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The Tate conjecture for certain abelian varieties
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In an earlier work, we showed that if the Hodge conjecture holds for
all complex abelian varieties of CM-type, then the Tate conjecture holds
for all abelian varieties over finite fields (Milne 1999b). In this article, we
extract from the proof a statement (Theorem 1.1) that sometimes allows
one to deduce the Tate conjecture for the powers of a single abelian variety
A over a finite field from knowing that some Hodge classes on their lifts to
characteristic zero are algebraic.

Tate’s theorem (Tate 1966) implies that the Tate conjecture holds for
any abelian variety over a finite field whose Q`-algebra of Tate classes is
generated by those of degree 1. Examples are known of abelian varieties for
which this condition (and hence the Tate conjecture) hold (Lenstra, Spiess,
Zarhin; see the examples in A.7 below). Using Theorem 1.1 and a result of
Schoen (1988, 1998), we construct examples of abelian varieties for which
the condition fails, but for which we are nevertheless able to prove the Tate
conjecture (see 1.7, 1.8).

The main results are stated in Section 1 and proved in Section 2. Ap-
pendix A summarizes the theories of abelian varieties of CM-type over C
and of abelian varieties over finite fields, and how the reduction map relates
the two. Appendix B sharpens a result of Clozel on the relation between nu-
merical and homological equivalence for abelian varieties over finite fields.

Notations not introduced in Section 1 are listed at the start of Ap-
pendix A.

1. Statements. Let X be a smooth complete variety over an algebraic
closure F of the field Fp of p elements. The choice of a model X1 of X
over a subfield Fpn of F determines an action of Gal(F/Fpn) on the étale
cohomology group H2r(X,Q`(r)), and we define
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T r` (X) =
⋃

X1/Fpn
H2r(X,Q`(r))Gal(F/Fpn )

(union over all models). The elements of T r` (X) are called the `-adic Tate
classes of degree r on X. We shall say that the Tate conjecture holds for X
if the Q`-vector space T r` (X) is spanned by the classes of algebraic cycles
for all r and all ` 6= p.

A Tate class is said to be exotic if it is not in the Q`-algebra gener-
ated by the Tate classes of degree 1. For an abelian variety over F, Tate
(1966) showed that all Tate classes of degree 1 are divisor classes, and so
the nonexotic Tate classes are algebraic.

Let A0 be an abelian variety over F. If the Tate conjecture holds for A0,
then the equivalent statements of Tate 1994, Theorem 2.9, hold for every
model A1 of A over a finite field. In particular, the Tate conjecture holds for
A1/Fq, and for every r, the order of the pole of the zeta function Z(A1, t)
of A1 at t = q−r is equal to the rank of the group of numerical equivalence
classes of algebraic cycles of codimension r on A1.

Let A be an abelian variety with many endomorphisms (see A.2) over an
algebraically closed field k. Then (see A.3) there is a group of multiplicative
type L(A) over Q whose fixed tensors in any Weil cohomology of a power
As of A are exactly the Lefschetz classes, i.e., those in the algebra generated
by divisor classes. We call L(A) the Lefschetz group of A.

Now take k to be the algebraic closure Qal of Q in C, and let w0 be a
prime of Qal dividing p. It follows from the theory of Néron models, that A
has good reduction at w0 (Serre and Tate 1968, Theorem 6) and so defines
an abelian variety A0 over the residue field F at w. There is a canonical
inclusion L(A0) ↪→ L(A) (see A.3, Remark).

Let Hr(A,Q) denote the usual cohomology group of the complex mani-
fold A(C), and let Hr(A,Q(m)) = Hr(A, (2πi)mQ)—it is a rational Hodge
structure of weight r − 2m. The action of L(A) on H2r(As,Q(r)) defines a
decomposition

H2r(As,Q(r))⊗Qal =
⊕

χ∈X∗(L(A))

H2r(As,Q(r))χ

where (−)χ is the subspace on which L(A) acts through its character χ. We
say that χ is algebraic if H2r(As,Q(r))χ contains a nonzero algebraic class
for some r and s. The set of algebraic characters of L(A) is stable under
the action of Gal(Qal/Q), and if χ is algebraic then H2r(As,Q(r))χ consists
entirely of algebraic classes (1). By composition, an algebraic character of
L(A) defines a character of L(A0).

(1) The algebraic characters are precisely those that are trivial on the subgroup M(A)
of L(A) (see A.3).
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A modelA1/Fq of A0 over a finite field defines a Frobenius endomorphism
π of A0. Some power of π lies in L(A0)(Q), and we define P (A0) to be the
smallest algebraic subgroup of L(A0) containing a power of π (see A.3).

Theorem 1.1. If

P (A0) =
⋂

Ker(χ : L(A0)→ Gm)

(intersection over the algebraic characters of L(A)), then the Tate conjecture
holds for all powers of A0.

An element of H2r(A,Q(r))∩H0,0 is called a Hodge class of degree r on
A. We say that the Hodge conjecture holds for A if the Q-vector space of
Hodge classes on A of degree r is spanned by the classes of algebraic cycles
for all r. The Mumford–Tate group MT(A) of A is the largest algebraic
subgroup of L(A) fixing the Hodge classes on all powers of A.

Corollary 1.2. If the Hodge conjecture holds for all powers of A and

P (A0) = L(A0) ∩MT(A) (intersection inside L(A)),

then the Tate conjecture holds for all powers of A0.

A Hodge class is said (2) to be exotic if it is not in theQ-algebra generated
by Hodge classes of degree 1. Lefschetz showed that all Hodge classes of
degree 1 are divisor classes, and so the nonexotic Hodge classes are exactly
the Lefschetz classes (in particular, they are algebraic).

Let E be a CM-field of degree 2n, n > 2, over Q containing a quadratic
imaginary fieldQ. Choose an embedding %0 : Q→Qal, and let {σ0, . . . , σn−1}
be the set of extensions of %0 to E. Then Φ0 =df {σ0, ι ◦ σ1, . . . , ι ◦ σn−1}
(ι denotes complex conjugation on C) is a CM-type on E and Φ =df {%0} is
a CM-type on Q. Let (A, i) and (B, j) be abelian varieties over Qal of CM-
types (E,Φ0) and (Q,Φ) respectively. We let Q act diagonally on A×Bn−2.

Lemma 1.3. The exotic Hodge classes on A×Bn−2 are exactly the non-
zero elements of the subspace

W (A,B) df=
(∧2n−2

Q
H1(A×Bn−2,Q)

)
(n− 1)

of H2n−2(A×Bn−2,Q(n− 1)).

As A × Bn−2 has dimension 2n − 2, H1(A × Bn−2,Q) has dimension
4n − 4 over Q, and so

∧2n−2
Q H1(A × Bn−2,Q) has dimension 1 over Q.

The action of an endomorphism of an abelian variety on its cohomology
groups preserves algebraic classes, and so, if W (A,B) contains one nonzero
algebraic class, then it is spanned as a Q-space by algebraic classes.

(2) Following Tate 1994, p. 82.
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Theorem 1.4. If some exotic Hodge class on A × Bn−2 is algebraic,
then the Hodge conjecture holds for all abelian varieties of the form As×Bt,
s, t ∈ N.

The abelian varieties A and B over Qal reduce modulo w0 to abelian
varieties A0 and B0 over F. Let K be the Galois closure of σ0E in Qal, and
let D(w0) be the decomposition group of w0 in Gal(K/Q).

Theorem 1.5. Assume p splits in Q and that Gal(K/σ0E) ·D(w0) is a
subgroup of Gal(K/Q).

(a) For all ` 6= p, the exotic `-adic Tate classes on A0×Bn−2
0 are exactly

the nonzero elements of the subspace

W (A0, B0) df=
(∧2n−2

Q⊗QQ`
H1(A0 ×Bn−2

0 ,Q`)
)

(n− 1)

of H2n−2(A0 ×Bn−2
0 ,Q`(n− 1)).

(b) If some exotic Hodge class on A × Bn−2 is algebraic, then the Tate
conjecture holds for all abelian varieties over F of the form As0×Bt0, s, t ∈ N.

Remark 1.6. (a) Note that, under the hypotheses of the theorem, the
Q-algebra of Hodge classes on A×Bn−2 is larger than the tensor product of
the similar algebras for A and Bn−2, and the Q`-algebra of Tate classes on
A0×Bn−2

0 is larger than the tensor product of the similar algebras for A0 and
Bn−2

0 . Moreover, the groups L(A×B) and MT(A×B) (resp. L(A0×B0) and
P (A0 ×B0)) are not distinguished by their fixed tensors in the cohomology
of A×B (resp. A0 ×B0).

(b) The condition that Gal(K/σ0E) ·D(w0) be a subgroup of Gal(K/Q)
holds, for example, if E is Galois over Q. Without it, the analysis becomes
very complicated, and the theorem fails.

Examples. Let C be an abelian variety over C, and let i : Q→ End0(C)
be a homomorphism of Q-algebras, where, as above, Q is a quadratic imagi-
nary extension of Q. The pair (C, i) is said to be of Weil type if the tangent
space to C at 0 is a free Q⊗Q C-module.

When (C, i) is of Weil type, its dimension is even, say, dimC = 2m,
and the subspace (

∧2m
Q H1(C,Q))(m) of H2m(C,Q(m)) consists of Hodge

classes (Weil 1977)—they are called the Weil classes on C.
Let λ be a polarization of C whose Rosati involution induces complex

conjugation on Q, and let Eλ be the Riemann form defined by λ. There
exists a skew-Hermitian form φ : H1(A,Q) × H1(A,Q) → Q such that
TrQ/Q ◦φ = E. The discriminant of φ is an element of Q×/Nm(Q×) which
is independent of the choice of the polarization, and so can be denoted by
det(C, i). The quotient Q×/Nm(Q×) is an infinite group killed by 2, and
for any a ∈ Q×/Nm(Q×) with (−1)ma > 0, there exists an m2-dimensional
family of abelian varieties of Weil type with determinant a (Weil 1977, van
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Geemen 1994). We say that φ is split when there is an m-dimensional Q-
subspace of H1(A,Q) on which φ is totally isotropic.

