∑

m=0
(md+1,q)=1

e

(
m
a

q

)
=

{
cq(a)e

(
−md,q

a
q

)
if (d, q) = 1,

0 otherwise.

The proof of the equivalence of the sum with the expression in terms of the
Ramanujan sum is a simple change of variables.

The remainder of this section provides major arc estimates for the two
cases when the pair (D1, D0) is exceptional and unexceptional.

5.1. Exceptional pairs. Throughout this subsection we assume that the
pair (D1, D0) is exceptional. We begin by estimating Λ̂N,d at a rational with
small denominator and then extend the range.

Lemma 5.2. There is an absolute constant c6 > 0 such that for every

set of non-negative integers N, a, q, d with dD | d, 1 ≤ dq ≤ D1 and N ≥ 1
we have

Λ̂N,d(a/q) =
dNτa,d,q

φ(d)φ(q)
−(dN)βDτa,d,q

φ(d)φ(q)βD
+O

(
ND2

1 exp

(
− c6 logN√

logN + logD1

))
.

Proof. Note the formula

Λ̂N,d(a/q) =
∑

x≤dN+1
x≡1 (mod d)

Λ(x)e

(
a(x− 1)

dq

)
(5.1)

=

q−1∑

m=0

e

(
m
a

q

) ∑

x≤dN+1
x≡1 (mod d)

(x−1)/d≡m (mod q)

Λ(x)

=

q−1∑

m=0

e

(
m
a

q

)
ψ(dN + 1; dq,md+ 1).

Since (D1, D0) is exceptional we get a character χD of modulus dD ≤ D0

and a real βD with (1−βD)−1 = O(d
1/2
D log2 dD) such that for any real x ≥ 1
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and integers a′ and q′ with 1 ≤ q′dD ≤ D1 we have

ψ(x; q′dD, a
′) =

χ′(a′)x

φ(q′dD)
− χ′χD(a′)xβD

φ(q′dD)βD
(5.2)

+O

(
x exp

(
− c5 log x√

log x+ logD1

)
(logD1)

2

)
,

where χ′ is the principal character of modulus q′dD. Now suppose that dD | d
and 1 ≤ dq ≤ D1. There are three terms to consider when substituting (5.2),
with q′ = dq/dD, x = dN + 1 and a′ = md+ 1, into (5.1). First,

q−1∑

m=0

e

(
m
a

q

)
χ′(md+ 1)(dN + 1)

φ(dq)
=
dN + 1

φ(dq)

q−1∑

m=0
(md+1,dq)=1

e

(
m
a

q

)

=
(dN + 1)τa,d,q

φ(d)φ(q)
,

recalling the definition of τa,d,q and the fact that it is zero unless (d, q) = 1.
Secondly, we have the sum

q−1∑

m=0

e

(
m
a

q

)
χ′χD(md+ 1)(dN + 1)βD

φ(dq)βD
.

Since χD has modulus dD which divides d we conclude that χD(md+ 1) =
χD(1) = 1 whatever the value of m, thus the above sum is equal to

q−1∑

m=0

e

(
m
a

q

)
χ′(md+ 1)(dN + 1)βD

φ(dq)βD
=

(dN + 1)βDτa,d,q

φ(d)φ(q)βD

by the same calculation as for the previous sum. Finally, we have an error
term

O

(
q(dN + 1) exp

(
− c5 log(dN + 1)√

log(dN + 1) + logD1

)
(logD1)

2

)
,

which is certainly

O

(
ND2

1 exp

(
− c6 logN√

logN + logD1

))

for c6 := c5/4. Combining these terms yields the lemma.

Proposition 5.3 (Major arcs estimate for exceptional pairs). For all

non-negative integers N, a, q, d with dD | d, 1 ≤ dq ≤ D1, (a, q) = 1 and

N ≥ 1, and elements θ ∈ T, we have

|Λ̂N,d(θ)| ≤
|Λ̂N,d(0)|
φ(q)

+O

(
(1 + |κ|N)ND2

1 exp

(
− c6 logN√

logN + logD1

))
,
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where κ := θ − a/q and

|Λ̂N,d(0)| ≫ N

φ(d)
+O

(
ND2

1 exp

(
− c6 logN√

logN + logD1

))
.

