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0. Introduction. Let ¢ > 2 be an integer. A g-additive function f :
N — C is a function of the form f(n) = > ;5 fj(a;(n)) where n =
> >0 ) (n)¢’ is the base-q representation of n and the “component func-
tions” f; are functions defined on {0,1,...,q — 1} and satisfying f;(0) = 0.
These functions were introduced by A. O. Gel’fond [Ge] in 1968, and have
been studied by Coquet [Col], Delange [De3|, and others. They generalize
the sum-of-digits functions s,(n) with respect to base q.

In 1977, Coquet [Col] generalized g-additive functions to more gen-
eral systems of numeration. Specifically, he considered so-called mized radiz
representations (also called Cantor representations) defined as follows. Let
Q = {Q;};>0 be a sequence of strictly increasing positive integers with
Qo = 1 such that Q; | Q;41 for all j. Note that the sequence @ is uniquely
determined by the factors ¢; = Q,11/Q;. It is easily seen that each non-
negative integer n has a unique “base-()” representation of the form n =
> i>0aj(n)Q;, where the “digits” a;(n) satisfy 0 < a;(n) < ¢;. Examples of
such representations are the ordinary base-q representations (¢; = ¢) as well
as the factorial representation (g¢; = j + 2), the factorial-squared represen-
tation (¢; = (j + 2)?), and the doubly-geometric representations (q; = ¢*).
For a full discussion of these and other numeration systems see, for example,
Grabner et al. [GLT] or the survey article by Fraenkel [Fr] and the references
therein.

Given a mixed radix system @, Coquet defined a @Q-additive function
f N — C to be a function of the form f(n) = 3.5, f;j(a;(n)) where n =
> >0 ) (n)Q@; is the base-Q representation of n and the component func-
tions f; are functions defined on {0,1,...,¢; — 1} and satisfying f;(0) = 0.
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A simple example of a (-additive function is the sum-of-digits function
sqQ(n) = >_;50a;j(n), which corresponds to the choice fj(a) = a. This
function has been studied by Kirschenhofer and Tichy [KT], among oth-
ers. For recent work on general @-additive functions see Manstavi¢ius [Ma).
For generalizations of ¢g-additive functions to other numeration systems see,
for example, Barat and Grabner [BG].

Our main result, Theorem 1, characterizes those real-valued @-additive
functions that have a limit distribution (resp. uniform limit distribution)
modulo 1. In order to prove this result, we consider so-called Q)-multiplicative
functions, which are defined in analogy to @-additive functions as follows.
A Q-multiplicative function is a function g : N — C of the form g(n) =
[[;509i(a;j(n)), where n =3 -, a;(n)Q; is the base-Q representation of n
and the component functions g_] are functions defined on {0,1,...,¢; — 1}
and satisfying ¢;(0) = 1. These functions have been studied by Coquet
[Col] and others, usually in conjunction with work on @-additive functions.
We establish mean value theorems for -multiplicative functions analogous
to those of Delange and Wirsing (see, e.g., [El, Chapter 6]) for ordinary
multiplicative functions.

Throughout this paper, we set e(x) = €2™® and write ||z|| to denote the
distance from z to the nearest integer and {z} to denote the fractional part
of z.

1. Statement of results. Let Q = {Q,};>0 be a mixed radix system
with factors ¢; = Q;11/Q;. Let f be a real-valued Q-additive function with
component functions f;. We say that f has a limit distribution modulo 1 if
there is a distribution function F' (i.e., F' is right-continuous and monotonic
with F(x) =0 for x < 0 and F(x) =1 for x > 1) such that the limit

Jm #{0<n < N:{f(n)} <)

exists and equals F'(z) for every = at which F' is continuous. We say that
f has a uniform limit distribution modulo 1 if this holds with F'(x) = x for
0 < z < 1. Aside from its intrinsic interest, the study of the distribution
modulo 1 of @-additive functions is motivated in part by the results of
Coquet [Col] and Mendes France [MF| connecting the uniform distribution
of certain @-additive functions to so-called P-V numbers. Our main result
is a complete characterization of real-valued QQ-additive functions that have
a limit distribution (resp. uniform limit distribution) modulo 1.

