Lower bound of real primitive L-function at $s=1$

by
Chun-Gang Ji (Nanjing) and Hong-Wen Lu (Shanghai)

1. Introduction and main results. Let χ be a real primitive Dirichlet character modulo $k(>1)$. It is well known that if $L(s, \chi)$ has no zero in the interval $\left(1-c_{1} / \log k, 1\right)$, then $L(1, \chi)>c_{2} / \log k$, where c_{1} and c_{2} are positive constants and c_{2} depends upon c_{1}. If, however, $L(s, \chi)$ has a real zero close to 1 , the only non-trivial lower bounds that are known for $L(1, \chi)$ are ineffective. Siegel [9] proved that for any $\varepsilon>0$,

$$
L(1, \chi)>\frac{c(\varepsilon)}{k^{\varepsilon}}
$$

where $c(\varepsilon)$ is an ineffective positive constant depending upon ε (see also Chowla [1], Estermann [2], Goldfeld [3] and Goldfeld and Schinzel [4]). Tatuzawa [10] proved that if $0<\varepsilon<1 / 11.2$ and $k>e^{1 / \varepsilon}$, then with at most one exception

$$
L(1, \chi)>\frac{0.655 \varepsilon}{k^{\varepsilon}}
$$

Hoffstein [6] proved that if $0<\varepsilon<1 /(6 \log 10)$ and $k>10^{6}$, then with at most one exception

$$
L(1, \chi)>\min \left\{\frac{1}{7.735 \log k}, \frac{\varepsilon}{0.349 k^{\varepsilon}}\right\} .
$$

In this paper we improve upon the result of Hoffstein. Using Lemma 4 of Hoffstein [5], the upper bound estimate of $L(1, \chi)$ of Louboutin [7], [8] and some arithmetic theory of biquadratic bicyclic number fields, we prove the following:

Theorem. Let $0<\varepsilon<1 /(6 \log 10)$, and χ be a real primitive Dirichlet character modulo k which is greater than 10^{6}. Then with at most one

[^0]exception,
$$
L(1, \chi)>\min \left\{\frac{1}{7.7388 \log k}, \frac{32.260 \varepsilon}{k^{\varepsilon}}\right\}
$$

2. Several lemmas

Lemma 1 ([6, Lemma 2]). Set $c=(3+2 \sqrt{2}) / 2$ and let d_{F} denote the absolute value of the discriminant of a number field $F \neq \mathbb{Q}$. Then $\zeta_{F}(s)$ has at most one real zero β with $\beta>1-1 /\left(c \log d_{F}\right)$, and if it exists it is a simple zero.

Lemma 2. Let K be an algebraic number field of degree $n>1$ and assume that for each $m \geq 1$ there exists at least one integral ideal of K of norm m^{2} (e.g. K is a quadratic or a biquadratic bicyclic number field). Assume also that $1 / 2<\beta<1$ and $\zeta_{K}(\beta) \leq 0$. Then the residue at $s=1$ of the Dedekind zeta function $\zeta_{K}(s)$ of K satisfies

$$
\kappa_{K} \geq(1-\beta)\left(x^{\beta-1}\left(\frac{\pi^{2}}{6}-\frac{n+2}{[\sqrt{x}]}\right)-2 \frac{d_{K}}{x^{3 / 2}} \frac{\zeta^{n}(3 / 2)(n+1)!}{(4 n-3) \pi^{n}}\right) \quad(x \geq 1)
$$

Proof. According to the proof of Lemma 4 of Hoffstein [5],

$$
\begin{aligned}
\frac{1}{2^{n+1}(n+1)!} & \left(\frac{\pi^{2}}{6}-\frac{n+2}{[\sqrt{x}]}\right) \\
& \leq \frac{1}{2^{n+1}(n+1)!} \sum_{m \leq \sqrt{x}}\left(\frac{1}{m^{2}}-(n+1) \frac{m^{2}}{x^{2}}\right) \\
& \leq \frac{1}{2^{n+1}(n+1)!} \sum_{m \leq \sqrt{x}} \frac{1}{m^{2}}\left(1-\frac{m^{4}}{x^{2}}\right)^{n+1} \\
& \leq \frac{1}{2^{n+1}(n+1)!} \sum_{m \leq \sqrt{x}} \frac{1}{m^{2 \beta}}\left(1-\frac{m^{4}}{x^{2}}\right)^{n+1} \\
& \leq \frac{1}{2^{n+1}(n+1)!} \sum_{N(\mathfrak{a}) \leq x} \frac{1}{(N(\mathfrak{a}))^{\beta}}\left(1-\frac{(N(\mathfrak{a}))^{2}}{x^{2}}\right)^{n+1} \\
& =\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{\zeta_{K}(s+\beta) x^{s}}{s(s+2) \ldots(s+2 n+2)} d s \\
& =J+\frac{\zeta_{K}(\beta)}{2^{n+1}(n+1)!}+\frac{\kappa_{K}}{(1-\beta)(3-\beta) \ldots(2 n+3-\beta)} \\
& \leq J+\frac{\kappa_{K} x^{1-\beta}}{(1-\beta) 2^{n+1}(n+1)!}
\end{aligned}
$$