The Weil classes on C are known to be algebraic in the following cases:

(a) Q = Q[
√
−3], m = 3, and φ is split (Schoen 1998; see also van

Geemen 1994, 7.3, p. 250);
(b) Q = Q[

√
−3], m = 2 (Schoen 1988 when φ is split and Schoen 1998

in general);
(c) Q = Q[

√
−1], m = 2, and φ is split (van Geemen 1996).

Corollary 1.7. Let A,B,E,Q be as in Theorem 1.5, and let Q act
diagonally on A × Bn−2. If the Weil classes on A × Bn−2 are algebraic,
then the Hodge conjecture holds for all abelian varieties of the form As×Bt,
s, t ∈ N × N, and the Tate conjecture holds for all abelian varieties of the
form As0 ×Bt0, s, t ∈ N× N.

Proof. In this case, W (A,B) is the space of Weil classes on A×Bn−2.

Example 1.8. Let Q = Q[
√
−3] and let p be a prime such that p ≡ 1

(mod 3); let F be a totally real cubic extension of Q that is Galois over Q or
such that p splits in it, and let E = F ·Q; let Φ={%0} and Φ0 ={σ0, ισ1, ισ2}
be the CM-types onQ and E respectively defined above. Then, for all abelian
3-folds A of CM-type (E,Φ0) and all elliptic curves B of CM-type (Q,Φ),

(a) the Hodge conjecture holds for the abelian varieties As×Bt, s, t ∈ N;
the subspace W (A,B) of H4(A×B,Q(2)) consists of exotic Hodge classes;

(b) the Tate conjecture holds for the abelian varieties As0 ×Bt0, s, t ∈ N;
the subspaceW (A0, B0) ofH4(A0×B0,Q`(2)) consists of exotic Tate classes.

2. Proofs. Notations concerning groups of multiplicative type are re-
viewed at the start of Appendix A.

Proof of 1.1. After the Theorem in A.3, in order to prove Theorem 1.1,
it suffices to show that its hypotheses imply that M(A0) = P (A0).

As numerical equivalence agrees with homological equivalence on abelian
varieties in characteristic zero (see B.1), we may regard M(A) as the sub-
group of L(A) fixing the algebraic classes in H2r(As,Q(r)) for all r, s, i.e.,
as the intersection of the kernels of the algebraic characters on L(A). Hence

L(A0) ∩M(A) =
⋂

χ algebraic

Ker(χ : L(A0)→ Gm).

Thus, the hypotheses of Theorem 1.1 imply that L(A0) ∩M(A) = P (A0).
Since

L(A0) ∩M(A) ⊃M(A0) ⊃ P (A0),

this implies that M(A0) = P (A0).
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Proof of 1.2. As we noted in the proof of 1.1,

M(A) =
⋂

χ algebraic

Ker(χ : L(A)→ Gm).

If the Hodge conjecture holds for the powers of A, then MT(A) = M(A)
(see A.3). If, in addition, P (A0) = L(A0) ∩MT(A), then

P (A0) =
⋂

χ

Ker(χ : L(A0)→ Gm)

(intersection over the algebraic characters of L(A)), and so (1.2) follows from
(1.1).

Proofs of 1.3 and 1.4. Let E, Q, %0, {σ0, . . . , σn−1}, Φ and Φ0 be as in the
paragraph preceding the statement of Lemma 1.3. Let K be a CM-subfield
of Qal, finite and Galois over Q, containing the Galois closure of σ0E in Qal,
and let SK be its Serre group (see A.4). For each i, 0 ≤ i ≤ n− 1, let

Σi = {τ ∈ Gal(K/Q) | τ ◦ σ0 = σi}.
Then Σ0 is the subgroup Gal(K/σ0E) of Gal(K/Q) and Σ0, . . . , Σn−1, ιΣ0,
. . . , ιΣn−1 are its left cosets. Let ψi be the characteristic function of Σi ∪⋃
j 6=i ιΣj , and let ψ be the characteristic function of

⋃
Σi = {τ | τ◦%0 = %0}.

Note that ΣK acts on the set {Σ0, . . . , ιΣn−1}, and that if τΣi = Σi′ ,
then τψi = ψi′ . The linear relations among ψ0, . . . , ψn−1, ψ, ιψ regarded as
elements of X∗(SK) are exactly the multiples of

(∗) ψ0 + . . .+ ψn−1 + (n− 2)ψ = (n− 1)(ψ + ιψ).

Let (A, i) be an abelian variety of CM-type (E,Φ0), and let X∗(L(A))
be identified with a quotient of ZΣE (see A.5). The map

X∗(%Φ0) : X∗(L(A))→ X∗(SK)

(ibid.) sends [σ0] to ψ0 and hence, by equivariance and linearity, it sends [σi]
to ψi and [σ0 + ισ0] to ψ0 + ιψ0 = ψ+ ιψ. Because [σ0], . . . , [σn−1], [σ0 + ισ0]
form a basis for X∗(L(A)) and ψ0, . . . , ψn−1, ψ+ιψ are linearly independent
in X∗(SK), we see that X∗(%Φ0) : X∗(L(A))→ X∗(SK) is injective. There-
fore, %Φ0 : SK → L(A) is surjective, and MT(A) = L(A) (ibid.). Hence all
Hodge classes on all powers of A are Lefschetz (A.3, Theorem). In particular,
the Hodge conjecture holds for A and its powers.

Let (B, i) be an elliptic curve of CM-type (Q,Φ). In this case, X∗(L(B))
= ZΣQ and L(B) = (Gm)Q/Q. The map X∗(%Φ) sends %0 to ψ and ι%0

to ιψ. As ψ and ιψ are linearly independent in X(SK), this shows that
MT(B) = L(B), and so all Hodge classes on all powers of B are Lefschetz.

The abelian variety A is simple because its CM-type is primitive (this
uses that n > 2). The product A × B is of CM-type (E × Q,Φ′) where
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Φ′ = Φ0 t Φ. The group X∗(L(A×B)), regarded as a quotient of ZΣEtΣQ ,
has basis {[σ0], . . . , [σn−1], [%0], [%0 + ι%0]}, and X∗(%Φ′) sends

[σi] 7→ ψi, [%0] 7→ ψ, [%0 + ι%0] 7→ ψ + ιψ.

Since (∗) is the only relation among ψ0, . . . , ψn−1, ψ, ιψ, the kernel of
X∗(L(A×B))→ X∗(SK) is free of rank 1 with generator

χ = [σ0 + . . .+ σn−1 + (n− 2)%0 − (n− 1)(%0 + ι%0)].

As MT(A × B) is the image of SK in L(A × B) (see A.5), this shows that
there is an exact sequence

0→MT(A×B)→ L(A×B)
χ→ T → 0

where T is the 1-dimensional torus over Q whose character group 〈χ〉 is
isomorphic to Z with Gal(K/Q) acting nontrivially through Gal(%0Q/Q).

The exotic Hodge classes on A × B and its powers are those that lie in
a rational subspace on which L(A × B) acts through the characters mχ,
m 6= 0.

We now prove 1.3. The Lefschetz group of A×Bn−2 equals that of A×B.
It acts on

W (A,B) =
∧n

Q
H1(A)⊗

∧n−2

Q
((n− 2)H1(B))⊗Q(n− 1)

through the characters χ and ιχ = −χ. Because χ is trivial on MT(A×B),
this space consists of Hodge classes, and because χ is not trivial on L(A×B),
the Hodge classes are exotic. The group L(A×B) acts on no other subspace
of a space H2r(A × Bn−2,Q(r)) ⊗ Qal through the characters ±χ, and so
the elements of W (A,B) are the only exotic Hodge classes on A×Bn−2.

We now prove 1.4. If some exotic Hodge class in A×Bn−2 is algebraic,
then the character χ is trivial on M(A×B). Hence M(A×B) = MT(A×B).
But M(As × Bt) = M(A × B) and MT(As × Bt) = MT(A × B) for any
s, t ≥ 1 (see A.5), and so the Hodge conjecture holds for As ×Bt (see A.3).

Proof of 1.5. We shall compute the terms in the diagram

SK L(A×B)

PK L(A0 ×B0)

//
OO

//

OO

or, equivalently, in the corresponding diagram of character groups. In fact,
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we shall prove that there is an exact commutative diagram

(∗∗)
0 〈χ〉 X∗(L(A×B)) X∗(SK)

0 〈χ0〉 X∗(L(A0 ×B0)) X∗(PK)

//

∼=
��

//

��

//

��
// // //

The horizontal maps in the right-hand square are those defined in A.5 and
A.7, the map X∗(SK)→ X∗(PK) is that in the fundamental diagram (A.8),
and the map L(A0×B0)→ L(A×B) comes from the inclusion C(A0×B0) ⊂
C(A × B) induced by the reduction map End0(A × B) ↪→ End0(A0 × B0).
The character χ of L(A×B) is that defined above, and χ0 is the composite
of χ with L(A0 ×B0)→ L(A×B).

The “subgroup” condition in the statement of the theorem implies that
Σ0 · D(w0) is a subgroup of Gal(K/Q), even though we are no longer as-
suming K to be the Galois closure of σ0E. In fact, we now assume that K
is large enough to split End0(A0 ×B0) (in the sense of A.6).

Let X be the set of primes of K dividing p. Suppose that the subsets
Σi ·w0 and Σj ·w0 of X have nonempty intersection. Then τiw0 = τjw0 for
some τi ∈ Σi and τj ∈ Σj . Hence τi ∈ τjD(w0), and so

Σi · w0 = τiΣ0 ·w0 ⊂ τjD(w0)Σ0 · w0 = τjΣ0D(w0) · w0 = Σj · w0.

By symmetry, Σi · w0 ⊃ Σj · w0, and so the two sets are equal: we have
shown that the sets Σi · w0 and their complex conjugates form a partition
of X. Let X0, . . . ,Xm−1 be the distinct elements of {Σi ·w0 | 0 ≤ i ≤ n− 1}
with X0 chosen to be Σ0w0, and let

Y = {X0, . . . ,Xm−1, ιX0, . . . , ιXm−1}.

The group ΣK acts transitively on X and Y , and the stabilizers of w0 and X0

areD(w0) andΣ0·D(w0) respectively. By using w0 andX0 as base points, we
can identify the map of ΣK-sets X → Y with ΣK/D(w0)→ ΣK/Σ0 ·D(w0).
Each Xj then corresponds to the quotient of a left coset of Σ0 ·D(w0) by
the right action of D(w0). From these remarks, we see that

|X| = (ΣK : D(w0)),

|Y | = (ΣK : Σ0 ·D(w0)) (= 2m),

|Xj | = (Σ0 ·D(w0) : D(w0)).

