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Consider elliptic curves of the form EA,B : y2 = x3 + Ax + B, where A
and B are integers. It was demonstrated by Bennett and the author in [2]
that for any fixed ε > 0, all but finitely many curves of this form with a
rational point of order at least 5 satisfy

|A| ≤ |B|1+ε.

Notice that if EA,B is a curve whose coefficients are large and do not satisfy
the above inequality, then the j-invariant

j(EA,B) = 1728

(

4A3

4A3 + 27B2

)

is very close to 1728. Viewed in another light, then, this result says that
j(EA,B) cannot be “too close” to 1728 (relative to the sizes of A and B)
if EA,B(Q) contains a torsion point of order at least 5. In [5], the author
proved similar results bounding |B| by a power of |A|, again for EA,B with
certain torsion/isogeny structure. One may similarly view these results as
saying that j(EA,B) cannot be “too close” to 0 for curves EA,B with given
torsion structure. This prompts us to formulate here a general result on
the approximation of a fixed algebraic number by the j-invariants of ellip-
tic curves with certain torsion structure. The main results are stated over
arbitrary number fields and contain, as special cases, most of the results in
[2, 5].

It is easy to show that for each N ,

{j(E) : E/Q admits a rational N -isogeny}
is either empty or dense in Q. When one has a dense subset of a larger
set of numbers, one might ask how well elements in the larger set may be
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approximated by members of the smaller set. Fixing ε > 0, our main result
(applied to Q) states that if r is a fixed rational number other than 0 or 1728,
and p/q = j(E) for an elliptic curve E/Q admitting a non-trivial Q-rational
isogeny, then

|r − p/q| ≥ q−2/3−ε,

with at most finitely many exceptional values of p/q. If p/q = j(E) for an
elliptic curve E/Q admitting a Q-rational isogeny of degree at least 4 or 6,
respectively, we have in addition

|1728 − p/q| > q−2/3−ε and |p/q| > q−3/4−ε,

respectively, again with at most finitely many exceptions. The proof of the
general result uses three pillars of diophantine approximation, namely Roth’s
theorem, Siegel’s theorem, and Faltings’ theorem; as these results are avail-
able over number fields, ours will be too.

Although the results of [2, 5] focus on the archimedean absolute value, the
tools used have p-adic analogues and, making use of these, we may provide
local versions of the above results. For example, it is shown in Section 3 that
for any finite set of primes S there are, up to quadratic twisting, at most
finitely many elliptic curves EA,B with A, B ∈ Z admitting Q-isogenies
of degree at least 4 such that B is an S-unit. As twisting by an S-unit
will produce another curve with the same properties, the qualifier “up to
twisting” is crucial.

Our notation is, in general, selected to coincide with [8]. If K/Q is a
number field, then we let MK denote the set of standard absolute values
on K, and for v ∈ MK , we let nv denote the local degree [Kv : Qv] (where
Kv and Qv are the completions of K and Q at v). The absolute value cor-
responding to v ∈ MK will be normalized so that | · |v extends | · |nv

p if p is
the prime above v, for non-archimedean valuations, or | · |nv for archimedean
ones. As such, we define the K-height of

P = [x0, . . . , xn] ∈ Pn(K)

by

HK(P ) =
∏

v∈MK

max{|x0|v, . . . , |xn|v}

and, when x ∈ K, we will use HK(x) as an abbreviation of HK([x, 1]).
If a/b ∈ Q is a fraction in lowest terms, this corresponds to our usual
conception of height:

HQ(a/b) = max{|a|, |b|}.
For convenience, we will also identify the non-archimedean absolute values
in MK with the primes which define them.
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Theorem 1. Let N ≥ 2 and ε > 0. Fix a number field K/Q, a finite

set of places S ⊆ MK containing all infinite places, and some r ∈ K. Then

unless

(N, r) ∈ {(2, 1728), (3, 1728), (2, 0), (3, 0), (4, 0), (5, 0)},
there is a constant µ0 = µ0(N, r) < 1 such that for every elliptic curve E/K
admitting a K-rational isogeny of degree N , either j(E) = r or

∏

v∈S

min{|r − j(E)|v, 1} ≫ HK(j(E))−µ0−ε.

