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0. Introduction. Let q ≥ 2 be an integer. A q-additive function f :
N → C is a function of the form f(n) =

∑
j≥0 fj(aj(n)) where n =∑

j≥0 aj(n)qj is the base-q representation of n and the “component func-
tions” fj are functions defined on {0, 1, . . . , q − 1} and satisfying fj(0) = 0.
These functions were introduced by A. O. Gel’fond [Ge] in 1968, and have
been studied by Coquet [Co1], Delange [De3], and others. They generalize
the sum-of-digits functions sq(n) with respect to base q.

In 1977, Coquet [Co1] generalized q-additive functions to more gen-
eral systems of numeration. Specifically, he considered so-called mixed radix
representations (also called Cantor representations) defined as follows. Let
Q = {Qj}j≥0 be a sequence of strictly increasing positive integers with
Q0 = 1 such that Qj |Qj+1 for all j. Note that the sequence Q is uniquely
determined by the factors qj = Qj+1/Qj . It is easily seen that each non-
negative integer n has a unique “base-Q” representation of the form n =∑
j≥0 aj(n)Qj , where the “digits” aj(n) satisfy 0 ≤ aj(n) < qj . Examples of

such representations are the ordinary base-q representations (qj = q) as well
as the factorial representation (qj = j + 2), the factorial-squared represen-
tation (qj = (j + 2)2), and the doubly-geometric representations (qj = qj).
For a full discussion of these and other numeration systems see, for example,
Grabner et al. [GLT] or the survey article by Fraenkel [Fr] and the references
therein.

Given a mixed radix system Q, Coquet defined a Q-additive function
f : N → C to be a function of the form f(n) =

∑
j≥0 fj(aj(n)) where n =∑

j≥0 aj(n)Qj is the base-Q representation of n and the component func-
tions fj are functions defined on {0, 1, . . . , qj − 1} and satisfying fj(0) = 0.
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A simple example of a Q-additive function is the sum-of-digits function
sQ(n) =

∑
j≥0 aj(n), which corresponds to the choice fj(a) = a. This

function has been studied by Kirschenhofer and Tichy [KT], among oth-
ers. For recent work on general Q-additive functions see Manstavičius [Ma].
For generalizations of q-additive functions to other numeration systems see,
for example, Barat and Grabner [BG].

Our main result, Theorem 1, characterizes those real-valued Q-additive
functions that have a limit distribution (resp. uniform limit distribution)
modulo 1. In order to prove this result, we consider so-calledQ-multiplicative
functions, which are defined in analogy to Q-additive functions as follows.
A Q-multiplicative function is a function g : N → C of the form g(n) =∏
j≥0 gj(aj(n)), where n =

∑
j≥0 aj(n)Qj is the base-Q representation of n

and the component functions gj are functions defined on {0, 1, . . . , qj − 1}
and satisfying gj(0) = 1. These functions have been studied by Coquet
[Co1] and others, usually in conjunction with work on Q-additive functions.
We establish mean value theorems for Q-multiplicative functions analogous
to those of Delange and Wirsing (see, e.g., [El, Chapter 6]) for ordinary
multiplicative functions.

Throughout this paper, we set e(x) = e2πix and write ‖x‖ to denote the
distance from x to the nearest integer and {x} to denote the fractional part
of x.

1. Statement of results. Let Q = {Qj}j≥0 be a mixed radix system
with factors qj = Qj+1/Qj . Let f be a real-valued Q-additive function with
component functions fj . We say that f has a limit distribution modulo 1 if
there is a distribution function F (i.e., F is right-continuous and monotonic
with F (x) = 0 for x < 0 and F (x) = 1 for x ≥ 1) such that the limit

lim
N→∞

1
N

#{0 ≤ n < N : {f(n)} ≤ x}

exists and equals F (x) for every x at which F is continuous. We say that
f has a uniform limit distribution modulo 1 if this holds with F (x) = x for
0 ≤ x < 1. Aside from its intrinsic interest, the study of the distribution
modulo 1 of Q-additive functions is motivated in part by the results of
Coquet [Co1] and Mendès France [MF] connecting the uniform distribution
of certain Q-additive functions to so-called P-V numbers. Our main result
is a complete characterization of real-valued Q-additive functions that have
a limit distribution (resp. uniform limit distribution) modulo 1.