Proof. Begin by applying Lemma 5.2 to deduce that for every set of
non-negative integers x, a, q, d with dD | d, 1 ≤ dq ≤ D and 1 ≤ x ≤ N we
have

Λ̂x,d(a/q) =
dxτa,d,q

φ(d)φ(q)
− (dx)βDτa,d,q

φ(d)φ(q)βD
(5.3)

+O

(
ND2

1 exp

(
− c6 logN√

logN + logD1

))
.

In particular we have

(5.4) Λ̂x,d(0) =
dx

φ(d)
− (dx)βD

φ(d)βD
+O

(
ND2

1 exp

(
− c6 logN√

logN + logD1

))
,

and hence

(5.5) Λ̂x,d(a/q) =
τa,d,q

φ(q)
Λ̂x,d(0) +O

(
ND2

1 exp

(
− c6 logN√

logN + logD1

))
.

Observe, by telescoping, that

Λ̂N,d(θ) =
N∑

n=1

(Λ̂n,d(a/q) − Λ̂n−1,d(a/q))e(κn).

Integration by parts then tells us that

(5.6) Λ̂N,d(θ) = [Λ̂x,d(a/q)e(κx)]
N
0 − 2πiκ

N\
0

Λ̂x,d(a/q)e(κx) dx.

We use (5.5) to estimate the right hand side of this. The first term is

τa,d,qe(κN)

φ(q)
Λ̂N,d(0) +O

(
ND2

1 exp

(
− c6 logN√

logN + logD1

))
.

We consider the second term on the right of (5.6) in two parts. First, note
that

2πiκ

N\
0

(
Λ̂x,d(a/q) −

dxτa,d,q

φ(d)φ(q)
+

(dx)βDτa,d,q

βDφ(d)φ(q)

)
e(κx) dx

= O

(
|κ|N2D2

1 exp

(
− c6 logN√

logN + logD1

))

by (5.3). Secondly, note that

2πiκ

N\
0

(
dxτa,d,q

φ(d)φ(q)
− (dx)βDτa,d,q

βDφ(d)φ(q)

)
e(κx) dx
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is equal to

τa,d,q

φ(d)φ(q)

[(
dx− (dx)βD

βD

)
e(κx)

]N

0

− τa,d,q

φ(d)φ(q)

N\
0

(d− dβDxβD−1)e(κx) dx,

by integration by parts. The first term here is equal to

τa,d,qe(κN)

φ(q)
Λ̂N,d(0) +O

(
ND2

1 exp

(
− c6 logN√

logN + logD1

))
,

by (5.4). So, combining what we have so far we get that

Λ̂N,d(θ) =
τa,d,q

φ(q)φ(d)

N\
0

(d− dβDxβD−1)e(κx) dx(5.7)

+O

(
(1 + |κ|N)ND2

1 exp

(
− c6 logN√

logN + logD1

))
.

Now, note that d(1 − (dx)βD−1) ≥ 0 if dx ≥ 1, so

∣∣∣
N\
0

(d− dβDxβD−1)e(κx) dx
∣∣∣ ≤

∣∣∣
N\
1

(d− dβDxβD−1)e(κx) dx
∣∣∣ +O(1)

≤
N\
1

|d− dβDxβD−1| dx+O(1)

=

N\
1

(d− dβDxβD−1) dx+O(1)

= dN − (dN)βD

βD
+O(1).

Thus we conclude that the integral in (5.7) is bounded above in absolute
value by

|Λ̂N,d(a/q)| +O

(
(1 + |κ|N)ND2

1 exp

(
− c6 logN√

logN + logD1

))
.

Hence, by (5.5),

|Λ̂N,d(θ)| ≤
|τa,d,q|
φ(q)

|Λ̂N,d(0)|+O
(

(1+|κ|N)ND2
1 exp

(
− c6 logN√

logN + logD1

))
.

Now, if (a, q) = 1 then |τa,d,q| ≤ 1 so we have the first part of the proposition.

