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1. Introduction. Let p be an odd prime. For each integer a with 0 <
a < p, we define a by the congruence equation aa ≡ 1 mod p and 0 < a < p.
For any fixed positive integer k and any fixed real number 0 < δ < 1,
Professor Andrew Granville had proposed to study the limit distribution
properties of

1
p− 1

p−1∑

a=1
|a−a|<δp

1.

The author [3] completely solved this problem, and obtained a sharp asymp-
totic formula. That is, we proved that

(1)
p−1∑

a=1
|a−a|<δp

1 = δ(2− δ)p+O(p1/2 ln2 p).

In this paper, as a generalization of [3], we study the distribution proper-
ties of |p{ak/p}−p{ak/p}|, and obtain a general asymptotic formula, where
{x} = x − [x], [x] denotes the greatest integer not exceeding x. In fact, we
use the J. H. H. Chalk and R. A. Smith’s deep result [2], which is based on
E. Bombieri’s work on exponential sums [1], and the estimates for trigono-
metric sums to prove the following more general conclusion:

Theorem. Let p be an odd prime. Then for any fixed positive integer k
and real number 0 < δ < 1, we have the asymptotic formula

p−1∑

a=1
|{ak/p}−{ak/p}|<δ

1 = δ(2− δ)p+Ok(p1/2 ln2 p),

where Ok means that the O-constant depends only on k.
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From this theorem we may immediately deduce the following

Corollary. Let p be an odd prime, k be any fixed positive integer.
Then for any fixed real number 0 < δ < 1, we have the limit distribution
formula

lim
p→∞

1
p

p−1∑

a=1
|{ak/p}−{ak/p}|<δ

1 = δ(2− δ).

Remark. Let F ∗p denote the multiplicative group formed by nonzero
residue classes mod p. It is clear that the k-powers of nonzero residue classes
mod p form a multiplicative subgroup, say Uk, of F ∗p . If k and p − 1 are
relatively prime, then Uk is the full group F ∗p and the result of our theorem
reduces exactly to the case k = 1, which was investigated in [3]. The new
feature in this paper is when (k, p − 1) = d > 1 in which case Uk = Ud
is a proper subgroup of F ∗p . Thus the results of the present paper can be
interpreted as results on the distribution of inverses inside a subgroup of
small index in F ∗p .

2. Some lemmas. To prove the Theorem, we need several lemmas.

Lemma 1. Let f, g be polynomials in Fp[x, y] and suppose that

(a) f(x, y) is absolutely irreducible in Fp[x, y],
(b) g(x, y) 6≡ c (mod f(x, y)) in Fp[x, y] for any integer c.

Then we have the estimate
p∑

a=1

p∑

b=1
f(a,b)≡0 (mod p)

e

(
g(a, b)
p

)
� (d2

1 − 3d1 + 2d1d2)p1/2 + d2
1

for all primes p, where Fp[x, y] denotes the set of all polynomials with coef-
ficients in the residue systems modulo p, d1 = d(f) and d2 = d(g) are the
degrees of f and g in Fp[x, y], and e(y) = e2πiy.

Proof. See [2], Theorem 2.

Lemma 2. Let p be an odd prime, m and n be integers. Then for any
fixed positive integer k, we have the estimate

p−1∑

a=1

e

(
mak + nak

p

)
�k p

1/2(m,n, p)1/2,

where (m,n, p) denotes the greatest common divisor of m, n and p.

Proof. It is clear that the assertion is true if p |m and p |n. So without
loss of generality we can assume (m,n, p) = 1. Take f(x, y) = xy − 1 and
g(x, y) = mxk + nyk in Lemma 1 and note that g(x, y) 6≡ c (mod f(x, y)) in
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Fp[x, y] for any integer c if (m,n, p) = 1. Applying Lemma 1 we immediately
get the estimate

p−1∑

a=1

e

(
mak + nak

p

)
=

p∑

a=1

p∑

b=1
ab≡1 (mod p)

e

(
mak + nbk

p

)

=
p∑

a=1

p∑

b=1
f(a,b)≡0 (mod p)

e

(
g(a, b)
p

)
�k p

1/2.

This proves Lemma 2.

Lemma 3. Let p be an odd prime. Then for any fixed real number 0 <
δ < 1, we have the estimate

p−1∑

r=1

p−1∑

s=1

∣∣∣∣
p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(−rc− sd
p

)∣∣∣∣ = O(p2 ln2 p).

Proof. First note the trigonometric identity

(2)
n∑

a=1

e(ax) = e

(
(n+ 1)x

2

)
sinπnx
sinπx

.