Theorem 1. A real-valued Q-additive function f has a limit distribution
modulo 1 if and only if , for each integer k 6= 0, at least one of the following
conditions holds:

(i) There exists j ≥ 0 such that
∑

0≤n<qj e(kfj(n)) = 0.
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(ii) The series
∑

j≥0

(
1− 1

qj

∣∣∣
∑

0≤n<qj
e(kfj(n))

∣∣∣
)

diverges.
(iii) The series

∑

j≥0

(
1− 1

qj

∑

0≤n<qj
e(kfj(n))

)

converges, and

lim
j→∞

(
max

0<n≤qj

1
n

∑

0≤m<n
‖kfj(m)‖2

)
= 0.

Furthermore, f is uniformly distributed modulo 1 if and only if , for all
integers k 6= 0, at least one of conditions (i) or (ii) holds.

This result generalizes the characterization given by Kim [Ki, p. 27] for
the special case of q-additive functions.

We apply Theorem 1 to derive several corollaries that deal with spe-
cial cases. We first consider numeration systems in which the factors qj are
bounded. In particular, these systems include the ordinary base-q represen-
tations generated by qj = q for all j.

Corollary 1. Suppose the factors qj are bounded. Then f is uniformly
distributed modulo 1 if and only if , for all k 6= 0, either the series

∑

j≥0

∑

0≤n<qj
‖kfj(n)‖2

diverges, or for some j ≥ 0 we have
∑

0≤n<qj
e(kfj(n)) = 0.

Let α ∈ R. We call an integer-valued arithmetic function f normal if the
function αf is uniformly distributed modulo 1 if and only if α is irrational.
Coquet [Co2] showed that for any base q ≥ 2, the associated sum-of-digits
function sq(n) is normal. General criteria for the normality of arithmetic
functions have been given by Drmota and Tichy [DT, Section 1.4.3]. In
Corollaries 2 and 3 below, we apply Theorem 1 to show that two classes of
integer-valued Q-additive functions are normal.

Corollary 2. For any mixed radix numeration system Q, the function
sQ(n), the sum of digits in the base-Q representation of n, is normal.

We call a Q-additive function f completely Q-additive if there exists a
function g : N → C such that, for all j ≥ 0 and 0 ≤ n < qj , fj(n) = g(n),
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i.e., if the component functions fj are independent of j on their respective
domains. The following corollary generalizes a result of Drmota and Tichy
[DT, Theorem 1.99].

Corollary 3. Suppose that the series
∑
j≥0 1/qj diverges. Let f be a

completely Q-additive, integer-valued function such that there is some inte-
ger 1 ≤ a < minj qj with f0(a) > 0. Then f is normal.

In the next two corollaries we investigate the normality of two particular
integer-valued Q-additive functions that have been previously considered
in [Ho, examples (c) and (a)] and [KT, Theorem 3]. These results provide
examples of functions that have a non-uniform limit distribution modulo 1
as well as functions that have no limit distribution modulo 1.

Corollary 4. Let α be an irrational number. Let M(n) be the num-
ber of digits in the base-Q representation of n which are maximal , and set
f(n) = αM(n). Then f has a limit distribution modulo 1. Moreover , the
limit distribution is uniform if and only if the series

∑
j≥0 1/qj diverges.

Corollary 5. Let a > 0 be a fixed integer and let α be an irrational
number. Let Na(n) be the number of digits a in the base-Q representation
of n, and set f(n) = αNa(n). Then f is uniformly distributed modulo 1
if and only if

∑
qj>a

1/qj diverges. The function f has a non-uniform limit
distribution modulo 1 if and only if qj ≤ a for all but at most finitely many j.

2. Lemmas. The first lemma is a well known result on the distribution
modulo 1 of real-valued arithmetic functions (see, e.g., [De2, p. 216]). The
second assertion of the lemma is known as Weyl’s Criterion [We].

Lemma 1. A real-valued arithmetic function f has a limit distribution
modulo 1 if and only if , for each integer k 6= 0,

lim
N→∞

1
N

N−1∑

n=0

e(kf(n))

exists. Further , the distribution is uniform modulo 1 if and only if , for each
integer k 6= 0, the above limit is 0.

Throughout the remainder of this section, we fix a mixed radix system Q
with factors {qj}j≥0. We denote by g a Q-multiplicative function satisfying
|g| ≤ 1 with component functions gj , and define

µj(g) =
1
qj

∑

0≤n<qj
gj(n).