Here the implied constant depends only on N , ε, and r. Furthermore, we

may take µ0 = 0 if X0(N) has positive genus, and ε = 0 if this genus is at

least 2.

In fact, when X0(N) has genus 0, we may take

µ0(N, r) =
2er

N
∏

p|N (1 + 1/p)
, where er =







3 if r = 0,

2 if r = 1728,

1 otherwise.

Notice that, as X0(N) has genus 0 for only finitely many values of N , we
may make a uniform statement on the approximation of a fixed r by an
elliptic curve with any non-trivial isogeny (excepting the cases excluded in
the theorem).

It is worth noting that, for x, y ∈ K and v ∈ MK ,
∏

v∈S

|y − x|v ≫ HK(x)−1

rather trivially, so the substance of the result is that µ0 < 1. Indeed, the
inequality in the theorem holds as well in the exceptional cases listed, but
in these cases µ0(N, r) ≥ 1, and so the trivial bound supersedes the bound
above. For simplicity in the statements of later results, we set µ0(N, r) = 1
for the exceptional cases mentioned in the theorem.

Theorem 1, of course, implies results for j-invariants of curves with K-
rational points of order N , as each such curve admits the K-rational isogeny
(of degree N) which annihilates the point of order N (explicit formulae for
such an isogeny may be found in [10]). In general, however, the existence of
torsion affords us something slightly stronger.

Theorem 2. Let N ≥ 2 and ε > 0. Fix a number field K/Q, a finite

set of places S ⊆ MK containing all infinite places, and some r ∈ K. Then

unless

(N, r) ∈ {(2, 1728), (3, 1728), (2, 0), (3, 0), (4, 0)},
there is a constant µ1 = µ1(N, r) < 1 such that for every elliptic curve E/K
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with a K-rational point of order N , either j(E) = r or
∏

v∈S

min{|r − j(E)|v, 1} ≫ HK(j(E))−µ1−ε,

where the implied constant depends only on N , ε, and r. Furthermore, we

may take µ1 = 0 if X1(N) has positive genus, and ε = 0 if this genus is at

least 2.

When X1(N) has genus 0, we may take

µ1(N, r) =







2er/3 if N = 2,
4er

N2
∏

p|N (1 − 1/p2)
otherwise,

where er is as above. Again, we will set µ1(N, r) = 1 in the exceptional
cases.

The gist of the proof of the main result is as follows. Let K be a number
field, C/K a non-singular curve, and E → C an elliptic surface over K
(see [9]). For each t ∈ C such that the fibre Et of E above t is non-singular,
let jE(t) = j(Et). Then the map jE extends to a morphism jE : C → P1.
The question of how well a value jE(t), for t ∈ C(K), approximates some
r ∈ P1(K) can be lifted to an approximation question on C, namely how
well t approximates the preimages of r by jE , which are points in C(L) for
some algebraic extension L/K depending on r. So we may apply Roth’s
theorem, Siegel’s theorem, or Faltings’ theorem depending on the genus
of C. Theorem 1 is deduced in this way, with C = X0(N) and E → X0(N)
a surface parametrizing curves admitting isogenies of degree N . Theorem 2
is nearly identical, with C = X1(N).

Section 1 contains the proof of Theorem 1, following the above outline. In
Section 2 we show how many of the results of [2, 5] can be deduced directly
from Theorems 1 and 2, while Section 3 focusses on local versions of these
results. The results in Section 1 are presented in full generality, but for the
sake of simplicity, the results in the later sections are shown only over Q.

Acknowledgements. The author would like to thank J. H. Silverman
for comments on [2] suggesting the present line of inquiry, and the anony-
mous referee for pointing out several mistakes in the draft of this paper.

1. The proof of the main result. As mentioned, the proof breaks
down into three cases, according as X0(N) has genus 0, 1, or greater.