THEOREM 1. A real-valued Q-additive function f has a limit distribution
modulo 1 if and only if, for each integer k # 0, at least one of the following
conditions holds:

(i) There exists j > 0 such that Zogn<qj e(kfj(n)) =0.
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(ii) The series

S(1-o] & ernm))

>0 UG o<n<q;

diverges.
(iii) The series

S (10 X etwsion)

>0 U o<n<a;

converges, and

1
li — ; 2) =o.
i (Jmax & 57 efim)) <0
0<m<n
Furthermore, f is uniformly distributed modulo 1 if and only if, for all
integers k # 0, at least one of conditions (1) or (ii) holds.

This result generalizes the characterization given by Kim [Ki, p. 27] for
the special case of g-additive functions.

We apply Theorem 1 to derive several corollaries that deal with spe-
cial cases. We first consider numeration systems in which the factors ¢; are
bounded. In particular, these systems include the ordinary base-q represen-
tations generated by ¢; = ¢ for all j.

COROLLARY 1. Suppose the factors q; are bounded. Then f is uniformly
distributed modulo 1 if and only if , for all k # 0, either the series

> D ks

§>0 0<n<gq;

diverges, or for some j > 0 we have

> elkfi(m) =0.
0<n<gq;

Let o € R. We call an integer-valued arithmetic function f normal if the
function af is uniformly distributed modulo 1 if and only if « is irrational.
Coquet [Co2] showed that for any base ¢ > 2, the associated sum-of-digits
function s4(n) is normal. General criteria for the normality of arithmetic
functions have been given by Drmota and Tichy [DT, Section 1.4.3]. In
Corollaries 2 and 3 below, we apply Theorem 1 to show that two classes of
integer-valued Q-additive functions are normal.

COROLLARY 2. For any mized radix numeration system @, the function
sq(n), the sum of digits in the base-Q representation of n, is normal.

We call a @Q-additive function f completely Q-additive if there exists a
function g : N — C such that, for all j > 0 and 0 < n < ¢;, fj(n) = g(n),
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i.e., if the component functions f; are independent of j on their respective
domains. The following corollary generalizes a result of Drmota and Tichy
[DT, Theorem 1.99].

COROLLARY 3. Suppose that the series Z >0 1/q; diverges. Let f be a
completely Q-additive, integer-valued function Such that there is some inte-
ger 1 < a < min; g; wzth fo(a) > 0. Then f is normal.

In the next two corollaries we investigate the normality of two particular
integer-valued @Q-additive functions that have been previously considered
in [Ho, examples (c) and (a)] and [KT, Theorem 3]. These results provide
examples of functions that have a non-uniform limit distribution modulo 1
as well as functions that have no limit distribution modulo 1.

COROLLARY 4. Let o be an irrational number. Let M(n) be the num-
ber of digits in the base-Q representation of n which are mazximal, and set
f(n) = aM(n). Then f has a limit distribution modulo 1. Moreover, the
limit distribution is uniform if and only if the series ijo 1/q; diverges.

COROLLARY 5. Let a > 0 be a fixed integer and let o be an irrational
number. Let No(n) be the number of digits a in the base-Q representation
of n, and set f(n) = aNg(n). Then f is uniformly distributed modulo 1
if and only if Zq > 1/4; diverges. The function f has a non-uniform limit
distribution modulo 1 if and only if ¢; < a for all but at most finitely many j.

2. Lemmas. The first lemma is a well known result on the distribution
modulo 1 of real-valued arithmetic functions (see, e.g., [De2, p. 216]). The
second assertion of the lemma is known as Weyl’s Criterion [We].

LEMMA 1. A real-valued arithmetic function f has a limit distribution
modulo 1 if and only if , for each integer k # 0,
N-1

exists. Further, the distribution is uniform modulo 1 if and only if, for each
integer k # 0, the above limit is 0.