To get the lower bound on |Λ̂N,d(0)| we return to (5.4). If x ≥ 16 and
ε ∈ (0, 1/2] then 1 − x−ε/(1 − ε) ≥ ε, whence

dN − (dN)βD

βD
≥ dN(βD − 1) +O(1).
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Inserting the estimate for (βD − 1)−1 (which we get since (D1, D0) is excep-

tional) and recalling that d ≥ dD yields the lower bound for |Λ̂N,d(0)|.
5.4. Unexceptional pairs. In this subsection we assume that (D1, D0) is

unexceptional. The argument here is easier than that for exceptional pairs
and proceeds as above except that terms involving the exceptional zero do
not occur. We omit the details.

Proposition 5.5 (Major arcs estimate for unexceptional pairs). For

every set of non-negative integers N, a, q, d with 1 ≤ dq ≤ D0, (a, q) = 1 and

N ≥ 1, and elements θ ∈ T, we have

|Λ̂N,d(θ)| ≤
|Λ̂N,d(0)|
φ(q)

+O

(
(1 + |κ|N)ND2

1 exp

(
− c logN√

logN + logD1

))
,

where κ := θ − a/q and

|Λ̂N,d(0)| ≥ dN

φ(d)
+O

(
ND2

1 exp

(
− c logN√

logN + logD1

))
.

6. The minor arcs. The minor arcs are far easier to estimate than the
major arcs were. We begin with Vinogradov’s classical estimate, recalling
that ΛN is shorthand for ΛN,1.

Theorem 6.1 ([Dav00, Chapter 25]). Suppose that N and q ≤ Q are

positive integers, θ ∈ T and a ∈ {1, . . . , q} is coprime to q and has |θ−a/q| ≤
1/qQ. Then

|Λ̂N (θ)| ≪ (logN)4(N/
√
q +N4/5 +

√
Nq).

This has the following relevant corollary.

Corollary 6.2 (Minor arcs estimate). Suppose that d ≤ N and q ≤ Q
are positive integers, θ ∈ T and a ∈ {1, . . . , q} is coprime to q and has

|θ − a/q| ≤ 1/qQ. Then

|Λ̂N,d(θ)| ≪ d(logN)4(N/
√
q +N4/5 +

√
NQ).

Proof. Begin by noting that

Λ̂N,d(θ) =
1

d

d−1∑

m=0

∑

x≤dN+1

Λ(x)e

(
θ
x− 1

d
+
m(x− 1)

d

)
,

so

|Λ̂N,d(θ)| ≤
1

d

d−1∑

m=0

|Λ̂dN+1((θ +m)/d)|.

Now, suppose that m ∈ {0, . . . , d − 1} and write θ′ := (θ + m)/d. We
may apply Dirichlet’s pigeon-hole principle to get a positive integer q′ ≤
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Q′ := 2dQ and another a′ ∈ {1, . . . , q′} with (a′, q′) = 1 and such that
|θ′ − a′/q′| ≤ 1/q′Q′. So

|a′/q′ − (a+mq)/dq| ≤ |θ′ − a′/q′| + |θ′ − (a+mq)/dq| ≤ 1/q′Q′ + 1/dqQ,

and hence
|a′dq − (a+mq)q′| ≤ 1/2 + q′/Q.

The left hand side is an integer and if q′ < q/2 then it is zero. This implies
that q | q′ since (q, a + mq) = 1, whence q′ ≥ q. This contradiction means
that q′ ≥ q/2. Now we just apply Theorem 6.1 to the approximation a′/q′

(to θ′) to get the result.

7. Some energy increment lemmas. The main result of this section
is an energy increment argument. Such arguments are common, and an
example from a very similar context may be found in [Sze90] and [HB87].

We begin with a preliminary technical lemma.

Lemma 7.1. Suppose that P is an arithmetic progression with common

difference d and A ⊂ {1, . . . , N} has αN elements. Suppose further that
∑

x∈Z

(1A − α1[N ]) ∗ 1P (x)2 ≥ cα2N |P |2.

Then there is an integer x′ ∈ Z such that

1A ∗ 1P (x′) ≥ α(1 + c)|P | +O(N−1d|P |2).
Proof. First note that

α
∑

x∈Z

1A ∗ 1P (x)1[N ] ∗ 1P (x) = α
∑

x∈Z

1A(x)1[N ] ∗ 1P ∗ 1P (x)

= α2N |P |2 +O(αd|P |3)
and

α2
∑

x∈Z

1[N ] ∗ 1P (x)2 = α2N |P |2 +O(α2d|P |3).