When X0(N) has genus 0. In this case, our result is a consequence of
Roth’s theorem on approximation of algebraic numbers by rationals [7],
and later variants thereof that apply to number fields and various absolute
values.
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Fix δ > 0 to be specified later, and N such that X0(N) has genus 0.
We let j denote the morphism mentioned in the introduction (dropping the
subscript). As X0(N) ∼= P1, we may consider j to be a morphism P1 → P1

which sends the point at infinity to itself. In particular, we may restrict
attention to the affine map j : K → K. Let α(1), . . . , α(n) be the roots of
j(x) − r, and let ej(x) denote the ramification index of j at x. Factoring

j(x) − r over K(α(i)), for each i, we see that

|r − j(x)|v ≫ min
i
{|α(i) − x|ej(α

(i))
v , 1},

where the implied constant depends just on r, K, and N . Thus, by Roth’s
theorem (and later generalisations),

∏

v∈S

min{|r − j(x)|v, 1} ≫ HK(x)−(2+δ)er ,

where er is the largest ej(α
(i)) as i varies, and the implied constant now

depends on δ as well. On the other hand, j is a morphism, and so

HK(x)deg(j) ≫ HK(j(x)),

from which we obtain
∏

v∈S

min{|r − j(x)|v, 1} ≫ Hk(j(x))−(2+δ)er/deg(j).

Now note that j : X0(N) → P1 is a morphism of degree

deg(j) = N
∏

p|N

(1 + 1/p)

(see, for example, [9]; in particular exercises on page 86) which is unramified
except possibly at points above 0 and 1728. Above these points, the ramifi-
cation index is 3 (or 1) and 2 (or 1), respectively. By letting δ = εdeg(j)/er,
we have our result. Similarly, for Theorem 2, we note that j : X1(N) → P1

is a morphism of degree

deg(j) =







3 if N = 2,

N2
∏

p|N

(1 − 1/p2) otherwise,

with similar ramification.

When X0(N) has genus 1. In this case, we apply Siegel’s theorem for
diophantine approximation on curves of genus 1 (see, for example, [8, IX.3]).
By a standard construction, there exists an elliptic curve Er/K such that
j(Er) = r, and there is a finite extension L/K over which Er admits an
isogeny of degree N (for example, let L be the splitting field of the N -
division polynomial of Er). Thus Er corresponds to some Q ∈ X0(N)(L).
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Set, for v ∈ S,

dv(P, Q) = min{|j(P ) − j(Q)|1/ej(Q)
v , 1},

where ej(Q) is again the ramification index of j at Q. Then by Siegel’s
theorem [8, p. 247], for any δ > 0 we have

log dv(P, Q)

log HK(j(P ))
≥ −δ

for all but finitely many P ∈ X0(N)(L). Thus

|r − j(P )|v = |j(P ) − j(Q)|v ≫ HL(j(P ))−ej(Q)δ

as P ranges over X0(N)(K) (or, more generally, over X0(N)(L)). As before,
we have ej(Q) = 1 unless j(Q) = 0 or 1728, in which case we may have
ej(Q) = 3 or 2, respectively. Note that HL(x) = HK(x)[L:K], and so by
selecting

δ =
ε

ej(Q)[L : K](#S)
,

we get
∏

v∈S

min{|r − j(E)|v, 1} ≫ HK(j(E))−ε

for elliptic curves E/K admitting K-rational isogenies of degree N .

When X0(N) has genus at least 2. By Faltings’ theorem [4], X0(N)(K)
is finite when the genus of X0(N) is at least 2. So for each v ∈ S and each
P ∈ X0(N)(K), either j(P ) = r or |r − j(P )|v is bounded below by some
positive value that depends only on v, N , and K. The result is immediate.

2. From j to A and B. In this section we show how many of the results
of [2, 5] follow from Theorems 1 and 2. For simplicity, and in keeping with
the focus of the aforementioned papers, we restrict our attention to K = Q

and S containing just the place at infinity. From this point forward, we will
denote by EA,B the elliptic curve

EA,B : y2 = x3 + Ax + B,

where A and B will always be taken to lie in Z. If we set H(EA,B) =
max{|A|3, |B|2}, then

H(j(EA,B)) ≤ 54H(EA,B).