Thus, µj(g) is the mean value of gj on its domain {0, 1, . . . , qj − 1}.
The following lemma relates the mean value of g on {0, 1, . . . , rQj − 1}

to that of the functions gi.
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Lemma 2. For j ≥ 0 and any positive integer r with 1 ≤ r ≤ qj we have

(2.1)
1
rQj

rQj−1∑

n=0

g(n) =
(

1
r

r−1∑

n=0

gj(n)
)(

1
Qj

Qj−1∑

n=0

g(n)
)
.

Moreover , for any j ≥ 0,

(2.2)
1
Qj

Qj−1∑

n=0

g(n) =
j−1∏

i=0

µi(g).

Proof. We first note that, since Q0 = 1 and g(0) = 1, we have

1
Q0

Q0−1∑

n=0

g(n) = g(0) = 1.

Thus, relation (2.2) follows from (2.1) by applying (2.1) with r = qj and
iterating the identity. Hence it suffices to prove (2.1).

Observe that any non-negative integer n < rQj can be written uniquely
(via the division algorithm) in the form n = sQj + t with 0 ≤ t < Qj and
0 ≤ s < r. By the Q-multiplicativity of g, we have, with this representation,

g(n) = gj(s)g(t).

As n runs through the set {0, 1, . . . , rQj − 1}, s and t run independently
through the sets {0, 1, . . . , r−1} and {0, 1, . . . , Qj−1}, respectively. It follows
that

1
rQj

rQj−1∑

n=0

g(n) =
1
rQj

r−1∑

s=0

Qj−1∑

t=0

gj(s)g(t) =
1
r

r−1∑

s=0

gj(s)
1
Qj

Qj−1∑

t=0

g(t),

which is (2.1).

To obtain necessary and sufficient conditions for the convergence of the
product in (2.2), we will use the following lemma, a proof of which can be
found in many elementary texts on complex variables (see, e.g., [LR, pp.
383–384]).

Lemma 3. Let z0, z1, . . . be complex numbers satisfying |zj| ≤ 1, and let
Pi =

∏i
j=0 zj . Then limi→∞ Pi = 0 if and only if at least one of the following

two conditions holds:

(i) There is some j ≥ 0 such that zj = 0.
(ii)

∑∞
j=0(1− |zj |) =∞.

Then limi→∞ Pi exists and is non-zero if and only if the following two con-
ditions are both satisfied :

(iii) zj 6= 0 for all j.
(iv)

∑∞
j=0(1− zj) converges.
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The next lemma relates the mean value of g on {0, 1, . . . , N − 1} for
general integers N to the mean values of the functions gj .

Lemma 4. Let N be a positive integer and let
∑i
j=0 ajQj , with ai > 0,

be the base-Q representation of N . Then

(2.3)
1
N

N−1∑

n=0

g(n)

=
i∑

j=0

ajQj
N

( i∏

m=j+1

gm(am)
)( 1

aj

aj−1∑

n=0

gj(n)
)( j−1∏

k=0

µk(g)
)
,

where empty products and empty sums are to be interpreted as 1 and 0,
respectively. Furthermore, for any positive integer h ≤ i, we have

(2.4)
i−h∑

j=0

ajQj
N

< 21−h.

Proof. We begin by dividing the interval 0 ≤ n < N into the subintervals
0 ≤ n < aiQi and aiQi ≤ n < N , to obtain

1
N

N−1∑

n=0

g(n) =
1
N

∑

0≤n<aiQi
g(n) +

1
N

∑

aiQi≤n<N
g(n).

We have, by Lemma 2,

1
N

∑

0≤n<aiQi
g(n) =

aiQi
N

(
1
ai

ai−1∑

n=0

gi(n)
)(

1
Qi

Qi−1∑

n=0

g(n)
)

=
aiQi
N

(
1
ai

ai−1∑

n=0

gi(n)
)( i−1∏

k=0

µk(g)
)
.

Furthermore, by the Q-multiplicativity of g, we also have, for all n with
aiQi ≤ n < N , g(n) = g(n− aiQi)gi(ai). Thus,

1
N

∑

aiQi≤n<N
g(n) =

1
N

∑

aiQi≤n<N
g(n− aiQi)gi(ai)

= gi(ai)
1
N

∑

aiQi≤n<N
g(n− aiQi)

= gi(ai)
1
N

∑

0≤n<N−aiQi
g(n)

= gi(ai)
N − aiQi

N

(
1

N − aiQi
∑

0≤n<N−aiQi
g(n)

)
.
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It follows that

1
N

N−1∑

n=0

g(n) =
aiQi
N

(
1
ai

ai−1∑

n=0

gi(n)
)( i−1∏

k=0

µk(g)
)

+ gi(ai)
N − aiQi

N

(
1

N − aiQi
∑

0≤n<N−aiQi
g(n)

)
.