Expanding the hypothesis we deduce that
∑

x∈Z

1A ∗ 1P (x)2 ≥ (1 + c)α2N |P |2 +O(αd|P |3).

Now Hölder’s inequality yields

sup
x∈Z

1A ∗ 1P (x)αN |P | ≥
∑

x∈Z

1A ∗ 1P (x)2,

from which the result follows.

The next result is a fairly common form of the energy increment argu-
ment. It may be useful to recall the definition of the intervals Ma,q,η from
§3 before reading further.
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Proposition 7.2. Suppose that η > 0, N and q are positive integers,
and A ⊂ {1, . . . , N} has αN elements. Write

EA,q,η := α−1|A|−1
\

θ∈Mq,η

|(1A − α1[N ])
∧(θ)|2 dθ.

Then there is an arithmetic progression P with common difference q and

|P | ≫ q−1 min{η−1, EA,q,η|A|} such that |A ∩ P | ≥ α(1 + EA,q,η/4)|P |.
Proof. Let P be the progression of common difference q and length

2M + 1 centred at the origin; we shall optimize for M later. In this case
(by scaling the Dirichlet kernel) we have

1̂P (θ) =
sin(|P |πqθ)
sin(πqθ)

,

with the usual convention at θ = 0. Now suppose that θ ∈ Mq,η, so that
there is some integer a with |θ − a/q| ≤ η. Thus, writing κ := θ − a/q and
recalling the inequalities |sinx| ≥ 2|x|/π if |x| ≤ π/2 and |sinx| ≤ |x|, we
have

|1̂P (θ)| =

∣∣∣∣
sin(|P |πqκ)

sin(πqκ)

∣∣∣∣ ≥
2| |P |qκ|
|πqκ| =

2|P |
π

provided |P |qη ≤ 1/2. It follows that\
θ∈Mq,η

|(1A − α1[N ])
∧(θ)|2|1̂P (θ)|2 dθ ≥ 4

π2
EA,q,ηα|A| |P |2.

Now the left hand side is certainly dominated by the same integral without
the restriction of the domain of integration and hence, by Parseval’s theorem
applied to the unrestricted domain, we have

∑

x∈Z

(1A − α1[N ]) ∗ 1P (x)2 ≥ 4

π2
EA,q|A|2|P |2.

Now we may apply Lemma 7.1 to get some x′ ∈ Z such that

1A ∗ 1P (x′) ≥ (1 + 4EA,q,η/π
2)α|P | +O(N−1q|P |2).

It follows that there is a choice of M ≫ q−1 min{η−1, EA,q|A|} for which

1A ∗ 1P (x′) ≥ (1 + EA,q,η/4)α|P |.
For our work we shall use the following corollary which is designed specif-

ically for the problem we are considering.

Corollary 7.3. Suppose that N is a positive integer , A ⊂ {1, . . . , N}
has αN elements, Q′ ≥ 1 and Q := N/Q′. For each q with 1 ≤ q ≤ Q′ write

E∗
A,q := α−1|A|−1

\
θ∈M∗

q

|(1A − α1[N ])
∧(θ)|2 dθ,
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and suppose that

Q′∑

q=1

1

φ(q)
E∗

A,q ≥ c.

Then there is an arithmetic progression P with common difference q ≤ Q′

and |P | ≫ Q′−1N min{Q′−1, αc} such that |A ∩ P | ≥ α(1 + 2−5c)|P |.

Proof. For η > 0 we define EA,q,η as in Proposition 7.2 and write

IA,a,q,η := α−1|A|−1
\

θ∈Ma,q,η

|(1A − α1[N ])
∧(θ)|2 dθ.

Begin by noting that

Q′∑

q=1

q

φ(q)
EA,q,Q−1 =

Q′∑

q=1

q

φ(q)

q∑

r=1

IA,r,q,Q−1

=

Q′∑

q=1

q

φ(q)

∑

q′h=q

q′∑

r′=1
(r,q′)=1

IA,r′h,q′h,Q−1 ;

but this last expression is equal to

Q′∑

q=1

q

φ(q)

∑

q′h=q

E∗
A,q′,Q−1 =

Q′∑

q′=1

E∗
A,q′,Q−1

Q′/q′∑

h=1

q′h

φ(q′h)
.