Throughout the remainder of this section, we fix a mixed radix system @
with factors {¢;};>0. We denote by g a @Q-multiplicative function satisfying
lg] <1 with component functions g;, and define

1
pilg) =— > gi(n).
qJ 0<n<g;
Thus, p;(g) is the mean value of g; on its domain {0,1,...,¢; — 1}.
The following lemma relates the mean value of g on {0,1,...,rQ; — 1}
to that of the functions g;.
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LEMMA 2. For j > 0 and any positive integer r with 1 < r < q; we have

1 rQ;— 1 Q-1
2.1 — n) .
e g 3 0= (0 (g 3 o)
Moreover, for any j > 0,
1 Q;—1 Jj—1
(2.2) — > gn) =[] mly)
Q; n=0 i=0
Proof. We first note that, since Qo = 1 and g(0) = 1, we have
1 Qo—1
— n)=g(0) = 1.
0o nz;) g(n) =g(0)

Thus, relation (2.2) follows from (2.1) by applying (2.1) with » = ¢; and
iterating the identity. Hence it suffices to prove (2.1).

Observe that any non-negative integer n < r(); can be written uniquely
(via the division algorithm) in the form n = sQ; +¢ with 0 <t < @; and
0 < s < r. By the @-multiplicativity of g, we have, with this representation,

g(n) = g;(s)g(t).
As n runs through the set {0,1,...,7Q; — 1}, s and ¢ run independently
through the sets {0,1,...,r—1}and {0, 1,...,Q;—1}, respectively. It follows
that

rQj— r—1Q;— 1 Q;—1
rQ Z TQJ g ; 9;(s Zg] Q] tz; g(t),

which is (2.1).

To obtain necessary and sufficient conditions for the convergence of the
product in (2.2), we will use the following lemma, a proof of which can be
found in many elementary texts on complex variables (see, e.g., [LR, pp.
383-384)).

LEMMA 3. Let 2o, 21, ... be complex numbers satisfying |z;| < 1, and let
P; = H;.:O zj. Then lim;_, P; = 0 if and only if at least one of the following
two conditions holds:

(i) There is some j > 0 such that z; = 0.

(if) 22520 (1 = I25]) = .
Then lim; ., P; exists and is non-zero if and only if the following two con-
ditions are both satisfied:

(iii) z; # 0 for all j.
(iv) D252 (1 = 25) converges.
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The next lemma relates the mean value of g on {0,1,...,N — 1} for
general integers /N to the mean values of the functions g;.

LEMMA 4. Let N be a positive integer and let Z;‘:o a;Q;, with a; > 0,
be the base-Q representation of N. Then

(2.3)

= an]( H Im(am )(% njz_% gj(”)) (Zli[oﬂk(g)),

m=j+1

where empty products and empty sums are to be interpreted as 1 and 0,
respectively. Furthermore, for any positive integer h < i, we have

ye;
2.4 )] 21h
(2.4) jZON<

Proof. We begin by dividing the interval 0 < n < N into the subintervals
0<n<aQ; and a;Q; < n < N, to obtain

ylom=y ¥ gmiy ¥ g

0<n<a;Q; a; Qi <n<N

We have, by Lemma 2,
T X a2 (o jz:gxn)) (o Qfgm))
- % (i b gz-<n>) (H (9)).
n=0 k=0

Furthermore, by the @-multiplicativity of g, we also have, for all n with
aiQi <n <N, g(n) =g(n — a;Q;)gi(a;). Thus,

N Z g(n) = N Z g(n —a;Q;)gi(a;)
a;Qi<n<N a; Qi<n<N
:gi(ai)% > gln—aiQ))

a;Q;<n<N

—ga) Y )

0<n<NfaiQi

@) (o X ew)

0§n<N7a7,Q7,
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It follows that
1 N—-1 ;0 a;—1 i—1
¥ Xt =22 (2 > otn ) (TLinto)
n=0 i k=0

+ e ‘];‘iQi(N_laiQi > am).

OS’I’L<N—(LiQi

Iterating the last expression i—1 times gives (2.3). Inequality (2.4) follows
from the chain of inequalities

1 i—h 1 i—h Q i—1 1
i—ht1 1-h
NEfanj§5§anj§ 0 [[ —<2""™

=0 v j=0 ¢ jmimhy1 U

3. Mean value theorems for Q-multiplicative functions. Through-
out this section, we let () be a mixed radix system with factors {g;};>0. For
a given ()-multiplicative function g with component functions g;, we define
the mean value of g by

provided this limit exists. We set

0i(9) = max = 3 (1-Re(g;(m))),

0<n<g; N

and recall the notation
1i(g) = l > gin)
4 0<n<gq;
introduced in the previous section.
The following theorem, due to Coquet [Col, Lemma 1], gives a charac-
terization of (Q-multiplicative functions of modulus at most 1 which have
mean value 0. We present a proof here for completeness.