For i ∈ {0, . . . , n − 1}, define j(i) to be the element of {0, . . . ,m− 1} such
that Σi ·w0 = Xj(i). For each j, there are (Σ0 ·D(w0) : Σ0) = n/m sets Σi
such that Σi · w0 = Xj .
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We next compute the terms in the diagram

(∗∗A)

X∗(L(A)) X∗(SK)

X∗(L(A0)) X∗(PK)
��

//

��
//

Recall that we have already shown that X∗(L(A)) → X∗(SK) sends the
element [σi] of X∗(L(A)) to ψi.

We use the map π 7→ fKπ (see A.6, A.7) to identify X∗(PK) with

{f ∈ ZX | there exists an m ∈ Z such that f + ιf = mn0}.

Here n0 = [Kw0 : Qp] = |D(w0)|. The map X∗(SK)→ X∗(PK) is

f =
∑

τ∈ΣK
f(τ)τ 7→

∑

τ∈ΣK
f(τ)τw0 =

∑

w∈X

( ∑

τ,τw0=w

f(τ)
)
w

(see A.8). When f = ψi, w ∈ Xj occurs in the right-hand side with nonzero
coefficient if and only if j = j(i), in which case its coefficient is |Σ0∩D(w0)| =
n0m/n. Thus the map sends ψi to fj(i) where fj is the function determined
by the conditions

fj(w) =
{
|Σ0 ∩D(w0)|, w ∈ Xj ,
0, w ∈ Xj′ , j

′ 6= j,

fj(w) + fj(ιw) = n0 for all w.

We identify X∗(L(A0)) with

ZΠA0

{g | g = ιg,
∑
g(π) = 0}

where ΠA0 is the set of conjugates of πA0 in K (see A.7). Let u = %−1
0 w0, and

let v0 = σ−1
0 w0. Note that σ−1

i w0 lies over u0 and (ισi)−1w0 lies over ιu0,
0 ≤ i ≤ n − 1. Using this, we find that the slope function of the Frobenius
germ πA0 of A0 satisfies

sπA0
(v) =

{
1/|ΣE(v0)|, v = v0,
0, v lies over u0, v 6= v0,

where ΣE(v0) = {σ ∈ ΣE | σ−1w0 = v0} (see A.8). As s + ιs = 1, this
determines s. Note that

|ΣE(v0)| = (Σ0 ·D(w0) : Σ0) = (D(w0) : Σ0 ∩D(w0)).

Note also that X0 is the set of w ∈ X lying over the prime σ0v0 in σ0E. For
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any τ ∈ Σi (i.e., such that τ ◦ σ0 = σi), the diagram

K K X0 7→ τX0 = Xj(i)

σ0E σiE σ0v0 7→ σiv0

τ
≈

//

≈
//

shows that Xj(i) is the set of w ∈ X lying over σiv0 in σiE0. In other words,
Xj(i) is the set of w ∈ X such that σ−1

i w = v0. For σ ∈ ΣE, σπA0 is the
Weil germ in K with

fKσπA0
(w) = sσπA0

(w) · n0 = sπA0
(σ−1w) · n0.

When σ = σi and w ∈ Xj , this becomes

fKσiπA0
(w) =

{
|Σ0 ∩D(w0)|, j = j(i),
0, j 6= j(i).

Thus, fσiπA0
= fj(i). In particular, σiπA0 depends only on j(i). As the

functions fj are distinct, we see that

ΠA0 = {π0, . . . , πm−1, ιπ0, . . . , ιπm−1}
where πj(i) = σiπA0 . The map X∗(L(A))→ X∗(L(A0)) sends [σi] to [πj(i)],
and the map X∗(L(A0))→ X∗(PK) sends [πj ] to fj .

We have now computed all the terms in the diagram (∗∗A). It is clear
that it commutes.

We next compute the terms in the diagram

(∗∗B)

X∗(L(B)) X∗(SK)

X∗(L(B0)) X∗(PK)
��

//

��
//

Recall that X∗(L(B)) has basis [%0], [ι%0], and that the map X∗(L(B)) →
X∗(SK) sends [%0] to ψ and [ι%0] to ιψ. Here ψ is the characteristic function
of
⋃
Σi. Clearly, Q[πB0 ] = Q, and X∗(L(B0)) = ZΣQ . The left-hand vertical

map in the diagram is therefore the identity map. Let f ∈ ZX be the function

f(w) =
{
n0 if %−1

0 w = u0,
0 otherwise.

Then f ∈ X(PK) and the bottom map sends [%0] 7→ f . The right-hand
vertical map sends ψ to f .

On combining the diagrams (∗∗A) and (∗∗B), we get the right-hand
square in (∗∗). It remains to compute the kernel of X∗(L(A0 × B0)) →
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X∗(PK). Note that

X∗(L(A0 ×B0)) =
ZΣΠA0

tΣQ

{g | g = ιg and
∑
g(y) = 0} .

The elements [π0], . . . , [πm−1], [%0], [%0+ι%0] form a basis for X∗(L(A0×B0)).
They are mapped respectively to f0, . . . , fm−1, f, f+ ιf in X∗(PK). Clearly,

n

m
(f0 + . . .+ fm−1) + (n− 2)f = (n− 1)(f + ιf),

and any relation among f0, . . . , fm−1, f, f + ιf is a multiple of this one.
Therefore, the kernel of X∗(L(A0 × B0)) → X∗(PK) is the free Z-module
of rank one generated by

χ0 =
[
n

m
(π0 + . . .+ πm−1) + (n− 2)%0 − (n− 1)(%0 + ι%0)

]
.

The map X∗(L(A×B))→ X∗(L(A0 ×B0)) sends χ to χ0, and so we have
obtained the diagram (∗∗).

We now prove Theorem 1.5. The group L(A0 × B0) acts on the space
W (A0, B0) through the characters χ0 and ιχ0 = −χ0. Because χ0 is trivial
on P (A0 × B0), W (A0 × B0) consists of Tate classes, and because χ0 is
nontrivial on L(A0 × B0), the classes are exotic. The group L(A0 × B0)
acts on no other subspace of a space H2r(A0 × Bn−2

0 ,Q`(r)) through the
character χ0, and so W (A0 × B0) contains all the exotic Tate classes on
A0 ×Bn−2

0 .
From (∗∗), we obtain an exact commutative diagram

0 MT(A×B) L(A×B) T 0

0 P (A0 ×B0) L(A0 ×B0) T0 0

// // χ // //

//

OO

//

OO

χ0 //

∼=

OO

//

It follows that

P (A0 ×B0) = L(A0 ×B0) ∩MT(A×B).

If some exotic Hodge class on A × Bn−2 is algebraic, then the Hodge con-
jecture holds for all powers of A × Bn−2 (see Theorem 1.4), and so Theo-
rem 1.5(b) follows from Corollary 1.2.

Remark 2.1. It follows from the above calculations that P (A0) = L(A0)
and P (B0) = L(B0), and so all Tate classes on A0 and B0 are Lefschetz.

Remark 2.2. Choose E to be Galois over Q, and identify it with K.
In this case, the maps X∗(L(A × B)) → X∗(SK) and X∗(L(A0 × B0)) →
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X∗(PK) are surjective, and so we obtain an exact commutative diagram

0 〈χ〉 X∗(L(A×B)) X∗(SK) 0

0 〈χ0〉 X∗(L(A0 ×B0)) X∗(PK) 0

//

∼=
��

//

��

//

��

//

// // // //

The vertical arrows are surjective, and so

0→ Ker(X∗(L(A×B))→ X∗(L(A0 ×B0)))→ X∗(SK)→ X∗(PK)→ 0

is exact. Hence

0→ PK → SK → L(A×B)/L(A0 ×B0)

is exact, which implies that

0→ PK → SK → LK/TK

is exact (notations as in Milne 1999b) because L(A × B)/L(A0 × B0)
→ LK/TK is injective. Therefore

PK = SK ∩ TK (intersection inside LK),

and we recover ibid., Theorem 6.1.

Appendix A. Abelian varieties with many endomorphisms

A.1. Notations. Throughout,Qal is the algebraic closure ofQ in C, and
Γ = Gal(Qal/Q). Complex conjugation on C, or a subfield of C, is denoted
by ι or x 7→ x̄. In A.8, we fix a prime w0 of Qal dividing p, and denote the
residue field at w0 by F. We denote the restriction of w0 to a subfield of Qal

by the same symbol. For a finite étale Q-algebra E, ΣE = Hom(E,Qal). For
a subfield K of Qal Galois over Q, ΣK can be identified with Gal(K/Q).

A CM-algebra E is a finite product of finite field extensions of Q ad-
mitting an involution ιE that is nontrivial on each factor and such that
σ(ιEx) = σ(x) for all σ : E → C; equivalently, E is a finite product of
CM-fields.

For a finite set Y , ZY denotes the set of functions f : Y → Z. We
sometimes denote such a function by

∑
f(y)y; for example, the function

f = y1 takes the value 1 on y1 and 0 on all y 6= y1.
For a group of multiplicative type T over Q, X∗(T ) =df Hom(TQal ,Gm)

is the character group. We often use the pairing

χ, µ 7→ 〈χ, µ〉 df= χ ◦ µ : X∗(T )×X∗(T )→ End(Gm) ∼= Z

to identify the cocharacter group X∗(T ) =df HomQal(Gm, TQal) of T with
the Z-linear dual of X∗(T ). The group Γ acts on X∗(T ) and X∗(T ), and
〈γχ, γµ〉 = 〈χ, µ〉 for all γ ∈ Γ , χ ∈ X∗(T ), and µ ∈ X∗(T ).
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Let % : T → GL(V ) be a representation of a group T of multiplicative
type on a finite-dimensional Q-vector space V . For any subfield Ω of C that
splits T , there is a decomposition

V ⊗Q Ω ∼=
⊕

χ∈X∗(T )

Vχ

where Vχ is the subspace of V ⊗Q Ω on which T acts through χ. If Vχ
is nonzero, then we say that χ occurs in V . When Ω is Galois over Q, a
subspace

⊕
χ∈Ξ Vχ, Ξ ⊂ X∗(T ), is defined over Q (i.e., of the form W ⊗QΩ

for some subspace W ⊂ V ) if and only if Ξ is stable under Γ . The subspace
of vectors in V fixed by T (in the sense of Milne 1999a, §3) is denoted V T .