where

$$
J:=\frac{1}{2 \pi i} \int_{-1 / 2-\beta-i \infty}^{-1 / 2-\beta+i \infty} \frac{\zeta_{K}(s+\beta) x^{s}}{s(s+2) \ldots(s+2 n+2)} d s
$$

satisfies

$$
|J| \leq \frac{d_{K}}{x^{3 / 2}} \frac{\zeta^{n}(3 / 2)}{(2 \pi)^{n}(4 n-3)} x^{1-\beta}
$$

here we use the functional equation satisfied by $\zeta_{K}(s)$ and the bound $\mid \zeta_{K}(3 / 2$ $+i t) \mid \leq \zeta^{n}(3 / 2)$. This completes the proof of Lemma 2.

Corollary 3. Let $c=(3+2 \sqrt{2}) / 2$ and K be a quadratic number field with the absolute value of the discriminant $d_{K}>10^{6}$. If $\zeta_{K}(\beta) \leq 0$ for some β satisfying $1-1 /\left(4 c \log d_{K}\right) \leq \beta<1$, then $\kappa_{K} \geq 1.5063(1-\beta)$.

Proof. Apply the previous result with $n=2$ and $x=d_{K}^{0.95}$ for which $x^{\beta-1} \geq \exp (-0.95 /(6+4 \sqrt{2}))$.

Lemma 4 (see [7] and [8]). (1) If χ is a primitive even Dirichlet character modulo $k>1$, then

$$
|L(1, \chi)| \leq \frac{1}{2} \log k+\frac{2+\gamma-\log (4 \pi)}{2} \leq \frac{1}{2}(\log k+0.05)
$$

(2) If χ is a primitive odd Dirichlet character modulo k, then

$$
|L(1, \chi)| \leq \frac{1}{2} \log k+\frac{2+\gamma-\log \pi}{2} \leq \frac{1}{2}(\log k+1.44)
$$

Here $\gamma=0.577215 \ldots$ denotes Euler's constant.
3. Proof of Theorem. Let $0<\varepsilon<1 /(6 \log 10)$ and let χ_{1} be a real primitive Dirichlet character of least conductor $k_{1}>10^{6}$ such that

$$
\begin{equation*}
L\left(1, \chi_{1}\right) \leq \frac{1}{7.7388 \log k_{1}} \tag{1}
\end{equation*}
$$

if it exists. By Corollary $3, L\left(1, \chi_{1}\right)$ has a real zero β_{1} such that

$$
\begin{equation*}
1-\beta_{1}<\frac{1}{4 c \log k_{1}} \tag{2}
\end{equation*}
$$

Let χ be another real primitive Dirichlet character modulo $k>10^{6}$ different from χ_{1}. By our choice of k_{1} we can assume $k \geq k_{1}$. Let the Kronecker symbols of quadratic number fields $\mathbb{Q}(\sqrt{d}), \mathbb{Q}\left(\sqrt{d_{1}}\right)$ be χ, χ_{1} respectively, where d and d_{1} are fundamental discriminants. Then $|d|=k,\left|d_{1}\right|=k_{1}$. Let $F=\mathbb{Q}\left(\sqrt{d}, \sqrt{d_{1}}\right)$. Then it has another quadratic number field $\mathbb{Q}\left(\sqrt{d_{2}}\right)$ with the fundamental discriminant d_{2} and $d_{2} \mid d d_{1}$. Let the Kronecker symbol of $\mathbb{Q}\left(\sqrt{d_{2}}\right)$ be χ_{2} with conductor $k_{2}=\left|d_{2}\right|$. Let

$$
\begin{equation*}
\alpha=-3 / 2-\beta_{1}, \quad x=d_{F}^{A}, \quad A>0.8 \tag{3}
\end{equation*}
$$

and notice that $d_{F} \leq\left(k k_{1}\right)^{2} \leq k^{4}$. Applying Lemma 2 with $n=4$ and $x=d_{F}^{0.8}>10^{9.6}$ and $1-\beta_{1}<1 /\left(4 c \log k_{1}\right) \leq 1 /\left((6+4 \sqrt{2}) \log 10^{6}\right)<0.00621$, we obtain

$$
\begin{equation*}
1.60452\left(1-\beta_{1}\right)<\kappa_{F} x^{1-\beta_{1}}=L(1, \chi) L\left(1, \chi_{1}\right) L\left(1, \chi_{2}\right) x^{1-\beta_{1}} \tag{4}
\end{equation*}
$$