Iterating the last expression i−1 times gives (2.3). Inequality (2.4) follows
from the chain of inequalities

1
N

i−h∑

j=0

ajQj ≤
1
Qi

i−h∑

j=0

ajQj ≤
Qi−h+1

Qi
=

i−1∏

j=i−h+1

1
qj
≤ 21−h.

3. Mean value theorems for Q-multiplicative functions. Through-
out this section, we let Q be a mixed radix system with factors {qj}j≥0. For
a given Q-multiplicative function g with component functions gj , we define
the mean value of g by

M(g) = lim
N→∞

1
N

∑

0≤n<N
g(n),

provided this limit exists. We set

σj(g) = max
0<n≤qj

1
n

∑

0≤m<n
(1− Re(gj(m))),

and recall the notation

µj(g) =
1
qj

∑

0≤n<qj
gj(n)

introduced in the previous section.
The following theorem, due to Coquet [Co1, Lemma 1], gives a charac-

terization of Q-multiplicative functions of modulus at most 1 which have
mean value 0. We present a proof here for completeness.

Theorem 2. Let g be a Q-multiplicative function satisfying |g| ≤ 1. The
mean value M(g) exists and is equal to 0 if and only if at least one of the
following two conditions holds:

(i) For some j ≥ 0, µj(g) = 0.
(ii) The series

∑
j≥0(1− |µj(g)|) diverges.

Proof. Assume first that M(g) = 0. Then, by (2.2) of Lemma 2,
∞∏

i=0

µi(g) = lim
j→∞

j∏

i=0

µi(g) = lim
j→∞

1
Qj+1

Qj+1−1∑

n=0

g(n) = 0.

By Lemma 3, this implies that at least one of conditions (i) or (ii) holds.
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Conversely, assume that at least one of conditions (i) or (ii) holds. Ap-
plying Lemma 3 again, we conclude that

∏∞
j=0 µj(g) = 0. We now show that

M(g) exists and is equal to 0. Let N be a positive integer with base-Q rep-
resentation

∑i
j=0 ajQj , where ai > 0. Applying Lemma 4 with h = bi/2c,

we obtain∣∣∣∣
1
N

∑

0≤n<N
g(n)

∣∣∣∣

<
i∑

j=0

ajQj
N

∣∣∣
j−1∏

k=0

µk(g)
∣∣∣ < 21−bi/2c +

i∑

j=i−bi/2c+1

ajQj
N

∣∣∣
j−1∏

k=0

µk(g)
∣∣∣

≤ 22−i/2 +
i∑

j=bi/2c

ajQj
N

∣∣∣
j−1∏

k=0

µk(g)
∣∣∣.

Since i tends to infinity as N tends to infinity and
∑i
j=bi/2c ajQj ≤ N , the

right-hand side tends to 0 as N tends to infinity. Thus, M(g) = 0. This
completes the proof of Theorem 2.

We now characterize thoseQ-multiplicative functions of modulus at most
1 having a non-zero mean value, a case that was not considered by Coquet.
This characterization is the content of the following theorem which repre-
sents an analog of the well known mean value theorem of Delange [De1],
and generalizes a result of Delange [De3] for the case of ordinary base-q
expansions.

Theorem 3. Let g be a Q-multiplicative function satisfying |g| ≤ 1. The
mean value M(g) exists and is non-zero if and only if the following three
conditions all hold :

(i) For each j ≥ 0, µj(g) 6= 0.
(ii)

∑
j≥0(1− µj(g)) converges.

(iii) limj→∞ σj(g) = 0.

Proof. For simplicity of notation, we will write µj = µj(g) and σj =
σj(g) throughout the proof.

Assume first that M(g) = L for some number L 6= 0. Then, in particular,
we have

lim
j→∞

1
Qj

∑

0≤n<Qj
g(n) = L.

