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On the zeros of a class of arithmetical entire functions
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Introduction. Consider the class of arithmetical functions f : N → C

for which the Fourier coefficients

(0.1) f̂(λ) = lim
x→∞

1

x

∑

n≤x

f(n)e−2πiλn

exist for all λ ∈ R. Since f̂(λ+ 1) = f̂(λ), it follows that f̂(λ) is completely
determined by its values on (0, 1]. We are particularly interested in the case

when f̂(·) is supported on the rationals; that is,

(0.2) f̂(λ) = 0 for λ 6∈ Q+.

This occurs for many multiplicative functions (see for example [3]). We can
then associate to f its Fourier expansion

(0.3) f(n) ∼
∑

0<q≤1

f̂(q)e2πiqn,

where q runs over the rationals in (0, 1]. (This series need not converge.)
Many naturally occurring arithmetical functions have such an expansion.
For example, the function σ−α(n) (for α > 0) has

σ̂−α(q) = σ̂−α

(
m

n

)
=
ζ(α+ 1)

nα+1
for m,n coprime,

where ζ(·) is the Riemann zeta function.
These Fourier series and the closely related Ramanujan expansions (for

which f̂(m/n), with (m,n) = 1, depends only on n) have been studied in
great detail (see for example [5], [6]).

An absolutely convergent Fourier series (0.3) extends naturally to an
entire function of order 1. We study several aspects of these “arithmetical”
entire functions, in particular the location of the zeros. In the case when the
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f̂(q) are real and infn∈Z f(n) > 0, we prove that all the zeros of the entire
extension are real and simple.

In the particular case of Ramanujan expansions, we obtain alternative
series representations. Such representations can be used to extend functions
whose Fourier series do not converge absolutely. For some particular ex-
amples, including an entire extension of the divisor function d(n), we show
that their zeros are again all real and simple, except for a conjugate pair of
imaginary zeros.

Finally, we briefly discuss the asymptotic behaviour along the imaginary
axis.

Some preliminaries. For a function a : Q+ → C defined on the positive
rationals, we define

∑

q∈Q+

a(q) = lim
N→∞

∑

m,n≤N
(m,n)=1

a

(
m

n

)
, whenever this limit exists.

We shall sometimes abbreviate the left-hand sum by
∑

q a(q) (1). For q =

m/n ∈ Q+, with (m,n) = 1, we write |q| = max{m,n}. Thus the above
definition becomes ∑

q

a(q) = lim
N→∞

∑

|q|≤N

a(q).

As usual, we say
∑

q a(q) converges absolutely if
∑

q |a(q)| converges. In that
case, we may sum the terms in any particular order.

We shall require Hurwitz’s theorem concerning zeros of the uniform limit
of holomorphic functions. There are various versions of this and we shall use
it in two ways:

Hurwitz’s theorem. Let Fn be a sequence of holomorphic functions,
and suppose Fn →F uniformly on a domain D, where F is not identically

zero.

(a) If Fn has no zeros in D, then F has no zeros in D ([1]).
(b) If F (z) 6= 0 for z on a simple closed contour C lying entirely in-

side D, then for all n sufficiently large, Fn and F have the same

number of zeros inside C ([4]).

1. Fourier series and coefficients of arithmetical functions

Definition 1.1.

(i) Let Q denote the space of functions f : N → C for which (0.1) and
(0.2) hold.

(1) Throughout this article, a sum over q always denotes a sum over all the rationals q
in the given range.
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(ii) Let Q1 denote the subspace of Q consisting of absolutely convergent
Fourier series; i.e. writing πq(n) = e2πiqn,

Q1 =
{ ∑

0<q≤1

c(q)πq :
∑

0<q≤1

|c(q)| <∞
}
.

Note that if f(n) =
∑

0<q≤1 c(q)e
2πiqn ∈ Q1 then, by absolute conver-

gence, for λ ∈ (0, 1] we have

lim
x→∞

1

x

∑

n≤x

f(n)e−2πiλn = lim
x→∞

1

x

∑

n≤x

∑

0<q≤1

c(q)e2πiqne−2πiλn

=
∑

0<q≤1

c(q) lim
x→∞

1

x

∑

n≤x

e2πi(q−λ)n =

{
c(λ) if λ ∈ Q,

0 if λ 6∈ Q,

i.e. the c(q) are the Fourier coefficients of f . In fact, Q1 is a Banach algebra

with norm ‖f‖1 =
∑

0<q≤1 |f̂(q)|.
A number of interesting examples of members of Q arise from a certain

type of arithmetical function. For arithmetical functions f and g, denote by
f ∗ g the Dirichlet convolution of f and g, i.e.