Lemma 3. Suppose that κ > 2/3, and that EA,B satisfies |A| > |B|κ.
Then

|1728 − j(EA,B)| ≪ H(j(EA,B))−1+2/3κ,

where the implied constant is absolute.
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Proof. As κ > 2/3, we have |4A3+27B2| > |A|3 for sufficiently large |A|.
Thus

|1728 − j(EA,B)| = 66

∣

∣

∣

∣

B2

4A3 + 27B2

∣

∣

∣

∣

≤ 66|A|2/κ−3 ≪ H(j(EA,B))(2/κ−3)/3,

as H(EA,B) = |A|3.
Lemma 4. Suppose EA,B is as above, with |B| > |A|κ and κ > 3/2.

Then

|j(EA,B)| ≪ H(j(EA,B))−1+3κ/2,

where the implied constant is absolute.

The following proposition is the conjunction of Theorems 1 and 2 and
Lemmas 3 and 4.

Proposition 5. Let N ≥ 2 and ε > 0. Then for all but finitely many

pairs of integers A, B ∈ Z with |B| ≥ 2 such that EA,B admits a Q-rational

isogeny of degree N (respectively , contains a Q-rational point of order N),
we have

2

3
(1 − µi(N, 0)) − ε <

log |A|
log |B| <

2

3(1 − µi(N, 1728))
+ ε

with i = 0 (respectively , with i = 1).

In cases where µi(N, 0) = 1 or µi(N, 1728) = 1, the bounds are trivial
(interpreting the pole as an infinite bound). Note that the non-trivial bounds
correspond precisely to those appearing in [5]. It should also be pointed
out that the condition |B| ≥ 2 is entirely an artifact of the form of the
proposition. One may easily describe the torsion/isogeny structure of curves
with |B| ≤ 1 (see [5]).

3. Local results. Suppose EA,B is a curve admitting a Q-rational
isogeny of degree N , and suppose that B (respectively A) is an S-unit, that
is, an integer whose prime divisors all lie in S. Then it is easy to construct
infinitely many other curves with the same property merely by twisting EA,B

by S-units. As it betides, this is the only way to construct an infinite family
of such curves.

We will say that the elliptic curve EA,B is quasi-minimal if there does
not exist a curve EA′,B′ isomorphic to EA,B over Q with |A′| < |A| and
A′, B′ ∈ Z. Equivalently, EA,B is quasi-minimal if there is no prime p with
p4 |A and p6 |B. Curves that are quasi-minimal might not be minimal, in
the traditional sense, at 2 or 3. We will say that EA,B is twist-minimal if
there is no EA′,B′ isomorphic to EA,B over C with |A′| < |A| and A′, B′ ∈ Z.
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Equivalently, EA,B is twist-minimal if there is no prime p with p2 |A and
p3 |B.

Theorem 6. Let S be a finite set of primes. Then there are at most

finitely many twist-minimal curves EA,B such that

(i) A is an S-unit and EA,B admits a Q-rational isogeny of degree at

least 6, or

(ii) B is an S-unit and EA,B admits a Q-rational isogeny of degree at

least 4.

There are at most finitely many minimal curves EA,B such that

(iii) A is an S-unit and EA,B(Q) contains a point of order at least 5, or

(iv) B is an S-unit and EA,B(Q) contains a point of order at least 4.

Our proof will make use of the following lemma.

Lemma 7. Let S be a finite set of places (containing the infinite place),
and fix µ < 1 and m, n, C > 0. If a and b are integers such that

(i) a is an S-unit ,
(ii) for every prime p, either ordp(a) ≤ m or ordp(b) ≤ n,
(iii) the inequality

(1)
∏

v∈S

min{|a/b|v, 1} ≥ CH(a/b)−µ

holds,

then |a| and |b| are bounded in terms of S, µ, C, m, and n.

Proof. Suppose p | a. Then by (ii), either ordp(a) ≤ m or ordp(a/b) ≥
ordp(a) − n. In particular,

ordp(a) ≤ n + m + max{ordp(a/b), 0},
and so

|a|−1
p ≤ pn+m min{|a/b|p, 1}−1.