For a finite étale Q-algebra E, (Gm)E/Q =df ResE/Q(Gm) (Weil restric-
tion of scalars), so that X∗((Gm)E/Q) = ZΣE . Under this identification, an
element f =

∑
f(σ)σ of ZΣE maps an element a of E× = (Gm)E/Q(Q) to

af =
∏

(σa)f(σ). We sometimes identify a subset ∆ of ΣE with the character∑
σ∈∆ σ; for example, if V is an E-vector space, then (V ⊗r ⊗ Ω)∆ is the

subspace on which a ∈ E acts as
∏
σ∈∆ σa.

There is a natural correspondence (3) between

• triples (T,w, t) comprising a group of multiplicative type T , a cochar-
acter w of T , and a character t, all defined over Q, such that t◦w = −2;

and
• pairs (T0, ε) comprising a group of multiplicative type T0 and an ele-

ment ε of order 1 or 2 in T0(Q).

Given (T,w, t), define T0 to be the kernel of t and ε to be w(−1). Con-
versely, given (T0, ε), define T by the diagram

0 µ2 Gm Gm 0

0 T0 T Gm 0

//

ε

��

//

w

��

−2 //

=

��

//

// // t // //

in which T = (T0 × Gm)/µ2. If (T1, w1, t1) ⊂ (T2, w2, t2), then T1 = T2 if
and only if (T1)0 = (T2)0.

Let %0 : T0 → GL(V ) be a representation of T0 such that %0(ε) acts on V
as multiplication by the scalar −1, and let W be a one-dimensional vector
space with basis e. Then

(x, y) 7→ (%0(x) · y, y−2) : T0 ×Gm → GL(V )×GL(W )

sends (ε, ε) to 1, and therefore defines a homomorphism % : T → GL(V ) ×
GL(W ). Note that (% ◦ w)(y) acts on V as y, and that the composite of %

(3) Experts will recognize the Tannakian significance of this correspondence (Saavedra
1972, V 3.1.4; Deligne and Milne 1982, p. 190).
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with the projection to GL(W ) is t. Let s ∈ V ⊗i. If s is fixed by T0, then i
is even. There is a one-to-one correspondence

s↔ s⊗ e⊗j

between the elements s of V ⊗2j fixed by T0 and the elements of V ⊗2j⊗W⊗j
fixed by T .

For a smooth projective variety X, Zr(X) is the space of algebraic cycles
on X of codimension r with coefficients in Q, and Zrnum(X) is the quotient
of Zr(X) by numerical equivalence. The space Z∗num(X) =

⊕
r Zrnum(X)

becomes a Q-algebra under intersection product. An algebraic class in a
cohomology group with coefficients in a field Ω is an element of the Ω-
subspace spanned by the classes of algebraic cycles.

For an abelian variety A over an algebraically closed field k of charac-
teristic zero, we often implicitly assume that there is given an embedding
σ : k → C so that we can define Hr(A,Q) to be rth cohomology group of
the complex manifold (σA)(C). We let Hom0(A,B) = Hom(A,B)⊗Z Q.

For Hodge structures and class field theory, we follow the usual con-
ventions of those areas rather than the conventions of Deligne used in my
previous papers. For example, z ∈ C× acts on a Hodge structure of type
(r, s) as zrz̄s, and the Artin reciprocity maps send prime elements to the
Frobenius element x 7→ xq.

We sometimes use [x] to denote an equivalence class containing x, and
|X| to denote the order of a finite set X.

For an explanation of the various cohomology groups of varieties, and
their Tate twists, see Deligne 1982, §1.

This section summarizes results due to many mathematicians. Omitted
proofs can be found in Milne 1999a, 1999b, Tate 1968/69, or in the references
for those articles.

A.2. Generalities. Let A be an abelian variety over an algebraically
closed field k. The reduced degree (4) of the Q-algebra End0(A) is ≤ 2 dimA,
and when equality holds the abelian variety is said (5) to have many endo-
morphisms. An isotypic (6) abelian variety has many endomorphisms if and
only if End0(A) contains a field of degree 2 dimA over Q, and an arbitrary

(4) Let R be a semisimple algebra of finite degree over Q. Then R is a product of
simple algebras, say, R = R1 × . . . × Rm, and the centre Ei of each Ri is a field. The
reduced degree [R : Q]red of R over Q is defined to be

∑m
i=1[Ri : Ei]

1/2[Ei : Q].
(5) Often such an abelian variety is said to admit “complex multiplication”, but

this conflicts with classical terminology—see Lange and Birkenhake 1992, p. 268. Also
“multiplication” for “endomorphism” seems archaic.

(6) An abelian variety is said to be isotypic if it is isogenous to a power of a simple
abelian variety.
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abelian variety has many endomorphisms if and only if each isotypic isogeny
factor of it does. Equivalent conditions:

(a) the Q-algebra End0(A) contains an étale subalgebra of degree 2 dimA
over Q;

(b) for a Weil cohomology X 7→ H∗(X) with coefficient field Ω, the
centralizer of End0(A) in EndΩ(H1(A)) is commutative (in which case it
equals C(A)⊗Q Ω where C(A) is the centre of End0(A));

(c) (characteristic zero) A has CM-type, i.e., its Mumford–Tate group
(see A.3 below) is commutative (hence a torus);

(d) (characteristic p 6= 0) A is isogenous to an abelian variety defined
over F (theorems of Tate and Grothendieck).

Let k ⊂ k′ be algebraically closed fields. The functor A 7→ Ak′ from the
category of abelian varieties over k to the similar category over k′ is fully
faithful, because the map on torsion points A(k)tors → A(k′)tors is bijective
and A(k)tors is Zariski dense in A. That the functor becomes essentially
surjective on the categories of abelian varieties with many endomorphisms
up to isogeny is a result of Grothendieck (Oort 1973). Thus, in large part,
the theory of abelian varieties with many endomorphisms up to isogeny over
an algebraically closed field depends only on the characteristic of the field.

A.3. The groups attached to an abelian variety with many endo-
morphisms. Let A be an abelian variety with many endomorphisms over
an algebraically closed field k, and let C(A) be the centre of End0(A). Every
Rosati involution on End0(A) stabilizes C(A), and the different Rosati invo-
lutions restrict to the same involution (7) on C(A), which we denote †. Each
factor of C(A) is either a CM-field, on which † acts as complex conjugation,
or is Q.

The Lefschetz group. We define L(A)0 to be the group of multiplicative
type over Q such that, for all commutative Q-algebras R,

L(A)0(R) = {α ∈ C(A)⊗R | αα† = 1}.
Let ε = −1 ∈ L(A)0(Q), and let (L(A), w, t) be the triple associated (as in
A.1) with (L(A)0, ε).

Then
L(A)(Q) ∼= {α ∈ C(A)× | αα† ∈ Q×},

and, on Q-points, w is x 7→ x and t is x 7→ (xx†)−1.

The motivic group. Because L(A)0 is a subgroup of End0(A)×, it acts on
Z∗num(As) for all s, and we define M(A)0 to be the largest algebraic subgroup

(7) The Rosati involution defined by a polarization λ : A → A∨ is α 7→ α† =
λ−1 ◦ α∨ ◦ λ. Let µ be a second polarization, and let β = λ−1 ◦ µ. If α ∈ C(A), then
α† ∈ C(A) and µ−1 ◦ α∨ ◦ µ = β−1 ◦ α† ◦ β = α†.
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of L(A)0 acting trivially on these Q-algebras. Then −1 ∈ M(A)0(Q), and
we let (M(A), w, t) be the triple associated with (M(A)0,−1).

The Mumford–Tate group. When k has characteristic zero, L(A)0 acts
on the Q-algebra of Hodge classes on As for all s, and we define MT(A)0 to
be the subgroup of L(A)0 fixing the elements of these Q-algebras. Again
−1 ∈ MT(A)0, and we let (MT(A), w, t) be the triple associated with
(MT(A)0,−1).

The group P . Let k = F. A model A1 of A over a finite field Fq defines a
Weil q-number π1, whose class πA in W (p∞) (see A.6 below) is independent
of the choice of A1. The group P (A) is defined to be the smallest algebraic
subgroup of L(A) containing some power of π1 — again, it is independent
of the choice of A1.

Let π1 be a Weil p2n-number representing πA. Then π1/p
n ∈ L(A)0, and

P (A)0 is the smallest algebraic subgroup of L(A)0 containing some power
of π1/p

n.

LetH∗ be a Weil cohomology with coefficients in a fieldΩ. Since L(A)0 ⊂
(Gm)C(A)/Q, there is a natural action of L(A)0 on H1(A,Ω), and ε acts as
−1. Hence (see A.1) there is a natural action of L(A) on

Hr(As, Ω)(m) ∼=
(∧r ( ⊕

s copies

H1(A,Ω)
))
⊗ (Ω(1))⊗m.

Lemma. Let A be an abelian variety with many endomorphisms over an
algebraically closed field k, and let H∗ be a Weil cohomology with coefficients
in a field Ω. Let H2∗(As)(∗) =

⊕
rH

2r(As)(r). Then, for all s,

(a) H2∗(As)(∗)L(A) is the Ω-subalgebra of H2∗(As)(∗) generated by the
classes of divisors on As (i.e., it is the space of Lefschetz classes);

(b) H2∗(As)(∗)M(A) is the space of algebraic classes in H2∗(As)(∗), pro-
vided numerical equivalence coincides with homological equivalence for H∗;

(c) H2∗(As)(∗)MT(A) is the space of Hodge classes on As when k has
characteristic zero and H∗ is the cohomology defined by an embedding k→C;

(d) H2∗(As,Q`(∗))P (A) is the space of `-adic Tate classes on As when
k = F and H∗ is `-adic étale cohomology.