THEOREM 2. Let g be a Q-multiplicative function satisfying |g| < 1. The
mean value M(g) exists and is equal to 0 if and only if at least one of the
following two conditions holds:

(i) For some j >0, pj(g) = 0.
(i) The series Y ,~o(1 — [n;(g)]) diverges.
Proof. Assume first that M (g) = 0. Then, by (2.2) of Lemma 2,

1 Qjt+1—1
i(g) = lim i(g) = lim n) = 0.
Hu HXJHM Jim o HZ% g(n)

By Lemma 3, this implies that at least one of conditions (i) or (ii) holds.
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Conversely, assume that at least one of conditions (i) or (ii) holds. Ap-
plying Lemma 3 again, we conclude that H;io 1;(g) = 0. We now show that
M (g) exists and is equal to 0. Let N be a positive integer with base-@Q rep-
resentation Z;‘:o a;Q;, where a; > 0. Applying Lemma 4 with h = |i/2],
we obtain

% > gn)

0<n<N
i 00 j—1 i a;Q; j—1

< HH M m| <202 3 S [T o)
j=0 k=0 j=i—|i/2]+1 k=0

i j—1

» a;Q;

<2224 3 S TT )|
i=li/2) =0

Since 4 tends to infinity as N tends to infinity and Z;=Li/2J a;Q; < N, the

right-hand side tends to 0 as N tends to infinity. Thus, M(g) = 0. This
completes the proof of Theorem 2.

We now characterize those @-multiplicative functions of modulus at most
1 having a non-zero mean value, a case that was not considered by Coquet.
This characterization is the content of the following theorem which repre-
sents an analog of the well known mean value theorem of Delange [Del],
and generalizes a result of Delange [De3] for the case of ordinary base-gq
expansions.

THEOREM 3. Let g be a Q-multiplicative function satisfying |g| < 1. The
mean value M(g) exists and is non-zero if and only if the following three
conditions all hold:

(i) For each j >0, p;(g) # 0.

(i) > ;501 — pj(g)) converges.

Proof. For simplicity of notation, we will write p; = p;(g) and o; =
0;(g) throughout the proof.

Assume first that M(g) = L for some number L # 0. Then, in particular,
we have

By (2.2) of Lemma 2, this implies that H;‘io p; = L. By Lemma 3, the con-
vergence of the product H;io 5 to a non-zero value implies that conditions
(i) and (ii) of the theorem hold.
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It remains to show that condition (iii) also holds, i.e., we wish to show
that the quantity

oj= max = 3 (1-Re(g;(m))

0<n<g; N
o<m<n

tends to zero as j tends to infinity. Let {n; };)io be a sequence of integers
such that the maximum in the definition of o; is attained at n = n;, so that

1
o;j =1—-Re <n_ Z gj(m)).
J 0§m<n]~
Applying (2.1) of Lemma 2 with r = n;, we obtain

1 (1/anj)ZO<n<n-Q- g(n) L
lim — E g;(m) = lim =~ 7% =—=1
Iy 0<m<n; ’ i—ee (1/45) Z0§n<Qj 9(n) L

Therefore, o; tends to 0 as j tends to infinity, which proves condition (iii).

Conversely, assume that conditions (i), (ii), and (iii) all hold. The first
two conditions imply that the infinite product H;‘io ; converges to a non-
zero value, by Lemma 3. Let L denote this value. We will show that M (g)
exists and is equal to L.

We first note that, by the bound |g;| < 1 and the general inequality
1—2>=1+|2>—2Rez<2(1 -Rez) (]z|<1),

condition (iii) is equivalent to

oo/ .
1 1—— =0
() i e 10 5 ()
0<m<n
Furthermore, (iii)’ implies that
(3.1) lim g;(m) =1
j—00

for any fixed m.