As a is divisible only by primes in S, we have
∏

v∈S

min{|a/b|v, 1} ≤ min{|a/b|, 1}
∏

p∈S\{∞}

pn+m|a|p

= min{|a/b|, 1}sn+m|a|−1,

where s is the product of the finite primes in S. From (1), we now have

min{|a/b|, 1} ≥ Cs−n−m|a|H(a/b)−µ.

Suppose that |a| ≤ |b|. Then the above becomes

|a/b| ≥ Cs−n−m|a| |b|−µ,



Approximating algebraic numbers by j-invariants 65

which in turn yields |a| ≤ |b| ≤ (sn+mC−1)1/(1−µ). If, on the other hand,
|a| > |b|, then we obtain

1 ≥ Cs−n−m|a|1−µ,

whence |b| < |a| ≤ (sn+mC−1)1/(1−µ).

Proof of Theorem 6. The theorem is certainly not weakened if we enlarge
the set of primes, so we will assume without loss of generality that 2, 3 ∈ S.
We will first treat the case (i), where A is an S-unit and EA,B admits a
rational isogeny of degree at least 6. Suppose that EA,B is twist-minimal,
and note that

j(EA,B) =
6912A3

4A3 + 27B2
.

Let a = 6912A3 = 2833A3 and b = 4A3 + 27B2. Then if p ≥ 5 is a prime
and p6 | a, we have p2 |A. If p6 | b, then p6 | 1728b − a = 66B2, and so p3 |B.
This contradicts the twist-minimality of EA,B, so either ordp(a) ≤ 5 or
ordp(b) ≤ 5. Similarly, if 214 | a, then 22 |A. If we also have 212 | b, then
212 | 1728b − a = 66B2, and so 23 |B. Under the hypothesis that EA,B is
twist-minimal we have either ord2(a) ≤ 13 or ord2(b) ≤ 11. By a similar
argument, ord3(a) ≤ 8 or ord3(b) ≤ 5.

If EA,B admits a Q-rational isogeny of degree at least 6 we have, after
applying Theorem 1 with ε = 1/8,

∏

v∈S

min{|a/b|v, 1} ≥ CH(a/b)−7/8

for some C > 0. Note that, as 2, 3 ∈ S, a is an S-unit if A is, and so we may
apply Lemma 7 with m = 13, n = 11, µ = 7/8, and C and S as above. We
see that |a| and |b| are bounded by some expression depending only on S,
and so |A| and |B| are as well.

The proofs of the other three cases are straightforward modifications
of the above argument, applying Theorem 1 or Theorem 2 with r = 0 or
r = 1728 as appropriate. The only subtle point is that we may replace
“twist-minimal” with “minimal” for curves with a Q-rational point of the
appropriate order. One way to see that this is true is to consider that an
elliptic curve E/Q with a Q-rational point of order N ≥ 3 may have at
most one (non-trivial) quadratic twist with a Q-rational point of order N .
If E and its twist over Q(

√
D) both contain Q-rational points of order N ,

then E(Q(
√

D)) contains full N -torsion. As the Weil pairing of any two
generators of the full N -torsion on E is a primitive Nth root of unity, the
above situation can occur only for the twist of E over Q(

√
−3) when N = 3,

the twist of E over Q(i) when N = 4, and not at all when N ≥ 5.

For example, it follows from Theorem 6 that there are only finitely many
minimal EA,B with a Q-rational point of order 5 such that B is a {2, 3}-unit.
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Although perhaps only a curiosity, a much stronger statement holds in this
special setting.

Proposition 8. Let A and B be integers such that EA,B is minimal ,
EA,B(Q) contains a point of order 5, and B is not divisible by any prime

p ≡ 1 (mod 4). Then A = −432 and B = 8208.