Now we also have

Q′/q′∑

h=1

q′h

φ(q′h)
≥ q′

φ(q′)

Q′/q′∑

h=1

1 ≥ Q′

2φ(q′)
,

and so
Q′∑

q=1

q

φ(q)
EA,q,Q−1 ≥ Q′

2

Q′∑

q′=1

1

φ(q′)
E∗

A,q′,Q−1 ≥ Q′c

2

by hypothesis and the fact that 1/qQ ≤ 1/Q. But it is well known (see, for
example, the book [MV07]) that

Q′∑

q=1

q

φ(q)
≤ 4Q′,

so, by a trivial instance of Hölder’s inequality, we conclude that there is some
q with 1 ≤ q ≤ Q′ such that EA,q,Q−1 ≥ c/8. We now apply Proposition 7.2
to get the result.
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8. The main iteration lemma. Our main argument is basically itera-
tive—although the eventual proof will be by a maximality argument—and
the central lemma follows. Essentially it says that if none of the various input
parameters is too small and A − A, that is, the set of differences between
elements of A, misses all numbers of the form (p− 1)/d, then A must have
much larger density on a reasonable sub-progression.

Lemma 8.1 (Iteration lemma). Suppose that D1≥D0≥2, A⊂{1, . . . , N}
has αN elements and either

(1) (D1, D0) is exceptional and d ≤ D1 is such that dD | d; or

(2) (D1, D0) is unexceptional and d ≤ D0.

Then there are absolute constants c8, c9, c10 > 0 such that at least one of the

following holds:

(i) (Density increment) There is an integer d′ such that d′ = O(α−2)
and a progression P of common difference d′ and length at least

(c9α/d logN)8N such that |A ∩ P | ≥ α(1 + c8)|P |.
(ii) (Structure in difference set) A − A contains a number of the form

(p− 1)/d with p a prime.

(iii) (N is small) N ≤ O(exp(c10 log2D1)).
(iv) (d is large or α is small) Either

(a) (D1, D0) is exceptional , and d−1 = O(D−c10
1 ) or α = O(D−c10

1 );
or

(b) (D1, D0) is unexceptional , and d−1 = O(D−c10
0 /log2D1) or α =

O(D−c10
0 /log2D1).

(v) (α is small) α = O(D−c10
1 ).

Proof. Throughout the proof we shall introduce constants c, c′, c′′, . . .
which will each be optimized at some later point and will end up being ab-
solute positive constants. The reason for this slightly unappealing approach
is that we have not been explicit about any of the constants in the error
terms we have so far produced.

Let c > 0 be some constant to be optimized later. Either N ≤ cα−1 (and
we shall, once we have shown we can choose c to be absolute, be in outcome
(iii) or (v)), or the integer N ′ = ⌊c′αN⌋ has N ′ ≥ 1.

Irrespective of whether (D1, D0) is exceptional or unexceptional we see,
from Propositions 5.3 or 5.5, that

|Λ̂N ′,d(0)| ≫ N ′

φ(d)
+O

(
N ′D2

1 exp

(
− c6 logN ′

√
logN ′ + logD1

))
.

Now φ(d) ≤ d ≤ D1, so either N ≤ c−1α−1 exp(O(log2D1)) (and we shall
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be in outcome (iii) or (v) again) or we have the estimate

|Λ̂N ′,d(0)| ≫ N ′

φ(d)
.

Write I for the interval [N ] and consider the inner product

(8.1) 〈(1A − α1I) ∗ (1−A − α1−I), ΛN ′,d〉.
If A − A contains a number of the form (p − 1)/d for some prime p then
we are in outcome (ii) of the lemma; consequently, assume that it does not.
In this case the only integers x which support a contribution in the inner
product 〈1A∗1−A, ΛN ′,d〉 are those for which dx+1 is a prime power with the

power strictly greater than one. There are at most O(
√
dN ′) such integers

and furthermore ‖ΛN ′,d‖ℓ∞(Z) = O(log dN ′) and ‖1A ∗ 1−A‖ℓ∞(Z) ≤ αN ,
whence

〈1A ∗ 1−A, ΛN ′,d〉 = O(αN
√
dN ′ log dN ′).