By (2.2) of Lemma 2, this implies that
∏∞
j=0 µj = L. By Lemma 3, the con-

vergence of the product
∏∞
j=0 µj to a non-zero value implies that conditions

(i) and (ii) of the theorem hold.
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It remains to show that condition (iii) also holds, i.e., we wish to show
that the quantity

σj = max
0<n≤qj

1
n

∑

0≤m<n
(1− Re(gj(m)))

tends to zero as j tends to infinity. Let {nj}∞j=0 be a sequence of integers
such that the maximum in the definition of σj is attained at n = nj , so that

σj = 1− Re
(

1
nj

∑

0≤m<nj
gj(m)

)
.

Applying (2.1) of Lemma 2 with r = nj , we obtain

lim
j→∞

1
nj

∑

0≤m<nj
gj(m) = lim

j→∞

(1/njQj)
∑

0≤n<njQj g(n)

(1/Qj)
∑

0≤n<Qj g(n)
=
L

L
= 1.

Therefore, σj tends to 0 as j tends to infinity, which proves condition (iii).
Conversely, assume that conditions (i), (ii), and (iii) all hold. The first

two conditions imply that the infinite product
∏∞
j=0 µj converges to a non-

zero value, by Lemma 3. Let L denote this value. We will show that M(g)
exists and is equal to L.

We first note that, by the bound |gj | ≤ 1 and the general inequality

|1− z|2 = 1 + |z|2 − 2 Re z ≤ 2(1− Re z) (|z| ≤ 1),

condition (iii) is equivalent to

(iii)′ lim
j→∞

max
0<n≤qj

∣∣∣∣1−
1
n

∑

0≤m<n
gj(m)

∣∣∣∣ = 0.

Furthermore, (iii)′ implies that

(3.1) lim
j→∞

gj(m) = 1

for any fixed m.
Let ε > 0 be given and choose h and i0 such that 21−h < ε, and for

i ≥ i0 we have the following three conditions:

(a) |∏i−1
j=0 µj − L| < ε.

(b) |(1/n)
∑

0≤m<n gi(m)− 1| < ε (0 < n ≤ qi).
(c) |∏k<j≤i gj(mj)− 1| < ε (i− h ≤ k ≤ i, 0 ≤ mj < 1/ε).

Condition (a) is possible since
∏∞
j=0 µj = L, while conditions (b) and (c)

can be met in view of condition (iii)′ and (3.1).
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Let N be a positive integer with base-Q representation N =
∑i
j=0 ajQj

where ai > 0, and suppose that N is sufficiently large and i > i0 + h.
Applying Lemma 4, we have
∣∣∣∣

1
N

∑

0≤n<N
g(n)− L

∣∣∣∣

=
∣∣∣∣

i∑

j=0

ajQj
N

(( i∏

m=j+1

gm(am)
)( 1

aj

∑

0≤n<aj
gj(n)

)( j−1∏

k=0

µk

)
− L

)∣∣∣∣

≤
∣∣∣∣

i∑

j=i−h+1

ajQj
N

(( i∏

m=j+1

gm(am)
)( 1

aj

∑

0≤n<aj
gj(n)

)( j−1∏

k=0

µk

)
− L

)∣∣∣∣

+ 2
i−h∑

j=0

ajQj
N

,

where in the last step we have used the fact that gm, g, µk, and L are at most
1 in modulus. By inequality (2.4) of Lemma 4, the second term on the right
hand side is at most 2(21−h) < 2ε. Moreover, by the triangle inequality, the
first term is bounded by

i∑

j=i−h+1

ajQj
N

∣∣∣
( i∏

m=j+1

gm(am)
)
− 1
∣∣∣ ·
∣∣∣∣
(

1
aj

∑

0≤n<aj
gj(n)

)( j−1∏

k=0

µk

)∣∣∣∣

+
i∑

j=i−h+1

ajQj
N

(∣∣∣∣
1
aj

∑

0≤n<aj
gj(n)− 1

∣∣∣∣ ·
∣∣∣
j−1∏

k=0

µk

∣∣∣+
∣∣∣
j−1∏

k=0

µk − L
∣∣∣
)

= Σ1 +Σ2,

say. Since i− h > i0, we have, by assumptions (a) and (b) above,

Σ2 < 2ε
i∑

j=i−h+1

ajQj
N
≤ 2ε.