Proof. Statement (a) is proved in Milne 1999a (Theorem 4.4).
For (b), recall that theorems of Jannsen and Deligne show that the

category of motives over k, based on abelian varieties and defined using
the numerical equivalence classes of algebraic cycles as correspondences, is
Tannakian (Jannsen 1992). Almost by definition, M(A) is the fundamental
group of the Tannakian subcategory 〈A〉⊗ of this category generated by A
and the Tate object. When numerical equivalence coincides with homolog-
ical equivalence, the Weil cohomology defines a fibre functor, and there is
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a natural map

Hom(
�
, h2r(As)(r))⊗Q Ω → HomΩ(Ω,H2r(As)(r))M(A),

which the theory of Tannakian categories shows to be bijective. But

Hom(
�
, h2r(As)(r)) = Zrnum(As).

Statement (c) is proved in Deligne 1982 (see the proof of 3.4).
Almost by definition of P (A), H2∗(As,Q`(∗))P (A) consists of the classes

fixed by the Frobenius germ πA, and these are exactly the Tate classes.

Thus (Deligne 1982, 3.1), under the hypotheses in each part of the
lemma, knowing the group ?(A)Ω is equivalent to knowing the corresponding
spaces of fixed classes: ?(A)Ω is the largest algebraic subgroup of GL(H1(A))
× Gm fixing the particular classes on all As, and the particular classes are
exactly those fixed by ?(A)Ω.

Theorem. (a) For any abelian variety A with many endomorphisms
over an algebraically closed field k of characteristic zero, MT(A) ⊂M(A) ⊂
L(A), and

(i) the Hodge conjecture holds for all powers of A if and only if
MT(A) = M(A);

(ii) all Hodge classes on all powers of A are Lefschetz if and only if
MT(A) = L(A).

When k = Qal, “Hodge” can be replaced by “Tate” in the above statements.
(b) For any abelian variety A0 over F, P (A0) ⊂M(A0) ⊂ L(A0), and

(i) all `-adic Tate classes on all powers of A0 are algebraic for one
(or all) ` if and only if P (A0) = M(A0);

(ii) all `-adic Tate classes on all powers of A0 are Lefschetz for one
(or all) ` if and only if P (A0) = L(A0).

Proof. Since every character of L(A) occurs in a space of the form
Hr(As)(m), we see that the subgroups of L(A) are determined by their
invariants in these spaces. Thus (a) of the Theorem is an immediate con-
sequence of the Lemma. That “Hodge” can be replaced by “Tate” follows
from Pohlmann 1968.

If P (A0) = M(A0), then the Lemma shows that the `-adic Tate con-
jecture holds for all powers of A0 and all ` in the set in Proposition B.2,
but if the `-adic Tate conjecture holds for one ` then it holds for all (Tate
1994, 2.9). Conversely, if the `-adic Tate conjecture holds for all powers of
A0 and a single `, then numerical equivalence coincides with `-homological
equivalence for that ` (Tate 1994, 2.9, (c)⇒(b)), and the preceding Lemma
then shows that P (A0)Q` = M(A0)Q` . As P (A0) ⊂M(A0), this implies that
P (A0) = M(A0).
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The proof of the remaining statement is similar.

Example. If A has dimension 1, then either End0(A) is a quadratic
imaginary field E or a quaternion algebra D with centre Q. In the first case,
all the groups attached to A equal (Gm)E/Q and in the second, all the groups
attached to A equal Gm. Hence, there are no exotic Hodge or Tate classes
on any power of an elliptic curve, and the Hodge and Tate conjectures hold.

Remark. Let A be an abelian variety with many endomorphisms over
Qal, and let A0 be its reduction to an abelian variety over A0. The reduc-
tion map End0(A) → End0(A0) is injective, and the image of the centre of
End0(A) contains the centre of End0(A0) (because the latter is generated as
a Q-algebra by a Frobenius element which lifts to an element of the centre
of End0(A)). Therefore, L(A) ⊃ L(A0).

A.4. Classification over C of abelian varieties with many en-
domorphisms. Let E be a CM-algebra. A CM-type on E is the choice of
one out of every pair of complex conjugate homomorphisms E → C. It can
variously be considered as:

(a) a partition ΣE = Φ ∪ ιΦ;
(b) a function ϕ : ΣE → Z such that, for all σ, ϕ(σ) ≥ 0 and ϕ(σ) +

ϕ(ισ) = 1;
(c) the choice of an isomorphism E⊗QR→ CΣF where F is the product

of the maximal real subfields of the factors of E.

Here Φ is the support of ϕ and ϕ is the characteristic function of Φ.
Let A be a simple abelian variety over C with many endomorphisms.

Then End0(A) is a CM-field E, and the action of E on Γ (A,Ω1) defines a
CM-type Φ on E, which is primitive, i.e., not the extension of a CM-type
on a proper CM-subfield of E. The map A 7→ (E,Φ) defines a bijection
from the set of isogeny classes of simple abelian varieties over C with many
endomorphisms to the set of isomorphism classes of pairs (E,Φ). It remains
to classify the pairs (E,Φ).

Fix a (large) CM-field K ⊂ Qal, finite and Galois over Q. The Serre
group SK of K is the quotient of (Gm)K/Q whose character group consists
of the f ∈ ZΣK for which there is an integer wt(f) (the weight of f) such
that f(τ) + f(ιτ) = wt(f) for all τ ∈ ΣK , that is,

X∗(SK) = {f ∈ ZΣK | f + ιf is constant}.
The reflex field of (E,Φ) is the fixed field of the subgroup {τ ∈ Γ |

τΦ = Φ} of Γ . We classify the pairs (E,Φ) whose reflex field is contained
in K. Let ϕ be the characteristic function of Φ. For each σ : E → Qal and
τ ∈ Gal(Qal/Q), define

ψσ(τ) = ϕ(τ−1 ◦ σ).
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Then ψσ(τ) depends only on τ |K, and for any % ∈ Gal(Qal/Q), ψ%◦σ = %ψσ.
Thus, {ψσ} is a Γ -orbit in ZΣK . The map (E,Φ) 7→ {ψσ} is a bijection from
the set of isomorphism classes of pairs (E,Φ) comprising a CM-field and a
primitive CM-type whose reflex field is contained in K to the set of Γ -orbits
of elements f of X∗(SK) such that f(τ) ≥ 0 for all τ and wt(f) = 1.

A.5. Calculation of the groups over C. Let A be an abelian variety
with many endomorphisms over C. Then A is isogenous to a product As11 ×
. . .×Astt with the Ai simple and pairwise nonisogenous, and

L(A) ∼= L(A1 × . . .×At) (in fact L(A)0
∼= L(A1)0 × . . .× L(At)0),

M(A) ∼= M(A1 × . . .× At),
MT(A) ∼= MT(A1 × . . .× At).

Thus, in the following, we assume that A is a product of pairwise nonisoge-
nous simple abelian varieties. Then E =df End0(A) is a CM-algebra. The
action of E on H1,0(A) defines a CM-type Φ on E, and the Rosati involution
is ιE .

The Lefschetz group. The group L(A) is the subgroup of (Gm)E/Q whose
character group is

ZΣE
{g | g = ιg and

∑
g(σ) = 0} .

The weight map w : Gm → L(A) corresponds to the map

[g] 7→ wt(g) df=
∑

σ∈ΣE
g(σ)

on characters, and the homomorphism t : L(A) → Gm giving the action of
L(A) on the Tate object Q(1) sends 1 ∈ X∗(Gm) to the element of X∗(L(A))
represented by −σ − ισ for any σ ∈ ΣE .

The group L(A)0 is the subgroup of (Gm)E/Q whose character group is

ZΣE
{g | g = ιg} .

The map µ2 → L(A)0 corresponds to the map on characters [g] 7→ ∑
g(σ)

mod 2.
When A is simple, the map σ 7→ ψσ is bijective and commutes with the

action of Γ , and so it identifies L(A) with the torus whose character group
is

ZΨ

{g | g = ιg and
∑
g(ψ) = 0} , Ψ = {ψσ | σ ∈ ΣE}.
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The Mumford–Tate group. The Hodge decomposition on Hr(As,Q)(m)
is defined over Qal, i.e., there is a decomposition

Hr(As,Q)(m)⊗Qal ∼=
⊕

i+j=r−2m

Hr(As)(m)i,j

that becomes the Hodge decomposition when tensored with C. Since L(A)0

⊂ (Gm)E/Q, there is a natural action of L(A)0 on H1(A,Q), and ε acts as
−1. Hence (see A.1) there is a natural action of L(A) on

Hr(As,Q)(m) ∼=
(∧r ( ⊕

s copies

H1(A,Q)
))
⊗ (Q(1))⊗m.

For χ = [g] ∈ X∗(L(A)), (Hr(As)(m))χ is of Hodge type
(∑

σ∈Φ
g(σ),

∑

σ∈ιΦ
g(σ)

)
.

Every character of L(A) occurs in Hr(As,Q)(m) for some r, s,m, and if [g]
occurs in Hr(As)(m), then wt(g) = r− 2m. A character χ of L(A) is trivial
on MT(A) if and only if

⊕
τ∈Γ H

2r(As)(r)τχ is purely of type (0, 0) for some
r, s for which the space is nonzero. Hence, a character χ = [g] of L(A) is
trivial on MT(A) if and only if

∑

σ∈Φ
g(τ ◦ σ) = 0 for all τ ∈ Γ.

The motivic group. Let χ ∈ X∗(L(A)). Then χ is trivial on M(A) if and
only if H2r(As)(r)χ contains a nonzero algebraic class for some r and s, in
which case the spaces H2r(As)(r)χ consist entirely of algebraic classes for
all r and s (see (b) of the lemma in A.3).

Second description of MT(A). There is another description of MT(A)
that is useful. Let K be a CM-subfield of Qal, finite and Galois over Q, and
let SK be its Serre group. Let τ0 ∈ ΣK be the given embedding ofK intoQal.
Then f 7→ f(τ0) is a cocharacter µK of SK with the property that µK + ιµK

is fixed by Γ and so is defined over Q. The pair (SK , µK) is universal: if T
is a second torus over Q and µ ∈ X∗(T ) is defined over K and µ + ιµ is
defined over Q, then there is a unique homomorphism %µ : SK → T such
that (%µ)Qal ◦ µK = µ. On characters, %µ sends χ ∈ X∗(T ) to the element f
of X∗(SK) with f(τ) = 〈χ, τµ〉 for all τ .