We conclude that

〈1A ∗ 1−A, ΛN ′,d〉 = O(α|Λ̂N ′,d(0)|N ′)

unless N ≤ exp(O(logα−1D1c
−1)) (in which case we shall be in outcome

(iii) or (v) again).

The other terms arising from expanding out (8.1) are more easily han-
dled:

〈1I ∗ 1−A, ΛN ′,d〉 = Λ̂N ′,d(0)αN +O(|Λ̂N ′,d(0)|N ′),

〈1A ∗ 1−I , ΛN ′,d〉 = Λ̂N ′,d(0)αN +O(|Λ̂N ′,d(0)|N ′),

〈1I ∗ 1−I , ΛN ′,d〉 = Λ̂N ′,d(0)N +O(|Λ̂N ′,d(0)|N ′).

Thus it follows that

〈(1A − α1I) ∗ (1−A − α1−I), ΛN ′,d〉 = α2NΛ̂N ′,d(0)(−1 +O(c)).

Now we pick c≫ 1 such that

|〈(1A − α1I) ∗ (1−A − α1−I), ΛN ′,d〉| ≫ α2N |Λ̂N ′,d(0)|,
and apply Plancherel’s theorem to the left hand side to get a Fourier space
expression \

|(1A − α1I)
∧(θ)|2|Λ̂N ′,d(θ)| dθ ≫ α2N |Λ̂N ′,d(0)|.

Let c′ > 0 be another constant to be optimized later. Write

Q′ :=
d4 log8N

c′2α2
, Q := N ′/Q′, M

′ :=
⋃

q<Q′

M
∗
q , M :=

⋃

Q′≤q≤Q

M
∗
q.

By Dirichlet’s pigeon-hole principle T = M ∪ M
′ and so by the triangle
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inequality we have\
|(1A − α1I)

∧(θ)|2|Λ̂N ′,d(θ)| dθ ≤
\

θ∈M′

|(1A − α1I)
∧(θ)|2|Λ̂N ′,d(θ)| dθ

+
\

θ∈M

|(1A − α1I)
∧(θ)|2|Λ̂N ′,d(θ)| dθ.

Corollary 6.2 tells us that either N ′ ≤ d (and we are in outcome (iii) or (v),
since d ≤ D1), or else

|Λ̂N ′,d(θ)| ≪ d log4N ′(N ′/
√
q +N ′4/5 +

√
N ′Q)

for θ ∈ M
∗
q and q ≤ Q. So, if θ ∈ M then

|Λ̂N ′,d(θ)| ≪
N ′

d
(c′α+ d2N ′−1/10).

Once again, either N ′ ≤ c′−10d20α−10 (and we are in outcome (iii) or (v),
since d ≤ D1), or we have

|Λ̂N ′,d(θ)| ≪ c′α|Λ̂N ′,d(0)| for all θ ∈ M.

It follows that\
θ∈M

|(1A − α1I)
∧(θ)|2|Λ̂N ′,d(θ)| dθ ≪ c′α|Λ̂N ′,d(0)|

\
|(1A − α1I)

∧(θ)|2 dθ

≪ c′α2N |Λ̂N ′,d(0)|,
by Parseval’s theorem. Hence we can choose c′ ≫ 1 so that\

θ∈M′

|(1A − α1I)
∧(θ)|2|Λ̂N ′,d(θ)| dθ ≫ α2N |Λ̂N ′,d(0)|.

If (D1, D0) is unexceptional and dQ′ > D0 then we are in outcome (iii) or
(iv), or else we can apply Proposition 5.5; if (D1, D0) is exceptional and
dQ′ > D1 then we are in outcome (iii) or (iv), or else we can apply Proposi-
tion 5.3. So either we are done or we could apply the appropriate proposition
and get

|Λ̂N ′,d(θ)| ≤
|Λ̂N ′,d(0)|
φ(q)

+O

(
(1+Q−1N ′)N ′D2

1 exp

(
− c6 logN ′

√
logN ′ + logD1

))
.