(f ∗ g)(n) =
∑

d|n

f(d)g

(
n

d

)
.

Theorem 1.1. Let g be an arithmetical function for which
∑∞

n=1|g(n)|/n
converges and let h ∈ Q satisfy

∑
n≤x |h(n)| = O(x). Then f = g ∗ h ∈ Q

with Fourier coefficients

(1.1) f̂(λ) =
∞∑

n=1

g(n)

n
ĥ(λn).

Furthermore, if
∑∞

n=1 |g(n)| <∞ and h ∈ Q1, then f ∈ Q1.

Proof. Let λ ∈ R. We have

1

x

∑

n≤x

f(n)e−2πiλn =
1

x

∑

n≤x

e−2πiλn
∑

d|n

g(d)h

(
n

d

)

=
1

x

∑

n≤x

g(n)
∑

d≤x/n

h(d)e−2πiλnd.

Since h ∈ Q, for fixed n we have
n

x

∑

d≤x/n

h(d)e−2πiλnd → ĥ(λn)

as x → ∞. Furthermore, by assumption, the LHS above is bounded by an
absolute constant A. Hence also |ĥ(λn)| ≤ A.
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Let ε > 0. There exists N such that
∑

n>N |g(n)|/n < ε. So, for x > N ,
∣∣∣∣
1

x

∑

n≤x

f(n)e−2πiλn − 1

x

∑

n≤N

g(n)
∑

d≤x/n

h(d)e−2πiλnd

∣∣∣∣

=

∣∣∣∣
∑

N<n≤x

g(n)

n

n

x

∑

d≤x/n

h(d)e−2πiλnd

∣∣∣∣ ≤ A
∑

n>N

|g(n)|
n

< Aε.

Let x→ ∞. Thus

lim sup
x→∞

∣∣∣∣
1

x

∑

n≤x

f(n)e−2πiλn −
∑

n≤N

g(n)

n
ĥ(λn)

∣∣∣∣ ≤ Aε.

But |ĥ(λn)| ≤ A so |∑n>N (g(n)/n)ĥ(λn)| < Aε. It follows that

lim sup
x→∞

∣∣∣∣
1

x

∑

n≤x

f(n)e−2πiλn −
∞∑

n=1

g(n)

n
ĥ(λn)

∣∣∣∣ ≤ 2Aε.

This is true for all ε > 0, so the lim sup is in fact zero—proving that f ∈ Q
and (1.1) holds.

Finally, if
∑∞

n=1 |g(n)| <∞ and h ∈ Q1, then we have

∑

0<q≤1

|f̂(q)| ≤
∑

0<q≤1

∞∑

n=1

|g(n)|
n

|ĥ(qn)| = ‖h‖1

∞∑

n=1

|g(n)| <∞,

since
∑

0<q≤1 |ĥ(qn)| =
∑

0<q≤n |ĥ(q)| = n‖h‖1 by periodicity of ĥ(q), and
so f ∈ Q1.

The above result resembles, but is different from, Theorem 2.1 on p. 49
of [6], where h is assumed completely multiplicative. With h ≡ 1, we obtain
the following corollary which contains Corollary 2.2 from [6].

Corollary 1.2. Let g : N → C and let f(n) =
∑

d|n g(d). If the series∑∞
n=1 |g(n)|/n converges, then f ∈ Q with

f̂(q) = f̂

(
m

n

)
=

∞∑

k=1

g(kn)

kn
for (m,n) = 1.

If we further assume that
∑∞

n=1 |g(n)| converges, then f ∈ Q1.

Examples 1.3.

(a) Let g(n) = n−α in Corollary 1.2, so that f(n) =
∑

d|n d
−α = σ−α(n).

Hence σ−α(n) ∈ Q for α > 0 with

σ̂−α

(
m

n

)
=

∞∑

k=1

1

(kn)α+1
=
ζ(α+ 1)

nα+1
.
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The Fourier series is therefore

σ−α(n) ∼ ζ(α+ 1)
∑

0<q≤1

e2πiqn

|q|α+1
.

If α > 1, then σ−α(n) ∈ Q1 and the above series converges absolutely
to σ−α(n).

(b) Let g(n) = µ(n)n−α in Corollary 1.2, so that f(n) =
∑

d|n µ(d)d−α =

ϕα(n) (2). For α > 0 this lies in Q with

f̂

(
m

n

)
=

∞∑

k=1

µ(kn)

(kn)α+1
=

µ(n)

ζ(α+ 1)nα+1ϕα+1(n)
.