If $L(s, \chi) \neq 0$ in the range $1-1 /(4 c \log k)<s<1$, then by Corollary 3 we have

$$
L(1, \chi)>\frac{1.5063}{4 c \log k}>\frac{1}{7.7388 \log k}
$$

and the result follows. If $L(\beta, \chi)=0$ for some β such that $1-1 /(4 c \log k)<$ $\beta<1$ then both β and β_{1} are zeros of $\zeta_{F}(s)$. Since $\beta>1-1 /(4 c \log k) \geq$ $1-1 /\left(c \log d_{F}\right)$, we must have

$$
\begin{equation*}
1-\beta_{1}>\frac{1}{c \log d_{F}} \geq \frac{1}{2 c \log \left(k k_{1}\right)} \tag{5}
\end{equation*}
$$

by Lemma 1 . Let $A=2 /\left(1.5+\beta_{1}\right)$. Then

$$
2 A\left(1-\beta_{1}\right)=\frac{4\left(1-\beta_{1}\right)}{2.5-\left(1-\beta_{1}\right)}<\frac{4}{10 c-\frac{1}{\log k_{1}}} \cdot \frac{1}{\log k_{1}}<\frac{0.1376}{\log k_{1}}
$$

by (3) and $k_{1} \geq 10^{6}$, and we have

$$
\begin{equation*}
x^{1-\beta_{1}}=d_{F}^{A\left(1-\beta_{1}\right)} \leq\left(k k_{1}\right)^{2 A\left(1-\beta_{1}\right)}<\left(k k_{1}\right)^{0.1376 / \log k_{1}} \tag{6}
\end{equation*}
$$

From Lemma 4 we have

$$
\begin{equation*}
L\left(1, \chi_{2}\right)<\frac{1}{2}\left(\log k_{2}+1.44\right) \leq \frac{1}{2}\left(\log \left(k k_{1}\right)+1.44\right)<0.5261 \log \left(k k_{1}\right) \tag{7}
\end{equation*}
$$

for $k k_{1} \geq 10^{12}$. Combining (1) and (4)-(7) we get

$$
\begin{equation*}
L(1, \chi)>\frac{4.04947}{\log k_{1}\left(1+\frac{\log k}{\log k_{1}}\right)^{2}\left(k k_{1}\right)^{\frac{0.1376}{\log k_{1}}}} \tag{8}
\end{equation*}
$$

Let

$$
\eta=\frac{\log k}{\log k_{1}}, \quad \eta \geq 1
$$

If $\eta \leq 7.54$, then $L(1, \chi)>1 /(7.7388 \log k)$ by

$$
\frac{4.04947 \eta}{(\eta+1)^{2} e^{0.1376(1+\eta)}} \cdot 7.7388>1, \quad 1 \leq \eta \leq 7.54
$$

Hence we may assume $\eta>7.54$; in this case $2 \log (\eta+1)<0.5023(\eta+1)$ and

$$
L(1, \chi)>\frac{2.13546}{\left(\log k_{1}\right) k^{0.6399 / \log k_{1}}}
$$

For fixed $\delta>0, x e^{\delta / x}$ decreases until it reaches a minimum at $x=\delta$. Let $x=\log k_{1}, \delta=0.6399 \log k$. Then $\log k>7.54 \log k_{1}>(0.6425)^{-1} \log k_{1}$,
$\log k_{1}>1 / \varepsilon$. By (8), we have

$$
L(1, \chi)>\frac{2.13546 \varepsilon}{k^{0.6399 \varepsilon}}=\frac{\varepsilon}{k^{\varepsilon}} \cdot 2.13546 k^{0.3601 \varepsilon}
$$

Since
$2.13546 k^{0.3601 \varepsilon}>2.13546 e^{0.3601 \varepsilon\left(7.54 \log k_{1}\right)}>2.13546 e^{0.3601 \cdot 7.54}>32.260$, we have

$$
L(1, \chi)>\frac{32.260 \varepsilon}{k^{\varepsilon}}
$$

This completes the proof of Theorem.
Acknowledgments. The authors thank the referee for his/her valuable suggestions and comments. The first author would like to thank for support from the Morningside Center of Mathematics and the Institute of Mathematics, Chinese Academy of Sciences.

References

[1] S. Chowla, A new proof of a theorem of Siegel, Ann. of Math. 51 (1950), 120-122.
[2] T. Estermann, On Dirichlet's L-functions, J. London Math. Soc. 23 (1948), 275-279.
[3] D. M. Goldfeld, A simple proof of Siegel's theorem, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1055.
[4] D. M. Goldfeld and A. Schinzel, On Siegel's zero, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1975), 571-583.
[5] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47.
[6] -, On the Siegel-Tatuzawa theorem, Acta Arith. 38 (1980), 167-174.
[7] S. Louboutin, Majorations explicites de $|L(1, \chi)|$, C. R. Acad. Sci. Paris 316 (1993), 11-14.
[8] —, Majorations explicites de $|L(1, \chi)|$ (suite), ibid. 323 (1996), 443-446.
[9] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83-86.
[10] T. Tatuzawa, On Siegel's theorem, Japan. J. Math. 21 (1951), 163-178.

Department of Mathematics
Nanjing Normal University
Nanjing 210097
People's Republic of China
E-mail: cgji@njnu.edu.cn

Department of Applied Mathematics
Tongji University
Shanghai 200092
People's Republic of China
E-mail: luhongwen@cableplus.com.cn

[^0]: 2000 Mathematics Subject Classification: Primary 11M20; Secondary 11R11, 11R42.
 Key words and phrases: L-function, zeroes, quadratic number fields.
 This work was supported by the National Natural Science Foundation of China, grant number: 10201013 and 19531020 .