Applying (2) we have

(3)
p−1∑

r=1

p−1∑

s=1

∣∣∣∣
p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(−rc− sd
p

)∣∣∣∣

≤ 2 ·
p−1∑

r=1

p−1∑

s=1

∣∣∣∣
[δp]∑

m=0

p−1∑

c=1

p−1∑

d=1
c−d=m

e

(−rc− sd
p

)∣∣∣∣

= 2 ·
p−1∑

r=1

p−1∑

s=1

∣∣∣∣
[δp]∑

m=0

p−1−m∑

d=1

e

(−r(d+m)− sd
p

)∣∣∣∣

= 2 ·
p−1∑

r=1

p−1∑

s=1

∣∣∣∣
[δp]∑

m=0

e

(−rm
p

) p−1−m∑

d=1

e

(−(r + s)d
p

)∣∣∣∣

�
p−1∑

r=1

∣∣∣∣
[δp]∑

m=0

e

(−rm
p

)
(p− 1−m)

∣∣∣∣
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+
p−1∑

r=1

p−1∑

s=1
r+s6=p

∣∣∣∣
[δp]∑

m=0

e

(−rm
p

)
e

(−(r + s)
p

)
e
(−(r+s)(p−1−m)

p

)
− 1

e
(−(r+s)

p

)
− 1

∣∣∣∣

�
p−1∑

r=1

∣∣∣∣
[δp]∑

m=0

e

(−rm
p

)
(p− 1−m)

∣∣∣∣+
p−1∑

r=1

p−1∑

s=1
r+s6=p

1∣∣e
(−(r+s)

p

)
− 1
∣∣

×
∣∣∣∣

[δp]∑

m=0

e

(−rm− (r + s)(p− 1−m)
p

)
−

[δp]∑

m=0

e

(−rm
p

)∣∣∣∣.

Note the trigonometric sum estimate

(4)
∑

m≤M
mke(mx) ≤Mk min

(
M,

1
|sinπx|

)
for k ≥ 0.

From (3) and (4) we get
p−1∑

r=1

p−1∑

s=1

∣∣∣∣
p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(−rc− sd
p

)∣∣∣∣

�
p−1∑

r=1

p∣∣sin πr
p

∣∣ +
p−1∑

r=1

p−1∑

s=1
r+s6=p

1∣∣sin π(r+s)
p

∣∣

[
1∣∣sin πr
p

∣∣ +
1∣∣sin πs
p

∣∣
]

� p2 ln p+
p−1∑

r=1

1∣∣sin πr
p

∣∣
p−1∑

s=1
s6=p−r

1∣∣sin π(r+s)
p

∣∣

� p2 ln2 p.

This proves Lemma 3.

3. Proof of the Theorem. In this section, we complete the proof of
the Theorem. First note the trigonometric identity

q∑

r=1

e

(
rn

q

)
=
{
q if q |n,
0 if q -n,

and the identity
p−1∑

r=1

p−1∑

s=1

[ p−1∑

a=1

p−1∑

b=1
ab≡1 (mod p)

e

(
r · p

{
ak

p

}
+ s · p

{
bk

p

}

p

)]

=
p−1∑

r=1

p−1∑

s=1

[ p−1∑

a=1

e

(
r · ak + s · ak

p

)]
.
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From the estimates for trigonometric sums and Lemmas 2 and 3 we have

p−1∑

a=1
|{ak/p}−{ak/p}|<δ

1

=
p−1∑

a=1

p−1∑

b=1
ab≡1(mod p)

|{ak/p}−{bk/p}|<δ

1

=
1
p2

p∑

r=1

p∑

s=1

p−1∑

a=1

p−1∑

b=1
ab≡1 (mod p)

p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(
r
(
p
{
ak

p

}
− c
)

p

)
e

(
s
(
p
{
bk

p

}
− d
)

p

)

=
1
p2

p∑

r=1

p∑

s=1

[ p−1∑

a=1

p−1∑

b=1
ab≡1 (mod p)

e

(
r · p

{
ak

p

}
+ s · p

{
bk

p

}

p

)] p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(−rc− sd
p

)

=
1
p2

p∑

r=1

p∑

s=1

[ p−1∑

a=1

e

(
r · ak + s · ak

p

)] p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(−rc− sd
p

)

=
1
p2

p−1∑

a=1

p−1∑

c=1

p−1∑

d=1
|c−d|<δp

1 +
2
p2

p−1∑

r=1

[ p−1∑

a=1

e

(
r · ak
p

)]
·
p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(−rc
p

)

+
1
p2

p−1∑

r=1

p−1∑

s=1

[ p−1∑

a=1

e

(
r · ak + s · ak

p

)] p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(−rc− sd
p

)

=
1
p2 (p− 1)

[
2 ·

[δp]∑

m=0

p−1∑

c=1

p−1∑

d=1
c−d=m

1
]

+O(1)

+Ok

(
p−2+1/2 ·

p−1∑

r=1

∣∣∣∣
p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(−rc
p

)∣∣∣∣
)

+Ok

(
p−2+1/2 ·

p−1∑

r=1

p−1∑

s=1

∣∣∣∣
p−1∑

c=1

p−1∑

d=1
|c−d|<δp

e

(−rc− sd
p

)∣∣∣∣
)
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=
1
p2 (p− 1)

[
2 ·

[δp]∑

m=0

(p− 1−m)
]

+O(1)

+Ok

(
p−2+1/2 ·

p−1∑

c=1

(δp+ c) · 1∣∣sin πc
p

∣∣
)

+Ok(p1/2 ln2 p)

=
1
p2 (p− 1)[2p(δp+ 1)− δ2p2 +O(p)] +Ok(p1/2 ln2 p)

= pδ(2− δ) +Ok(p1/2 ln2 p).
This completes the proof of the Theorem.
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