Let € > 0 be given and choose h and ig such that 2'~" < &, and for
1 > 19 we have the following three conditions:

() [TIj=oms — Ll <&
(0) (/1) Yop<men gilm) =1 <e (0 <n < g).
(c) |Hk<j§z‘gj(mj) —1l<e (i—-h<k<i 0<mj;<1/e).

Condition (a) is possible since H;‘io p; = L, while conditions (b) and (c)
can be met in view of condition (iii)’ and (3.1).
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Let N be a positive integer with base-() representation N = Z;:O a;Q;
where a; > 0, and suppose that N is sufficiently large and 7 > ig + h.
Applying Lemma 4, we have

‘% > gn)-L

0<n<N
S (I o) (33 o) (L))
< j;};ﬂ % ((m§+19m(am)) (% OS;% gj(n)> (;];[:uk) - L) ’

where in the last step we have used the fact that g,,, g, px, and L are at most
1 in modulus. By inequality (2.4) of Lemma 4, the second term on the right
hand side is at most 2(2'~") < 2. Moreover, by the triangle inequality, the
first term is bounded by

z": aJQJK H gm(an)) 1] ‘( > -(n))(il_[:ﬂk)

j=i—h+1 m=j+1
i j—1 j—1
foy W%l s 9'(”)_1"Hﬂk‘+‘nﬂk_l/‘
. N a; J
j=i—h+1 0<n<a; k=0 k=0
:21+227

say. Since i — h > ig, we have, by assumptions (a) and (b) above,
i
a;Q;
Ty <2 Z — <2
j=i—h+1

To estimate Xy, we distinguish two cases. If a; < 1/e for all j with
i —h < j <, then by assumption (c), [([];,—; 11 gm(am)) — 1| < ¢ for all
j and therefore Y7 < e. Otherwise, let jo be the largest value of j in the
range ¢ — h < j < i for which a;, > 1/e. The contribution of terms with
Jjo < j <ito Xy is, as before, at most . Thus,

D <e+ Z anj‘(mli[Hgm(am))—ll-'(alj <Z g(M)(ZHZJMk)

j=i—h+1 0<n<a;
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Jo—1 CLQ Jjo— 1 jo— 1Q Q
<et+2 ) - j<€+22 _a+22 ’“ J
j=i—h+1 j=0
2
<e+ Q”<e+ i < 3e.
N 50 & 50
In either case, we have
1
N Z g(n) — L| < 7e.
0<n<N

Since € was arbitrary, we have shown that M(g) = L. This completes the
proof of the theorem.

The following result is an immediate consequence of Theorems 2 and 3.

THEOREM 4. Let g be a Q-multiplicative function satisfying |g| < 1.
The mean value M(g) exists if and only if at least one of the following three
conditions holds:

(i) For some j >0, p;(g) = 0.
(i) The series Y ,~o(1 — [u;(g)]) diverges.
(iil) >2;50(1 — pj(g)) converges, and lim;_.o 0;(g) = 0.

The mean value is zero if either condition (i) or (ii) holds.

4. Proof of Theorem 1. Let Q = {Q,;};>0 be a mixed radix system,
with factors ¢; = Q;4+1/@Q;, and let f be a real-valued Q-additive function
with component functions f;.

For each integer k # 0, we set ¢®)(n) = e(kf(n)). Then each func-
tion ¢ is a Q-multiplicative function with component functions g](k) (n) =
e(kf;j(n)). We write

1
i =gy == 3 gP ),

qj 0<n<g;

and
1

k) _ 5 (B = - _ (k)
o) =0,;(g™) Ogaéjno;; (1—Re(g,” (n))),

and denote the mean value of ¢(®) by M}, whenever this mean value exists.
By Lemma 1, f has a limit distribution modulo 1 if and only if, for each
integer k # 0, the mean value M, exists, and the distribution is uniform if
and only if, for each integer k # 0, My = 0. By Theorem 4, for each k # 0,
M, exists if and only if at least one of the following three conditions holds:

(i)x For some j > 0, ,u(k) =0.

(ii)x The series - (1 — |,u( )]) diverges.
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(iii) g ijo(l — ugk)) converges, and lim;_, aj(.k) =0.