In view of the definition of Q this error term is

O

(
α−2(log8N)N ′D6

1 exp

(
− c6 logN ′

√
logN ′ + logD1

))
,

and so once again either we are in outcome (iii) or (v) of the lemma, or

(8.2) sup
θ∈M∗

q

|Λ̂N ′,d(θ)| ≪
|Λ̂N ′,d(0)|
φ(q)

for all q ≤ Q′.
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Set Q′′ := c′′−2α−2 for some c′′ > 0 which will be chosen shortly. Write

M
′′ :=

⋃

Q′′≤q<Q′

M
∗
q , M

′′′ :=
⋃

q<Q′′

M
∗
q ,

so that M
′ = M

′′ ∪ M
′′′. Then\

θ∈M′′

|(1A − α1I)
∧(θ)|2|Λ̂N ′,d(θ)| dθ ≪ c′′α2N |Λ̂N ′,d(0)|

by Parseval’s theorem and (8.2) since φ(n) ≫ n1/2; pick c′′ ≫ 1 so that\
θ∈M′′′

|(1A − α1I)
∧(θ)|2|Λ̂N ′,d(θ)| dθ ≫ α2N |Λ̂N ′,d(0)|.

Now, by the triangle inequality we get

Q′′∑

q=1

\
θ∈M∗

q

|(1A − α1I)
∧(θ)|2|Λ̂N ′,d(θ)| dθ ≫ α2N |Λ̂N ′,d(0)|,

and so by (8.2),

Q′′∑

q=1

|Λ̂N ′,d(0)|
φ(q)

\
θ∈M∗

q

|(1A − α1I)
∧(θ)|2 dθ ≫ α2N |Λ̂N ′,d(0)|.

Thus by Corollary 7.3 (with the fact that |Λ̂N ′,d(0)| > 0) we find ourselves
in the first case of the lemma.

9. Proof of Theorem 1.1. The main argument is now fairly straight-
forward. We begin with a preliminary technical lemma.

Lemma 9.1. Suppose that A ⊂ {1, . . . , N} has αN elements and d is

an integer. Then there is a progression P with common difference d and

|P | ≫ αN/d such that |A ∩ P | ≥ α|P |/2.
Proof. Let P ′ be a progression with common difference d. Then

∑

x∈Z

|1[N ] ∗ 1P ′(x) − |P ′|1[N ](x)| = O(d|P ′|2),

whence

|A| |P ′| = 〈1A, 1[N ] ∗ 1P ′〉 +O(d|P ′|2) = 〈1A ∗ 1P ′ , 1[N ]〉 +O(d|P ′|2).
It follows that we can pick |P ′| ≫ αN/d such that

〈1A ∗ 1P ′ , 1[N ]〉 ≥ αN |P ′|/2.
Thus, by Hölder’s inequality, there is some translate P of P ′ with the desired
property.

We now turn to the main proof.
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Proof of Theorem 1.1. Write I for the interval [N ]. We fix D1 ≥ D0 ≥ 2,
to be optimized at the end of the argument, and put

D1 = D
max{2c−1

10
,1}

0 ,

where c10 is the absolute constant from Lemma 8.1. We consider two cases
according to whether (D1, D0) is exceptional or unexceptional.

Case 1: (D1, D0) is exceptional. This gives us an integer dD ≤ D0 with
a number of properties. By Lemma 9.1 there is a progression P with com-
mon difference dD and |P | ≫ αN/dD such that |A∩P | ≥ α|P |/2. Let ID :=
{1, . . . , |P |} and let AD be the affine transformation of A∩P so that it lies in
ID. We write αD for the density of A in ID and ND for the length of ID. Thus

αD ≥ α/2 and ND ≫ αN/D0.

Furthermore, by the hypothesis on A, AD −AD does not contain any num-
bers of the form (p − 1)/dD with p a prime. Let η > 0 be a parameter
to be optimized later and let P ′ be an arithmetic progression such that
α′N ′η2

d′−η is maximal, where α′ is the relative density of AD on P ′, that
is, |AD ∩ P ′|/|P ′|, and where N ′ is the length of P ′ and d′ is the common
difference of P ′. The choice of η2 and η is made with the benefit of hindsight;
we could use two different parameters and optimize for both at the end.