To estimate Σ1, we distinguish two cases. If aj < 1/ε for all j with
i − h < j ≤ i, then by assumption (c), |(∏i

m=j+1 gm(am)) − 1| < ε for all
j and therefore Σ1 < ε. Otherwise, let j0 be the largest value of j in the
range i − h < j ≤ i for which aj0 ≥ 1/ε. The contribution of terms with
j0 ≤ j ≤ i to Σ1 is, as before, at most ε. Thus,

Σ1 < ε+
j0−1∑

j=i−h+1

ajQj
N

∣∣∣
( i∏

m=j+1

gm(am)
)
− 1
∣∣∣ ·
∣∣∣∣
(

1
aj

∑

0≤n<aj
g(n)

)( j−1∏

k=0

µk

)∣∣∣∣
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≤ ε+ 2
j0−1∑

j=i−h+1

ajQj
N
≤ ε+ 2

j0−1∑

j=0

(qj − 1)Qj
N

= ε+ 2
j0−1∑

j=0

Qj+1 −Qj
N

< ε+
2Qj0
N
≤ ε+

2Qj0
aj0Qj0

≤ 3ε.

In either case, we have∣∣∣∣
1
N

∑

0≤n<N
g(n)− L

∣∣∣∣ < 7ε.

Since ε was arbitrary, we have shown that M(g) = L. This completes the
proof of the theorem.

The following result is an immediate consequence of Theorems 2 and 3.

Theorem 4. Let g be a Q-multiplicative function satisfying |g| ≤ 1.
The mean value M(g) exists if and only if at least one of the following three
conditions holds:

(i) For some j ≥ 0, µj(g) = 0.
(ii) The series

∑
j≥0(1− |µj(g)|) diverges.

(iii)
∑
j≥0(1− µj(g)) converges, and limj→∞ σj(g) = 0.

The mean value is zero if either condition (i) or (ii) holds.

4. Proof of Theorem 1. Let Q = {Qj}j≥0 be a mixed radix system,
with factors qj = Qj+1/Qj , and let f be a real-valued Q-additive function
with component functions fj .

For each integer k 6= 0, we set g(k)(n) = e(kf(n)). Then each func-
tion g(k) is a Q-multiplicative function with component functions g(k)

j (n) =
e(kfj(n)). We write

µ
(k)
j = µj(g

(k)) =
1
qj

∑

0≤n<qj
g

(k)
j (n),

and
σ

(k)
j = σj(g

(k)) = max
0<n≤qj

1
n

∑

0≤m<n
(1− Re(g(k)

j (n))),

and denote the mean value of g(k) by Mk, whenever this mean value exists.
By Lemma 1, f has a limit distribution modulo 1 if and only if, for each
integer k 6= 0, the mean value Mk exists, and the distribution is uniform if
and only if, for each integer k 6= 0, Mk = 0. By Theorem 4, for each k 6= 0,
Mk exists if and only if at least one of the following three conditions holds:

(i)k For some j ≥ 0, µ(k)
j = 0.

(ii)k The series
∑
j≥0(1− |µ(k)

j |) diverges.
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(iii)k
∑
j≥0(1− µ(k)

j ) converges, and limj→∞ σ
(k)
j = 0.

Further, Mk = 0 if and only if either condition (i)k or (ii)k holds. Therefore,
it remains only to show that, for each integer k 6= 0, conditions (i)k, (ii)k, and
(iii)k are equivalent to conditions (i), (ii), and (iii) of Theorem 1, respectively.

To prove this, we fix an integer k 6= 0. Conditions (i)k and (ii)k are
identical to conditions (i) and (ii) of Theorem 1, respectively, by the defini-
tion of µ(k)

j . The equivalence between condition (iii)k and condition (iii) of

Theorem 1 follows from the definition of µ(k)
j and the relation

σ
(k)
j = max

0<n≤qj

1
n

∑

0≤m<n
(1−Re(g(k)

j (n))) � max
0<n≤qj

1
n

∑

0≤m<n
‖kfj(n)‖2,

which holds since

1−Re e(x) = 1− cos(2πx) � ‖x‖2

for any real number x. This completes the proof of Theorem 1.