Further, M}, = 0 if and only if either condition (i) or (ii); holds. Therefore,
it remains only to show that, for each integer k # 0, conditions (i), (ii)x, and
(iii), are equivalent to conditions (i), (ii), and (iii) of Theorem 1, respectively.

To prove this, we fix an integer k # 0. Conditions (i), and (ii); are
identical to conditions (i) and (ii) of Theorem 1, respectively, by the defini-
tion of ugk
Theorem 1 follows from the definition of

). The equivalence between condition (iii), and condition (iii) of

(k)

J
Kk 1 k 1

o)) = max — 37 (1-Re(g" () = max — 3 [kfi(n)

0<n<g; N 0<n<g; N
0<m<n 0<m<n

and the relation

which holds since
1 —Ree(x) = 1 — cos(2rz) = ||z|?

for any real number z. This completes the proof of Theorem 1.

5. Proof of the corollaries

Proof of Corollary 1. Fix an integer k # 0. For each j > 0, let n; be
such that maxo<n<q, ||kf;j(n)||? is attained at n = n;. First we note that by
the elementary inequality

1+e(z) <2-2]2]* (z€R),

we have, for all j,

LY ek < | X elkfi )] + 11+ elkf (ny)]
J0<n<g; 4 1<n<q; 9
n#n;

< qij«qj — ) L+ e(kf; ()

< qu«qj —9) (2 - 20k fi (n)]2)

- q%_(qj — 25 (ny)])

and thus
kfi(n:)l?
1= 2| S ks tnp| > AERDT S 205
i 0<n<g; 4 J 0<n<g;

Since, by assumption, the factors ¢; are bounded, the divergence of the series

(5.1) Yo D kLM

720 0<n<g;
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implies that condition (ii) of Theorem 1 holds. Hence, if for all k& # 0 either
the series in (5.1) diverges or condition (i) of Theorem 1 holds, then Theo-
rem 1 implies that f has a uniform limit distribution modulo 1.

Conversely, assume that f is uniformly distributed modulo 1. Then, for
each k # 0, either condition (i) or condition (ii) of Theorem 1 holds. We
will show that if condition (ii) holds for some k # 0 then the series in (5.1)
diverges. Fix k # 0. Since, for all real x,

1 —Ree(x) = 1 — cos(2rx) < 272||z|)?,

we have, for all j,

1 1
1——_( 3 e(kfj(n))( <1-—Re Y e(kf;(n)
£4 0<n<gq; 4 0<n<gq;
— LS (1= Ree(kf;(n)
4 0<n<gq;
<13 ks )P
J 0<n<g;
<7 Y kfim)]*.
0<n<g;

Thus, condition (ii) of Theorem 1 implies the divergence of the series in
(5.1), as claimed.

Proof of Corollary 2. Assume first that « is irrational. If the factors g;
are bounded, then, since f;(1) = a for all j, it follows from Corollary 1 that
f is uniformly distributed modulo 1. It remains to deal with the case when
the factors ¢; are unbounded.

Fix k #£ 0. Then we have, for all j > 0,

1 1

” Z e(kf;(n)] = q—j\ Z e(kan)|
_ 111 —e(kag)) < 2
g 1—e(ka) |~ q;(1—e(ak))’

Since the factors ¢; are unbounded and « is irrational, this quantity is
< 1/2 for infinitely many j, and so condition (ii) of Theorem 1 is satisfied.
Therefore, f has a uniform limit distribution modulo 1.

On the other hand, if « is rational, then f takes on only finitely many
values modulo 1, and thus f cannot be uniformly distributed modulo 1.

Proof of Corollary 3. Let FF = «f. Then F is completely @Q-additive
with component functions F; = o f;. As in Corollary 2, if a is rational then
F' cannot be uniformly distributed modulo 1. Assume therefore that « is
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irrational. We will show that condition (ii) of Theorem 1 is satisfied (with F’
in place of f) for all k£ # 0. By Theorem 1 it then follows that F' is uniformly
distributed modulo 1. Fix an integer k # 0 and let a be as in the statement
of the corollary, so that fop(a) > 0 and a < ¢; for all j. As in the proof of
Corollary 1, we have, for all j,

LS |2 EREIE_ 2kel@l _ 2koh@I
4102, 4 4 4

Since ||kafo(a)]] # 0 by our assumptions that « is irrational, k£ # 0, and
fo(a) # 0, and since, by the hypothesis of Corollary 2, the series Z]‘>0 1/q;
diverges, condition (ii) of Theorem 1 is satisfied as claimed. -

Proof of Corollary 4. We note first that the component functions f;(n)
of f(n) = aM(n) are given by
‘ _Ja, n=gq;— 1,
ff(”)—{o, 0<n<gqg —1L

Thus we have, for any integer k # 0,
(5.2) S elkfi(n) = g5 — 1+ e(ka).