In view of the maximality of P ′, we have αDN
η2

D ≤ α′N ′η2

d′−η. Now,
since α′ ≤ 1, d′ ≥ 1 and N ′ ≤ ND it follows that

αD ≤ α′, d′ ≤ α−η−1

D and N ′ ≥ αη−2

D ND,

whence

(9.1) α≪ α′, log d′ ≪ η−1 logα−1

and

(9.2) logN = logN ′ +O(η−2 logα−1 + logD0).

Again, let I ′ := {1, . . . , N ′} and A′ be the affine transformation of AD ∩ P ′

so that it lies in I ′. Apply Lemma 8.1 to get the following possibilities: either

(i) there is a progression P ′′ of common difference d′′ = O(α′−2) and
length at least (c9α

′/d′dD logN ′)8N ′ with |A′∩P ′′| ≥ α′(1 + c8)|P ′′|;
or

(ii) A′ −A′ contains a number of the form (p− 1)/d′dD with p a prime;
or

(iii) N ′ ≤ O(exp(c10 log2D1)) whence, by (9.2), logN ≪ η−2 logα−1 +
log2D1; or

(iv) (d′dD)−1 =O(D−c10
1 ) whence, by the relationship betweenD0 andD1,

we get d′ ≫ D
−c10/2
1 and so, by (9.1), logD1 ≪ η−1 logα−1; or

(v) α′ = O(D−c10
1 ).
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In the first case, the maximal way in which P ′ was chosen ensures that

α′N ′η2

d′−η ≥ α′(1 + c8)(N
′(c9α

′/d′dD logN ′)8)η2

(cα′)−2ηd′−η,

from which we conclude

η−2 ≪ η−1 logα′−1 + logD0 + log d′ + log logN ′.

Inserting the bounds from (9.1) and (9.2) and the fact that logD0 ≪ logD1

we get

η−2 ≪ η−1 logα−1 + logD1 + log logN,

and hence, by solving the quadratic,

η−1 ≪ logα−1 +
√

logD1 +
√

log logN.

Write C for the absolute constant hiding in the above expression. We opti-
mize η by taking

η−1 = 2C(logα−1 +
√

logD1 +
√

log logN),

and so we have derived a contradiction and must be in another of the above
cases. By assumption we are not in the second case so we conclude that
either

logN ≪ η−2 logα−1 + log2D1 or logD1 ≪ η−1 logα−1.

Inserting our choice of η we get either

(9.3) logN ≪ log2D1

or logD1 ≪ logα−1(logα−1 +
√

logD1 +
√

log logN).

Case 2: (D1, D0) is unexceptional. In this case we can proceed directly
without the aid of Lemma 9.1. Let η > 0 be a (new) parameter to be

optimized later and let P ′ be an arithmetic progression such that α′N ′η2

d′−η

is maximal, where α′ is the relative density of A on P ′, N ′ is the length of
P ′ and d′ is the common difference of P ′.

As before, in view of the maximality of P ′, we have

(9.4) α≪ α′, log d′ ≪ η−1 logα−1

and

(9.5) logN = logN ′ +O(η−2 logα−1).

Again, let I ′ := {1, . . . , N ′} and A′ be the affine transformation of AD ∩ P ′

so that it lies in I ′. Apply Lemma 8.1 to get the following possibilities: either

(i) there is a progression P ′′ of common difference d′′ = O(α′−2) and
length at least (c9α

′/d′ logN ′)8N ′ with |A′ ∩ P ′′| ≥ α′(1 + c8)|P ′′|;
or

(ii) A′ −A′ contains a number of the form (p− 1)/d′ with p a prime; or
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(iii) N ′ ≤ O(exp(c10 log2D1)) whence, by (9.5), logN ≪ η−2 logα−1 +
log2D1; or

(iv) d′−1 = O(D−c10
0 /log2D1) whence d′ ≫ D

c2
10

/4
1 and so, by (9.4),

logD1 ≪ η−1 logα−1; or
(v) α′ = O(D−c10

0 /log2D1).

The analysis proceeds much as before and we conclude that either

(9.6) logN ≪ log2D1 or logD1 ≪ logα−1(logα−1 +
√

log logN).

Write C for the larger of the two constants hiding in the first inequalities
in (9.3) and (9.6). We optimize D1 by taking logN = 2C log2D1 so that we
never are in the first case of either. The result follows.

Acknowledgments. The second author would like to thank Ben Green.
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