(To see this, it is enough to consider n squarefree, in which case
µ(kn)/µ(n) is multiplicative as a function of k.) For α > 1, ϕα(·) is
in Q1 and has the absolutely convergent Fourier series

ϕα(n) =
1

ζ(α+ 1)

∑

0<q≤1

µ(|q|)
|q|α+1ϕα+1(|q|)

e2πiqn.

2. Entire extensions. Every f ∈ Q1 can be extended, in a natural
way, to an entire function. For n ∈ N, we have

f(n) =
∑

0<q≤1

f̂(q)e2πiqn,

and we could define f(z) (z ∈ C) simply by replacing n by z in the above.
However, we could equally well let q range over the rationals in [0, 1) (or
indeed over any half-open interval between two integers). To avoid having
to choose which endpoint will be included, we define instead

(2.1) f(z) =
∑

0≤q≤1

w(q)f̂(q)e2πiqz =
∑′

0≤q≤1

f̂(q)e2πiqz,

where w(q) is the following weight: w(0) = w(1) = 1/2, w(q) = 1 for 0 <
q < 1 rational (the ′ indicating the q = 0, 1 terms are to be halved).

This series converges absolutely since |e2πiqz| ≤ e2πq|z| ≤ e2π|z|, which is
independent of q. In particular, this implies

|f(z)| ≤ e2π|z|
∑′

0<q≤1

|f̂(q)| = ‖f‖1e
2π|z|.

By standard theorems on holomorphic functions, f(z) is entire with deriva-
tive

f ′(z) = 2πi
∑′

0≤q≤1

qf̂(q)e2πiqz.

Note that this is bounded on the real line.

(2) Here, we define ϕα(n) =
∏

p|n(1 − p−α). Thus ϕ1(n) = φ(n)/n.
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The bound |f(z)| ≤ ‖f‖1e
2π|z| shows f is of finite order and the order is

at most 1. Moreover, if f̂(q) ≥ 0 for all q with at least one non-zero value,

say f̂(q′) > 0, then

f(−iy) =
∑′

0<q≤1

f̂(q)e2πqy ≥ f̂(q′)e2πq′y,

showing that f has order 1 exactly.
There are of course infinitely many entire functions which interpolate

a particular sequence, say f(n). It is an interesting question to find the
“smallest” such entire function. Here, “smallest” means with least growth.
For example, if f(n) is multiplicative but not of the form nk (k ∈ N0), then
the interpolating entire function must have order at least 1. For if not, let
F (z) be entire of order ̺ < 1 such that F (n) = f(n). Then G(z) := F (2z)−
F (2)F (z) is entire of order at most ̺, and not identically zero (3). Thus
G(z) has at most O(r̺+ε) zeros for |z| ≤ r for any ε > 0 (see for example
[7]). But G(k) = 0 for every odd positive integer k, showing that there are
at least 1

2r zeros here—a contradiction. In fact, a slight strengthening of

this argument shows that |G(z)| = O(ea|z|) is false for all a > 0 sufficiently
small. Hence also for F (z).

With the entire extension f ∈ Q1 defined by (2.1), a number of inter-
esting questions present themselves. Amongst these are the location of any
zeros, and the behaviour of f(z) for large |z|, in particular for z = ±ix with
x real. Also, if f(n) is multiplicative, how does this manifest itself in the
entire extension (2.1)?

2.1. Zeros. The entire extension of f ∈ Q1 as defined in (2.1) always
has zeros, except in the case that the Fourier series of f is a single term. We
are particularly interested in the case where f(n) and f̂(q) are real for all
positive integers n and rational q, which we now assume. It follows easily
that f(z) = f(−z), f̂(1 − q) = f̂(q), and

f(z) = e2πizf(−z).
In fact, we shall assume that f(n) is positive for every n ∈ N0. As f(−n) =
f(n), this implies that f(n) > 0 for n ∈ Z. Let g be the entire even function
defined by

g(z) = eπzf(iz) =
∑′

0≤q≤1

f̂(q)e(1−2q)πz.

Then g is real on the imaginary axis (since g(z) = g(z)) and g(in) =
(−1)nf(n), which alternates in sign. Thus g has a zero on the imaginary
axis between in and i(n+ 1) for every n ∈ Z.