0<n<g;
It follows that condition (i) of Theorem 1 is satisfied if and only if, for some
J, q; =2 and ||ka|| = 0. Since « is irrational, this is impossible unless k = 0.
Therefore, condition (i) of Theorem 1 does not hold for any & # 0.
We next show that condition (ii) of Theorem 1 is equivalent to the diver-
gence of .- 1/q;. In view of (5.2), condition (ii) of Theorem 1 is equivalent
to

1
(5.3) > (1 ——lg -1+ e(ka)|> = 0.
§>0 I

To show the equivalence between (5.3) and the divergence of .-, 1/q;, we
will establish the inequalities -

A|ecr]?

q

for any integer ¢ > 2 and any real number «.

The upper bound in (5.4) is trivial. To prove the lower bound, we note
that

1
(5.4) §1—a|q—1—|—e(ko¢)| <

ESEN V]

(é lg—1+ e(ka)|> < =((g—1)2+1+2(q— 1) cos(2mka))

= —(¢®> = 2(q — 1)(1 — cos(2mka)))
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—1- 2(q7g1)(1 — cos(2mka))
q
q_l S| ZTTRO i

< <1— 7 (1 — cos(27k ))>
(g - DB[kal?)*

: <1 - ¢ )

2\ 2
< (1 Ay’
q

1
“lg—1+e(ka) <1
q

It follows that
4 ka?

which implies the lower bound in (5.4). Since « is irrational, we have || ko|| #
0 for all non-zero integers k. Thus condition (ii) of Theorem 1 holds for all
k # 0 if and only if Zj>0 1/q; diverges. From the theorem it therefore
follows that f is uniformly distributed modulo 1 if and only if > >0l /4
diverges.

It remains to show that f has a non-uniform limit distribution modulo
1 if and only if the series ) >0l /q; converges. To this end we note that,
by (5.2), the first part of condition (iii) of Theorem 1 is equivalent to the

convergence of
-
jz0 U
which in turn is equivalent to the convergence of Zj>0 1/qj, since « is
irrational. Therefore it remains only to show that if ) >0l /q; converges,

then the second part of condition (iii) of Theorem 2.1 holds for all k£ # 0.
This follows immediately from the observation that, for all k& # 0,

max = 3 ks (m)|? =

kol
0<n<g; N O<men '

0,

as j tends to infinity, since the convergence of > j>o0l /q; implies that 1/g;
tends to 0. B

Proof of Corollary 5. We note first that, for all j with ¢; > a,
a, n=a,

(5.5) fi(n) = {O, otherwise.

Thus, we have

(5.6) Y elkfi(n) = {qj —1+e(ka), g;>a

: - < a.
0<n<q; qj, q; >
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As in the proof of Corollary 4, this implies that condition (i) of Theorem
1 does not hold for any k # 0. Moreover, using (5.4), we see that condition
(ii) of Theorem 1 is satisfied for all k£ # 0 if and only if > g>al /q; diverges.
Therefore, f is uniformly distributed modulo 1 if and only if »_ g>al /4
diverges. This proves the first assertion of the corollary.

To prove the second assertion of the corollary, we note that by (5.5), we
have, for all k # 0,

1 Ikal2/a, 4>
max — kf:(m)||? = A ’
o, 3 Wami = {ge Bz

Therefore, the limit in condition (iii) of Theorem 1 is 0 for all k£ # 0 if and
only if ¢; < a for all but at most finitely many j. It remains only to show
that under the same condition, the series in condition (iii) of Theorem 1
converges for all k # 0. This follows immediately, since, by (5.6),

S (10 X etwnon) - 2 k)

§>0 7 0<n<g, aj>a K
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