Proof. If EA,B is minimal, and EA,B(Q) contains a point of order 5, then
for some coprime integers s and t,

A = −27(s4 − 12s3t + 14s2t2 + 12st3 + t4),
(2)

B = 54(s2 + t2)(s4 − 18s3t + 74s2t2 + 18st3 + t4)

(see, for example, [2]). If B is not divisible by any prime p ≡ 1 (mod 4),
then neither is s2 + t2. But clearly s2 + t2 is not divisible by any prime
p ≡ 3 (mod 4) either, and thus s2 + t2 = 2n for some n. As gcd(s, t) = 1, we
need only consider the values of s2 + t2 in Z/4Z to see that n ∈ {0, 1}, and
so

(s, t) ∈ {(±1, 0), (0,±1), (±1,±1), (±1,∓1)}.
The only non-singular curve that results is E−432,8208.

We note, with a view to Theorem 6, that if S is a finite set of primes,
EA,B(Q) contains a point of order 5, and B is an S-unit, then (2) defines
a Thue–Mahler equation. This gives us not only a more direct verification
of the relevant case of Theorem 6, but also, through theorems of Baker
and Coates [1, 3], an effective method for finding all such EA,B. Indeed,
Theorem 6 can be made computationally effective in all cases by a similar
reduction to the solution of Thue–Mahler equations.

4. Analogous results over function fields. Many of the above results
have analogues over function fields. In many cases, we can make effective
statements in this context that are stronger than those in [2, 5]. Rather
than pursue these slight improvements here, we present an unconditional
analogue of a result from [2] which used the abc Conjecture.

Recall that in [2] it was shown that there exists, for each ε > 0, a constant
Cε > 0 such that if EA,B(Q) contains a point of order 3, where A, B ∈ Z,
then

log |A| ≤ (2 + ε) log |B| + Cε.

(À propos of the analogy below, note that log |A| = h(A).) We will prove
the analogous result for elliptic curves defined over function fields of genus
and characteristic 0. The analogue of the abc Conjecture is known to be true
in this setting (see [6]). To see the analogy between the two results, let k
be an algebraically closed field of characteristic 0, let t ∈ k ∪ {∞}, and let
f ∈ k(T ). We denote by ordt(f) the order of vanishing of f at t, in the usual
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sense, and define a valuation and an absolute value by

vt(f) = ordt(f), |f |t = e− ordt(f).

We see that f is integral with respect to these valuations if and only if
f ∈ k[T ] (that is, f is a polynomial), and that in this case the height of f is

h(f) = deg(f).

Proposition 9. Let k be an algebraically closed field of characteristic 0,
and let K = k(T ) be the field of rational functions in T over k. Then for all

A, B ∈ k[T ] such that EA,B contains a K-rational point of order 3, we have

deg(A) ≤ 2 deg(B).

Proof. The proof follows almost exactly as in [2]. Suppose (x, y) ∈
EA,B(K) is a point of order 3. Then, examining duplication on EA,B, we
obtain both

(

3x2 + A

2y

)2

= 3x and 3x4 + 6Ax4 + 12Bx = A2.

Note from the second equation that x ∈ k[T ], for any pole of x is as well a
pole of A. By the first equation, we have 3x = s2, say, for s ∈ k[T ]. If we
write A = st, the second equation becomes

3s6 + 6s3t + 12B = t2.

Solving the quadratic equation in t, we obtain

t = 3s3 ±
√

12(s6 + B).

Hence s6+B is a square in k[T ], say M2 = s6+B. Applying the abc Theorem
for K (see [6]), we have

6 deg(s) ≤ deg(BMs) − 1.

If, on the one hand, we have 2 deg(M) = deg(B), then this implies

5 deg(s) ≤ 3
2 deg(B) − 1.

If, on the other hand, deg(B) < 2 deg(M), then deg(M) = 3 deg(s). If this
is the case, we derive

6 deg(s) ≤ deg(B) + deg(Ms) − 1 ≤ deg(B) + 4 deg(s) − 1.

Finally, if 2 deg(M) < deg(B), then 6 deg(s) = deg(B). In any case, we have

deg(A) ≤ 4 deg(s) ≤ 2 deg(B).

Note that for deg(B) ≥ 2, we have actually shown

deg(A) ≤ 2 deg(B) − 2.
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