5. Proof of the corollaries

Proof of Corollary 1. Fix an integer k 6= 0. For each j ≥ 0, let nj be
such that max0≤n<qj ‖kfj(n)‖2 is attained at n = nj . First we note that by
the elementary inequality

|1 + e(x)| ≤ 2− 2‖x‖2 (x ∈ R),

we have, for all j,
1
qj

∣∣∣
∑

0≤n<qj
e(kfj(n))

∣∣∣ ≤ 1
qj

∣∣∣
∑

1≤n<qj
n6=nj

e(kfj(n))
∣∣∣+

1
qj
|1 + e(kfj(nj))|

≤ 1
qj

((qj − 2) + |1 + e(kfj(nj))|)

≤ 1
qj

((qj − 2) + (2− 2‖kfj(nj)‖2))

=
1
qj

(qj − 2‖kfj(nj)‖2)

and thus

1− 1
qj

∣∣∣
∑

0≤n<qj
e(kfj(n))

∣∣∣ ≥ 2‖kfj(nj)‖2
qj

≥ 2
q2
j

∑

0≤n<qj
‖kfj(nj)‖2.

Since, by assumption, the factors qj are bounded, the divergence of the series

(5.1)
∑

j≥0

∑

0≤n<qj
‖kfj(n)‖2
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implies that condition (ii) of Theorem 1 holds. Hence, if for all k 6= 0 either
the series in (5.1) diverges or condition (i) of Theorem 1 holds, then Theo-
rem 1 implies that f has a uniform limit distribution modulo 1.

Conversely, assume that f is uniformly distributed modulo 1. Then, for
each k 6= 0, either condition (i) or condition (ii) of Theorem 1 holds. We
will show that if condition (ii) holds for some k 6= 0 then the series in (5.1)
diverges. Fix k 6= 0. Since, for all real x,

1− Re e(x) = 1− cos(2πx) ≤ 2π2‖x‖2,
we have, for all j,

1− 1
qj

∣∣∣
∑

0≤n<qj
e(kfj(n))

∣∣∣ ≤ 1− 1
qj

Re
∑

0≤n<qj
e(kfj(n))

=
1
qj

∑

0≤n<qj
(1−Re e(kfj(n)))

≤ 1
qj

∑

0≤n<qj
2π2‖kfj(n)‖2

≤ π2
∑

0≤n<qj
‖kfj(n)‖2.

Thus, condition (ii) of Theorem 1 implies the divergence of the series in
(5.1), as claimed.

Proof of Corollary 2. Assume first that α is irrational. If the factors qj
are bounded, then, since fj(1) = α for all j, it follows from Corollary 1 that
f is uniformly distributed modulo 1. It remains to deal with the case when
the factors qj are unbounded.

Fix k 6= 0. Then we have, for all j ≥ 0,
1
qj

∣∣∣
∑

0≤n<qj
e(kfj(n))

∣∣∣ =
1
qj

∣∣∣
∑

0≤n<qj
e(kαn)

∣∣∣

=
1
qj

∣∣∣∣
1− e(kαqj)
1− e(kα)

∣∣∣∣ ≤
2

qj(1− e(αk))
.

Since the factors qj are unbounded and α is irrational, this quantity is
≤ 1/2 for infinitely many j, and so condition (ii) of Theorem 1 is satisfied.
Therefore, f has a uniform limit distribution modulo 1.

On the other hand, if α is rational, then f takes on only finitely many
values modulo 1, and thus f cannot be uniformly distributed modulo 1.

Proof of Corollary 3. Let F = αf . Then F is completely Q-additive
with component functions Fj = αfj . As in Corollary 2, if α is rational then
F cannot be uniformly distributed modulo 1. Assume therefore that α is
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irrational. We will show that condition (ii) of Theorem 1 is satisfied (with F
in place of f) for all k 6= 0. By Theorem 1 it then follows that F is uniformly
distributed modulo 1. Fix an integer k 6= 0 and let a be as in the statement
of the corollary, so that f0(a) > 0 and a < qj for all j. As in the proof of
Corollary 1, we have, for all j,

1− 1
qj

∣∣∣
∑

0≤n<qj
e(kFj(n))

∣∣∣ ≥ 2‖kFj(a)‖2
qj

=
2‖kαfj(a)‖2

qj
=

2‖kαf0(a)‖2
qj

.

Since ‖kαf0(a)‖ 6= 0 by our assumptions that α is irrational, k 6= 0, and
f0(a) 6= 0, and since, by the hypothesis of Corollary 2, the series

∑
j≥0 1/qj

diverges, condition (ii) of Theorem 1 is satisfied as claimed.

Proof of Corollary 4. We note first that the component functions fj(n)
of f(n) = αM(n) are given by

fj(n) =
{
α, n = qj − 1,
0, 0 ≤ n < qj − 1.