Let A be an abelian variety of CM-type (E,Φ), and let µΦ be the cochar-
acter of L(A) sending a character [g] of L(A) to

∑
σ∈Φ g(σ). If K con-

tains the reflex field of Φ, then µΦ is defined over K. Moreover µΦ + ιµΦ is
[g] 7→ wt(g), which is defined over Q, and so there is a unique homomor-
phism %Φ : SK → L(A) such that %Φ ◦ µK = µΦ. It sends a character g of



Tate conjecture 155

L(A) to the character f of SK such that

f(τ) = 〈[g], τµΦ〉 = 〈τ−1[g], µΦ〉 =
∑

σ∈Φ
g(τ ◦ σ).

The image of this homomorphism is MT(A). It is obvious that this descrip-
tion agrees with the previous one.

Remark. The roles of K and E should be carefully distinguished. The
first is a “large” CM-subfield of Qal Galois over Q; the second is a finite
product of abstract CM-fields acting on A. The field K contains the reflex
field of (E,Φ). There are homomorphisms

(Gm)K/Q � SK → L(A) ↪→ (Gm)E/Q.

The image of the middle homomorphism is MT(A).

A.6. Classification over F of abelian varieties. A Weil q-number (8)
of weight m is an element π of a field of characteristic zero such that qNπ
is an algebraic integer for some N and σ(π) · ι(σ(π)) = qm for all homomor-
phisms σ : Q[π] ↪→ C. The conditions imply that qNπ is a unit at all finite
primes v of Q[π] not dividing p, and hence that the same is true for π. For
any prime v dividing p of a field containing π, we let

sπ(v) =
ordv(π)
ordv(q)

;

thus sπ(v) + sπ(ιv) = wt(π). A Weil q-number is determined up to a root
of 1 (as an element of an algebraic number field) by the numbers sπ(v)
because they determine all of its valuations. We call sπ the slope function
of π. A Weil q-number that is itself an integer is called a Weil q-integer.

Weil germs. Let π be a Weil pn-number and π′ a Weil pn
′
-number in

some field. We say π and π′ are equivalent if πn
′

and π′n differ by a root
of 1. A Weil germ is an equivalence class of Weil numbers. The weight and
slope function of a Weil germ π are the weight and slope function of any
representative of it, and Q[π] is defined to be the smallest field containing
a representative of π. A Weil germ is determined by its slope function.

Let W (p∞) denote the set of Weil germs represented by elements of Qal.
It is an abelian group endowed with an action of Γ . Let W (p∞)m,+ denote
the subset of W (p∞) consisting of Weil germs of weight m represented by
algebraic integers; thus,

W (p∞)m,+ = {π ∈W (p∞) | sπ(v) ≥ 0, sπ(v) + sπ(ιv) = m ∀v}.
Classification of abelian varieties. Let A0 be a simple abelian variety

over F, and let A1 be a model of A0 over Fq ⊂ F with the property that

(8) This conflicts with an earlier terminology (e.g., Tate 1968/69) which calls a “Weil
q-number” what we call a “Weil q-integer of weight 1”.
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End(A1) = End(A0). The Frobenius endomorphism πA1 of A1 is a Weil
q-integer of weight 1 in C(A0), and we let πA0 denote the germ represented
by πA1—it is independent of the choice of A1/Fq. The conjugates of πA0 in
Qal form a Γ -orbit ΠA0 in W (p∞), and the map A0 7→ ΠA0 is a bijection
from the set of isomorphism classes of simple abelian varieties over F onto
the set of Γ -orbits in W (p∞)1,+.

The various invariants of A0 can be read off from ΠA0 as follows. The
images of Q[πA0 ] in Qal are the fixed fields of the stabilizers of the different
elements of ΠA0 , and so [Q[πA0 ] : Q] = |ΠA0 |. The division algebra D =df

End0(A0) has centre Q[πA0 ], and D splits at no real prime of Q[πA0 ], splits
at each finite prime not dividing p, and has invariant

invv(D) = sπ(v)[Q[πA0 ]v : Qp] mod Z,
at each prime v dividing p. By class field theory, the order of D in the Brauer
group of Q[πA0 ] is the smallest positive integer e such that e · invv(D) ∈ Z
for all v, and [D : Q[πA0 ]]1/2 = e. Moreover,

2 dimA0 = [D : Q[πA0 ]]1/2 · [Q[πA0 ] : Q],

and so A0 has many endomorphisms. The set of slopes of the Dieudonné
module of A0 is {sπA0

(v) | v|p}, and an s in this set has multiplicity
∑

v,sπA0
(v)=s

2 dimA0 · [Q[πA0 ]v : Qp]
[Q[πA0 ] : Q]

.

It remains to classify the Weil germs.

Classification of Weil germs. Fix a CM-subfield K of Qal, finite and
Galois over Q. For a Weil germ π in Qal and a prime w of Qal dividing p,
let

fKπ (w) = sπ(w)[Kw : Qp].
Define WK(p∞) to be the set of Weil germs in Qal represented by an element
of K and such that fKπ (w) ∈ Z. Since W (p∞) =

⋃
KW

K(p∞), it suffices to
describe WK(p∞) for each K.

Let F be the maximal real subfield of K, and let X and Y be the sets of
primes in K and F respectively dividing p. Then there is an exact sequence

0→WK(p∞)→ ZX × Z→ ZY → 0.

The first map is π 7→ (fKπ ,wt(π)) and the second is

(f,m) 7→ f |Y − n0 ·m ·
∑

v∈Y
v

where n0 = [Kw : Qp] for any prime w of K dividing p (it is independent
of w). Thus π 7→ fKπ identifies WK(p∞) with the set of f ∈ ZX such that
f(w) + f(ιw) = n0 ·m for some integer m (independent of w).
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Under A0 ↔ ΠA0 , the abelian varieties corresponding to orbits of Γ
in WK(p∞) ∩ W (p∞)1,+ are those with the property that, for every σ :
Q[πA0 ] ↪→ Qal, σQ[πA0 ] ⊂ K and End0(A0)⊗Q[πA0 ],σK is a matrix algebra.
Thus, there is a one-to-one correspondence between the isogeny classes of
abelian varieties over F whose endomorphism algebra is split by K in this
sense and the Gal(K/Q)-orbits of f ∈ ZX such that f(w) + f(ιw) = n0 and
f(w) ≥ 0 for all w.

Remark. Given a possible slope function for a Weil germ π, the Dieu-
donné module of the corresponding abelian variety imposes restrictions on
the possible factorizations of p in Q[π]. For example, suppose that A(π) has
slopes 0, 1/2, and 1, that the multiplicity of 1/2 is 2, and that 0 and 1 do
occur. Then the Dieudonné module of A(π) has a simple isogeny factor of
rank 2, which implies that a prime w for which sπ(w) = 1/2 must be of
degree 2 (if it had degree 1, the action of Q[π]w on the Dieudonné module
would split off an isogeny factor of rank 1). Thus, the endomorphism algebra
of such an abelian variety is commutative.

A.7. Calculation of the groups over F. Let A0 be an abelian variety
over F. Then A0 is isogenous to a product As11 × . . .×Astt with the Ai simple
and pairwise nonisogenous, and G(A0) ∼= G(A1 × . . . × At) for G = L, M ,
or P ; moreover, L(A0)0

∼= L(A1)0 × . . . × L(At)0. Thus, in the following,
we assume that A0 is a product of pairwise nonisogenous simple abelian
varieties. Then E =df C(A0) is either a CM-algebra or the product of a
CM-algebra with Q—the second case occurs when one of the isogeny factors
of A0 is a supersingular elliptic curve. The Rosati involution is complex
conjugation on each CM-factor of E and the identity map Q.

The Lefschetz group. The description of L(A0) as a subgroup of (Gm)E/Q
in terms of characters is the same as in the complex case.

Thus, the group L(A0) is the subgroup of (Gm)E/Q whose character
group is

ZΣE
{g | g = ιg and

∑
g(σ) = 0} .

The weight map w : Gm → L(A0) corresponds to the map

[g] 7→ wt(g) df=
∑

σ∈ΣE
g(σ)

on characters, and the homomorphism t : L(A0)→ Gm giving the action of
L(A0) on the Tate object sends 1 to the element of X∗(L(A0)) represented
by −σ − ισ, any σ ∈ ΣE.

It suffices to describe L(A0)0 in the case that A0 is simple. When A0 is a
supersingular elliptic curve, L(A0)0 = µ2; otherwise L(A0)0 is the subgroup
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of (Gm)E/Q whose character group is

ZΣE
{g | g = ιg} .

The map µ2 → L(A)0 corresponds to the map on characters [g] 7→ ∑
g(σ)

mod 2.
When A0 is simple, the map σ 7→ σ(πA0) : ΣE → ΠA0 is bijective and

commutes with the action of Γ , and so identifies L(A0) with the torus whose
character group is

ZΠA0

{g | g = ιg and
∑
g(π) = 0} .

The group P (A0). By definition, P (A0) ⊂ L(A0), and a character [g]
of L(A0) is trivial on P (A0) if and only if g(πA0) = 1, where g(πA0) is the
Weil germ

∏
σ∈ΣE (σπA0)g(σ). A Weil germ is 1 if and only if its slopes are

all zero, and so [g] is trivial on P (A0) if and only if
∑

σ∈ΣE
g(σ)sσπA0

(w) = 0 for all w.

Note that sσπA0
(w) = sπA0

(σ−1w). Similarly, a character [g] of L(A0)0 is
trivial on L(A0)0 if and only if g(πA0/p

1/2) = g where p1/2 also denotes the
Weil germ represented by the Weil p-number p1/2.

The motivic group. Fix a prime ` ∈ S(A0) (see Appendix B). Let Ωλ
be a finite Galois extension of Q` splitting L(A0), and let χ ∈ X∗(L(A0)).
Then χ is trivial on M(A0) if and only if H2r(As0, Ωλ(r))χ contains a nonzero
algebraic class for some r and s, in which case all the spacesH2r(As0, Ωλ(r))χ
consist entirely of algebraic classes.