Thus we have, for any integer k 6= 0,

(5.2)
∑

0≤n<qj
e(kfj(n)) = qj − 1 + e(kα).

It follows that condition (i) of Theorem 1 is satisfied if and only if, for some
j, qj = 2 and ‖kα‖ = 0. Since α is irrational, this is impossible unless k = 0.
Therefore, condition (i) of Theorem 1 does not hold for any k 6= 0.

We next show that condition (ii) of Theorem 1 is equivalent to the diver-
gence of

∑
j≥0 1/qj . In view of (5.2), condition (ii) of Theorem 1 is equivalent

to

(5.3)
∑

j≥0

(
1− 1

qj
|qj − 1 + e(kα)|

)
=∞.

To show the equivalence between (5.3) and the divergence of
∑
j≥0 1/qj , we

will establish the inequalities

(5.4)
4‖kα‖2

q
≤ 1− 1

q
|q − 1 + e(kα)| ≤ 2

q

for any integer q ≥ 2 and any real number α.
The upper bound in (5.4) is trivial. To prove the lower bound, we note

that
(

1
q
|q − 1 + e(kα)|

)2

≤ 1
q2 ((q − 1)2 + 1 + 2(q − 1) cos(2πkα))

=
1
q2 (q2 − 2(q − 1)(1− cos(2πkα)))
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= 1− 2(q − 1)
q2 (1− cos(2πkα))

≤
(

1− q − 1
q2 (1− cos(2πkα))

)2

≤
(

1− (q − 1)(8‖kα‖2)
q2

)2

≤
(

1− 4‖kα‖2
q

)2

.

It follows that
1
q
|q − 1 + e(kα)| ≤ 1− 4‖kα‖2

q
,

which implies the lower bound in (5.4). Since α is irrational, we have ‖kα‖ 6=
0 for all non-zero integers k. Thus condition (ii) of Theorem 1 holds for all
k 6= 0 if and only if

∑
j≥0 1/qj diverges. From the theorem it therefore

follows that f is uniformly distributed modulo 1 if and only if
∑
j≥0 1/qj

diverges.
It remains to show that f has a non-uniform limit distribution modulo

1 if and only if the series
∑
j≥0 1/qj converges. To this end we note that,

by (5.2), the first part of condition (iii) of Theorem 1 is equivalent to the
convergence of

∑

j≥0

1− e(kα)
qj

,

which in turn is equivalent to the convergence of
∑
j≥0 1/qj , since α is

irrational. Therefore it remains only to show that if
∑
j≥0 1/qj converges,

then the second part of condition (iii) of Theorem 2.1 holds for all k 6= 0.
This follows immediately from the observation that, for all k 6= 0,

max
0<n≤qj

1
n

∑

0≤m<n
‖kfj(m)‖2 =

‖kα‖2
qj

→ 0,

as j tends to infinity, since the convergence of
∑
j≥0 1/qj implies that 1/qj

tends to 0.

Proof of Corollary 5. We note first that, for all j with qj > a,

(5.5) fj(n) =
{α, n = a,

0, otherwise.
Thus, we have

(5.6)
∑

0≤n<qj
e(kfj(n)) =

{
qj − 1 + e(kα), qj > a,
qj , qj ≤ a.



132 A. Hoit

As in the proof of Corollary 4, this implies that condition (i) of Theorem
1 does not hold for any k 6= 0. Moreover, using (5.4), we see that condition
(ii) of Theorem 1 is satisfied for all k 6= 0 if and only if

∑
qj>a

1/qj diverges.
Therefore, f is uniformly distributed modulo 1 if and only if

∑
qj>a

1/qj
diverges. This proves the first assertion of the corollary.

To prove the second assertion of the corollary, we note that by (5.5), we
have, for all k 6= 0,

max
0<n≤qj

1
n

∑

0≤m<n
‖kfj(m)‖2 =

{
‖kα‖2/a, qj > a,
0, qj ≤ a.

Therefore, the limit in condition (iii) of Theorem 1 is 0 for all k 6= 0 if and
only if qj ≤ a for all but at most finitely many j. It remains only to show
that under the same condition, the series in condition (iii) of Theorem 1
converges for all k 6= 0. This follows immediately, since, by (5.6),

∑

j≥0

(
1− 1

qj

∑

0≤n<qj
e(kfj(n))

)
=
∑

qj>a

1− e(kα)
qj

.
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