Second description of P (A0). Let K be a CM-subfield of Qal, finite and
Galois overQ, and let PK be the torus overQ such thatX∗(PK) = WK(p∞)
(as a Γ -module). Assume that K is large enough to contain the conjugates
of Q[πA0 ] and to split End0(A0). For any character χ of L(A0), χ(π) ∈
WK(p∞). Thus we have a homomorphism [g] 7→ [g(π)] : X∗(L(A0)) →
WK(p∞), which clearly commutes with the action of Γ . It corresponds to a
homomorphism %A0 : PK(p∞)→ L(A0), whose image is P (A0).

Example. Let A0 be isogenous to a product of elliptic curves, A0 ∼
A1× . . .×At, no two of which are isogenous. The centre E of the endomor-
phism algebra of A0 is the product E =

∏
Ei of the centres of the endomor-

phism algebras of the Ai. For each i, choose an embedding σi : Ei ↪→ Qal.
A character g of (Gm)E/Q is trivial on L(A0)0 if and only if, for each i for
which Ai is ordinary g(σi) = g(ισi), and for each i (there is at most one)
for which Ai is supersingular 2 | g(σi).
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Let π ∈ E be a Weil q-number representing πA0 ; let π = (π1, . . . , πt).
Then g is trivial on P (A0)0 if and only if g(πN) = qN ·wt(g)/2 for some N .
The statement (Spiess 1999, Proposition)

Let α1, . . . , α2m be Weil q-numbers of elliptic curves over Fq such that
α1 . . . α2m = qm; then, after possibly renumbering the αi and replacing
each αi with αNi for some N , α2j−1α2j = q for j = 1, . . . ,m.

implies that this holds only if g is trivial on L(A0)0. Thus P (A0) = L(A0),
and so no product of elliptic curves over F has an exotic Tate class.

Example. Let A0 be a simple abelian variety over F and let π be its
Frobenius germ. Assume that there is a prime v1 of degree 1 of Q[π] such
that sπ(v1) = 0, sπ(ιv1) = 1, and sπ(v) = 1/2 for v 6= v1. Let π1 be a Weil
q-number representing π, and let g be a character of (Gm)Q[π]/Q. For any
prime w of Qal dividing p,

ordw(g(π1/q
1/2)) =

ordv1 q

2
(−g(σ) + g(ισ))

where σ is the unique embedding of Q[π] such that σ−1w = v1. Therefore,
g is trivial on P (A0)0 if and only if g = ιg, i.e., if and only if g is trivial on
L(A0)0. Thus P (A0) = L(A0), and no power of A0 has an exotic Tate class.
In particular, the Tate conjecture holds for the powers of A0.

The abelian varieties of “K3-type” of Zarhin 1993 are covered by this ex-
ample (they are the varieties for which, additionally, [Q[π] : Q] = 2 dimA0).

Example. Let A0 be a simple abelian variety of dimension > 1 over
F and let π be its Frobenius germ. Assume that there is a prime v1 of
Q[π] whose decomposition group is {1, ι} for which sπ(v1) = 1/2 = sπ(ιv1);
assume moreover that sπ(v) = 0 or 1 for all other primes. Let π1 be a
Weil q-number representing π, and let χ be a character of X∗(L(A0)0) that
is trivial on P (A0)0. If χ = mχ1 for some χ1 ∈ X∗(L(A0)0), then χ1 is
also trivial on P (A0)0. Thus, we may assume that χ is not divisible in
X∗(L(A0)0). Let g =

∑
g(σ)σ be an element of ZΣQ[π] representing χ and

such that g(σ) 6= 0⇒ g(ισ) = 0. For any prime w of Qal dividing p,

ordw(g(π1))/ordw(q) ≡ 1
2g(σ) mod Z

where σ is such that σ−1w = v1. Hence g(σ) is even. As w ranges over the
primes dividing p, σ ranges over the elements of ΣQ[πA0 ] for which g(σ) 6= 0.
This contradicts the fact that χ is not divisible. Hence χ = 0, and we see
that P (A0) = L(A0). Hence no power of A0 has an exotic Tate class.

The “almost ordinary” abelian varieties of Lenstra and Zarhin 1993 are
covered by this example.

A.8. Reduction of abelian varieties with many endomorphisms:
the fundamental diagram. Fix a prime w0 of Qal dividing p, and let F
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be the residue field. As we noted in Section 1, it follows from the theory of
Néron models that an abelian variety A over Qal with many endomorphisms
has good reduction at w0 to an abelian variety A0 over F. We shall explain
the map A 7→ A0 in terms of the above classifications.

Assume A is isotypic, and let E be a CM-subfield of End0(A) for which
H1(A,Q) is free of rank 1, and let Φ be the CM-type on E defined by its
action on H1,0. Let πA0 be the Weil germ of A0 in E. We fix an embedding
%0 : E ↪→ Qal, and explain how to construct %0(πA0). LetK be a CM-subfield
of Qal, finite and Galois over Q, and large enough to contain all conjugates
of E. As a subfield of Qal, K acquires a prime w0. For some h, Ph

w0
will

be principal, say Ph
w0

= (a). Let α = a2n where n is the index of the unit
group of the maximal real subfield of K in the full unit group of K. Then
ψ%0(α), where ψ%0 is the CM-type on K defined in A.4, is a well-defined
Weil p2nhf(Pw0/p)-integer of weight 1 lying in %0E. Its inverse image in E
represents πA0 .

Assume now that E is a field. The value of the function sπA0
on a prime

v of E dividing p is given by

(∗∗∗) sπA0
(v) =

|Φ(v)|
|ΣE(v)|

where
ΣE(v) = {σ ∈ ΣE | v = σ−1w0}, Φ(v) = Φ ∩ΣE(v).

Suppose A is simple, and that it corresponds to a Gal(K/Q)-orbit Ψ in
X∗(SK). An element f ∈ X∗(SK) can be regarded as a function f : ΣK →
Z. Define f to be the function X → Z such that f(w) =

∑
τw0=w f(τ), i.e.,

if f is
∑
f(τ)τ , then f is

∑
f(τ)τw0. Then A0 is isogenous to a power of a

simple abelian variety, which corresponds (as in A.6) to the Gal(K/Q)-orbit
{f | f ∈ Ψ} ⊂WK(p∞).

Let K be a CM-field, finite and Galois over Q, and let F be the maximal
totally real subfield of K. If no p-adic prime of F splits in K, then SK = Gm
and the only elements of WK(p∞) are those represented by the Weil p-
numbers pm/2. Otherwise, all the p-adic primes in F split in K, and there
is an exact commutative diagram:

0 X∗(SK) ZΣK × Z ZΣF 0

0 WK(p∞) ZX × Z ZY 0

//

[g(α)]g

��

g

( g
wt(g))

//

(τw0
m )( τm)

��

( gm)
g|F−m ∑

σ∈ΣF
σ

//

σv0σ

��

//

// π

( fKπ
wt(π))

// ( fm)
f |Y−n0·m

∑
v∈Y

v
// //

The element above (or to the left of) an arrow is mapped to the element
below (or to the right) by the arrow. The symbol g(α) denotes

∏
σ(α)g(σ),

n0 = [Kw0 : Qp], and v0 is the prime on F induced by w0.
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We saw above that an abelian variety (A, i) of CM-type (E,Φ) reduces
modulo the prime w0 of Qal to an isotypic abelian variety A0 whose Weil
germ is determined by (∗∗∗). Every simple abelian variety arises in this way:
let A0 be a simple abelian variety over F, and let E be a CM-field that can
be embedded as a maximal subfield of End0(A) containing Q[πA0 ]; algebraic
number theory shows that E exists, and it is an elementary exercise to show
that there exist CM-types Φ on E such that sπA0

is given by the formula
(∗∗∗); let A be an abelian variety over Qal of CM-type (E,Φ); it is uniquely
determined up to isogeny, and A0 is isogenous to the reduction of A at w0.

Thus, to give a lifting (up to isogeny) of A0 to characteristic zero is to give
a CM maximal subfield E of End0(A) and a CM-type on E satisfying (∗∗∗).

Appendix B. Numerical equivalence on abelian varieties
with many endomorphisms

Let A be an abelian variety of dimension g over an algebraically closed
field. In characteristic zero, two cycles in Zr(A) are homologically equivalent
if their classes in H2r(A,Q(r)) are equal, and in characteristic p 6= 0, they
are `-homologically equivalent, ` 6= p, if their classes in the étale cohomology
group H2r(A,Q`(r)) are equal. Because of Poincaré duality and the compat-
ibility of intersection products with cup products, homological equivalence
implies numerical equivalence. It is generally conjectured that they coincide.

Part (a) of the following theorem is a special case of a theorem of Lieber-
man (1968, Theorem 4), and part (b) is a theorem of Clozel (1999). The proof
is based on that of Clozel.

Theorem B.1. (a) For any abelian variety A with many endomorphisms
over an algebraically closed field k of characteristic zero, homological equiv-
alence coincides with numerical equivalence on Zr(A), all r.

(b) For any abelian variety A0 over F, there exists a set S of primes ` of
density > 0 (depending on A0) for which `-homological equivalence coincides
with numerical equivalence on Zr(A0), all r.

Proof. In the proof, we ignore Tate twists, i.e., we choose an identifica-
tion of Q ≈ Q(1) (or Q` ≈ Q`(1)).

First consider the characteristic zero case. Choose (9) an étale CM-
algebra E ⊂ End0(A) such that H1(A,Q) is free of rank 1 as an E-module
and E is stable under the Rosati involution defined by some ample divi-

(9) For each isotypic isogeny factor Ai of A, choose a CM-field Ei in End0(Ai) of
degree 2 dimAi, and let E =

∏
Ei. Write H1(A,Q) = E · x0. For any c ∈ E× such that

ιEc = −c, ax0, bx0 7→ TrE/Q(cab) is a Riemann form on A, and we can take D to be any
divisor whose class it is. When A, E, and Φ are as in this paragraph, one says that (A, i),
where i is the inclusion E ↪→ End0(A), is of CM-type (E,Φ).



162 J. S. Milne

sor D. The action of E ⊗Q R on H1,0 defines a CM-type Φ on E. We have
Hom(E,Qal) = Φ t Φ.

Let Ω be the smallest subfield of Qal containing σE for every homo-
morphism σ : E → Qal. It is a CM-field, finite and Galois over Q. Let
Hr(A,Q)Ω = Hr(A,Q)⊗Ω, and let H1(A)σ be the subspace of H1(A,Q)Ω
on which E acts through σ. Then H1(A,Q)Ω =

⊕
σ∈ΦtΦH

1(A)σ and
H1(A)σ is one-dimensional. As Hr(A,Q)Ω =

∧r
ΩH

1(A,Q)Ω, it follows that

Hr(A,Q)Ω =
⊕

I,J,|I|+|J|=r
Hr(A)I,J

where I and J are subsets of Φ and ιΦ respectively, and Hr(A)I,J =df

Hr(A)ItJ is the subspace on which e ∈ E acts as
∏
σ∈ItJ σe—it is of

dimension 1 and of Hodge type (|I|, |J |). For x ∈ Hr(A,Q)Ω , let xI,J denote
the projection of x on Hr(A)I,J . Because x 7→ xI,J is multiplication by an
idempotent eI,J of E ⊗Ω, it sends algebraic classes to algebraic classes.

Let L be the class in H2(A,Q) of the divisor D. Because L is algebraic,
its isotypic components in H2(A,Q)Ω are of type (σ, ισ), σ ∈ ΣE, and,
because L defines a nondegenerate form on H1(A,Q), each such component
is nonzero.

For each σ, choose a nonzero element ωσ of H1(A)σ. Then (ωσ)ΦtιΦ is a
basis for H1(A,Q)Ω . We may suppose that the ωσ have been chosen so that
the (σ, ισ) component of L is ωσωισ. Denote

∏
σ∈I ωσ

∏
σ∈J ωσ by ωI,J —

it is a basis for Hr(A)I,J . For i ≤ g = dimA,

Lg−i =
( ∑

σ∈ΣE
ωσωισ

)g−i
=
∑

M

(g − i)!ωM,ιM

where M runs over the subsets of Φ with |M | = g − i. In particular, ωM,ιM

is algebraic. Moreover,

Lg−iωIJ =
∑

|M |=g−i
(g − i)!ωI∪M,J∪ιM .

Only the subsets M disjoint from both I and J contribute to the sum.
We shall need the following theorem of Lieberman (Kleiman 1968, 2A11

and 2.2):

Let Ar be the space of algebraic classes in H2r(A,Q); then for 2r ≤ g,
the map Lg−2r : Ar → Ag−r is an isomorphism.

Suppose ωIJ is algebraic with |I|+ |J | = 2r ≤ g. Let M = I ∩ ιJ , so that
there exist I0 and J0 for which I = I0 tM , J = J0 t ιM , I0 ∩ ιJ0 = ∅. We
shall prove by induction on |I∩ιJ | that ωI0,J0 is also algebraic. If |I∩ιJ | = 0,
there is nothing to prove. If not, |I∪ιJ | ≤ 2r−1, and there exists a subset M
of Φ with g−2r+1 elements disjoint from I∪ιJ . Then ωItM,JtιM is nonzero
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and algebraic. By Lieberman’s theorem, there exists an x ∈ Ar−1 such that
Lg−2r+2x = ωItM,JtιM . If ωI′,J ′ occurs with nonzero coefficient in x, then
it is algebraic. But if ωI′,J ′ is chosen so that ωItM,JtιM occurs with nonzero
coefficient in Lg−2r+2ωI′,J ′ , then I ′0 = I0, J ′0 = J0. Since |I ′∩ιJ ′| = |I∩J |−2,
the induction hypothesis shows that ωI0,J0 is algebraic.

We now prove the theorem in the case of characteristic zero. We have to
show that, for each r ≤ g, the cup-product pairing

Ar ×Ag−r → Q

is nondegenerate. Lieberman’s theorem shows that the two spaces have the
same dimension, and so it suffices to show that the left kernel is zero. Thus,
let x be a nonzero element of Ar, r ≤ g, and suppose ωI,J occurs with
nonzero coefficient in x. It suffices to show that ωI′,J ′ is algebraic, where
I ′ and J ′ are the complements of I and J in Φ and ιΦ respectively. From
the last paragraph, we know that ωI,J = ωI0tM,J0tιM with ωI0,J0 algebraic
and I0, ιJ0, and M disjoint. Because Aj ⊗Q Ω is stable under Gal(Ω/Q),
ιωI0,J0 = ωιJ0,ιI0 is algebraic. But ωI′,J ′ = ωιJ0,ιI0 · ωN,ιN where N is the
complement of I0 t ιJ0 tM in Φ, which is obviously algebraic.

We now prove the theorem in the case k = F. After possibly replacing A0

with an isogenous variety, we may assume that it lifts to an abelian variety
A with many endomorphisms in characteristic zero (see A.8). Let E be a
CM-algebra for A as in the first paragraph of the proof. If ` is such that ι is
in the decomposition group of some prime λ of Ω dividing `, then the same
argument as in characteristic zero case applies once one replaces Q with
Q` and Ω with Ωλ (Lieberman’s theorem holds for every Weil cohomology;
in particular, it holds for the étale cohomology). The Frobenius density
theorem shows that the set of primes ` such that ι is the Frobenius element
at a prime λ dividing ` has density 1/[Ω : Q]. For such a prime `, ι is in the
decomposition group of λ.

Let A0 be an abelian variety over F, and let E0 be the centre C(A0)
of End0(A0). When A0 does not have a supersingular elliptic curve as an
isogeny factor, we define Ω0 to be the composite of the fields σE0 for σ ∈
ΣE0 ; otherwise we define it to be the composite of these fields with Q[

√−p ].
Define S(A0) to be the set of finite primes ` 6= p such that ι is contained in
the decomposition group of λ for one (hence every) prime λ of Ω0 dividing
`. Note that S(A0) depends only on the finite set of simple isogeny factors
of A0; in particular, S(A0) = S(As0).

Proposition B.2. Statement (b) of Theorem B.1 holds with S = S(A0).

Proof. Suppose A0 is isogenous to As11 × . . .×Astt with the Ai simple and
nonisogenous in pairs. Assume initially that none of the Ai is a supersingular
elliptic curve. Then each C(Ai) is a CM-field.
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For each i, let Di = End0(Ai), let mi = [Di : C(Ai)]1/2, and let C(Ai)+

be the maximal real subfield of C(Ai). Fix an ` ∈ S(A0). For each i, there
exists a field Fi cyclic of degree mi over C(Ai)+ and such that each real and
`-adic prime of C(Ai)+ splits in Fi and the local degree at each p-adic prime
is mi (Artin and Tate 1961, p. 105, Theorem 5). Let Ei = Fi ·C(Ai). Then
Ei is a CM-field that splits Di (Tate 1968/69, p. 7) and can be realized as
a subfield of Di. Therefore (Tate 1968/69, Théorème 2), Ai is isogenous to
the reduction of an abelian variety Ãi with End0(Ãi) = Ei.

After replacing A0 with an isogenous variety, we may suppose that it
lifts to the abelian variety A =df Ã

s1
1 × . . .× Ãstt . The étale algebra E =df

Es11 × . . . × Estt acts on A diagonally, and satisfies the conditions in the
first paragraph of the proof of Theorem B.1. The field Ω generated by the
images of E in Qal is Ω0 · F1 . . . Ft. Because of our choice of the Fi, every
`-adic prime in this field is fixed (10) by ι. This completes the proof of the
proposition in this case.

When we add a factor Ast+1
t+1 to A0 with At+1 a supersingular elliptic

curve, Ω is replaced with Ω · Et+1 where Et+1 can be taken to be any
quadratic field in which p does not split. If we choose Et+1 = Q[

√−p ], then
Ω = Ω0 · F1 . . . Ft still holds, and the same argument applies.

Let A be an abelian variety with many endomorphisms over Qal, and let
A0 be its reduction at the prime w0. Fix an ` 6= p. Then there are canoni-
cal isomorphisms H i(A,Q`(j))→ H i(A0,Q`(j)) for all i and j (proper and
smooth base change theorems in étale cohomology). We say that a cohomol-
ogy class γ ∈ H2r(A,Q(r)) is w0-algebraic if its image γ` in H2r(A0,Q`(r))
is in the Q-span of the algebraic classes on A0. Every algebraic class is
w0-algebraic, but not every w0-algebraic class is algebraic.

Theorem B.3. For any nonzero w0-algebraic class α on A, there exists
a w0-algebraic class α′ such that α ∪ α′ 6= 0.

Proof. LetAr(w0) be theQ-space of w0-algebraic classes inH2r(A,Q(r)).
The proof of the characteristic zero case of the Theorem in A.3 will apply
with “algebraic” replaced by “w0-algebraic” once we have shown that Lieber-
man’s theorem holds for Ar(w0): for 2r ≤ g, Lg−2r : Ar(w0)→ Ag−r(w0) is
an isomorphism.

This map is automatically injective, and so we only have to prove sur-
jectivity.

Let γ be a w0-algebraic class in H2g−2r(A,Q(g − r)); by assumption,
the image γ` of γ in H2g−2r(A0,Q`(g − r)) equals the class α` of some

(10) Let F0 be the maximal totally real subfield of Ω0. The condition that ι fixes all
`-adic primes in Ω0 means that, for each `-adic prime v of F0, Ω0 ⊗F0 (F0)v is a field.
Because ` splits in F1 . . . Ft, this property is retained by Ω.
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α ∈ Zg−r(A0). There exists a γ′ ∈ H2r(A,Q(r)) such that Lg−2rγ′ =
γ (hard Lefschetz theorem), and Lieberman’s theorem says that there is
an α′ ∈ Zr(A0) such that Lg−2rα′ = α. The images of α′ and γ′ in
H2r(A0,Q`(r)) map to α` and γ` respectively under the isomorphism Lg−r :
H2r(A0,Q`(r))→ H2g−2r(A0,Q`(g − r)). As α` = γ`, this proves that γ′ is
w0-algebraic.

Corollary B.4. Suppose that the `-adic cohomology class c` of c ∈
Zr(A0) is nonzero. If c` is the image of a rational cohomology class on A
(i.e., of an element of H2r(A,Q(r))), then c is not numerically equivalent
to zero.

Proof. Immediate consequence of the theorem and the compatibility of
the cup-product pairings.

The corollary implies that, if every algebraic class on A0 “lifts” to a
rational cohomology class in characteristic zero, then `-adic homological
equivalence on A0 coincides with numerical equivalence.
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