(3) If F (2z) = F (2)F (z) for all z, then the Taylor coefficients an of F (z) must satisfy
an(2n

−F (2)) = 0. Hence an = 0 for all n except possibly one value. But F (1) = f(1) = 1,
so F (z) = zk for some k.
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Let N(r) denote the number of zeros of g inside the disc D(0, r). Thus
from the above,N(r) ≥ 2[r]. By Jensen’s theorem ([7, p. 126]), we can obtain

an upper bound. The bound |f(−iz)| ≤ ∑
0<q≤1 |f̂(q)|e2πqℜz ≤ ‖f‖1e

2πℜz

whenever ℜz ≥ 0 gives

|g(z)| ≤ ‖f‖1e
π|ℜz| (z ∈ C).

Hence, by Jensen’s theorem,

N1(r) :=

r\
0

N(t)

t
dt =

1

2π

2π\
0

log |g(reiθ)| dθ − log |g(0)|

≤ 1

2π

2π\
0

πr|cos θ| dθ + log ‖f‖1 − log |g(0)| = 2r +A.

But N(r) ≥ 2[r] > 2(r− 1), so N1(r) ≥
Tr
1

2(t−1)
t dt = 2r− 2 log r− 2. Hence

N1(r) = 2r +O(log r).

Using the fact that N(x) is increasing with x, for x > y > 0 we have

x− y

y
(N1(x) −N1(x− y)) ≤ N(x) ≤ x+ y

y
(N1(x+ y) −N1(x)).

SinceN1(x+y)−N1(x) = 2y+O(log x) andN1(x)−N1(x−y) = 2y+O(log x),
it follows that

N(x) = 2x

(
1 +O

(
y

x

)
+O

(
log x

y

))
.

Choosing y =
√
x log x optimally gives

N(r) = 2r +O(
√
r log r).

Since at least 2[r] of these zeros are on the imaginary axis, this suggests that
they all lie on it. We prove this in Theorem 2.3.

Note that since f̂(q) = f̂(1 − q), we can write

g(z) =
∑

0≤q≤1/2

w(q)f̂(q)(e(1−2q)πz + e−(1−2q)πz) − f̂

(
1

2

)
(2.2)

=
1

2
f̂(1)(eπz + e−πz) + f̂

(
1

2

)
+

∑

0<q<1/2

2f̂(q) coshπ(1 − 2q)z

=
∑

0≤q≤1

αq coshπqz

for some αq real. (Indeed, α0 = f̂(1/2), α1 = f̂(1), and αq = 2f̂((1 − q)/2).)

Lemma 2.1. Let λ ∈ (−1, 1). All the zeros of the function cosh z−λ are

imaginary and simple. More precisely, they are i(±θ + 2πk) (k ∈ Z), where

cos θ = λ and θ ∈ (0, π).
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Proof. The equation cosh z = λ involves

e2z − 2λez + 1 = 0,

i.e. (ez − λ)2 = λ2 − 1. Thus ez = λ ± i
√

1 − λ2 (since λ ∈ (−1, 1)). But
|λ± i

√
1 − λ2| = 1, hence |ez| = 1 and z must be purely imaginary.

Writing λ + i
√

1 − λ2 = eiθ, so that cos θ = λ and θ ∈ (0, π), we have
ez = e±iθ. Thus the zeros are

z = ±iθ + 2πik (k ∈ Z),

in particular they are all simple.

Theorem 2.2. Let N ∈ N and let {λq}0≤q≤1 be real numbers for q
rational and |q| ≤ N (here |0| = 1). Let A(z) be defined by

A(z) =
∑

0≤q≤1
|q|≤N

λq coshπqz

and suppose that (−1)nA(in) > 0 for all n ∈ Z. Then all the zeros of A(z)
are imaginary and simple. Furthermore, denoting the zeros by ±iγn, where

γn+1 > γn > 0 (n ∈ N), we have n− 1 < γn < n for n ≥ 1.

Proof. Let M = lcm{1, . . . , N}. Then for q ∈ [0, 1] rational such that
|q| ≤ N , Mq ∈ N0. Hence

cosh qπz = cosh

(
Mq

πz

M

)
= TMq(w),

where w = cosh(πz/M), and Tn(·) is the nth Chebyshev polynomial (4).
Thus

A(z) =
∑

0≤q≤1
|q|≤N

λqTMq(w) = PM (w)

say, where PM (·) is a polynomial of degree M with real coefficients. We shall
see that all the roots are simple and lie in the open interval (−1, 1).

Let µn = cos(πn/M) for n ∈ Z. By supposition,

(−1)nPM (µn) = (−1)nPM (cosh(πin/M)) = (−1)nA(in) > 0.

But for 0 ≤ n ≤M , µn is a strictly decreasing sequence in [−1, 1], i.e.

−1 = µM < · · · < µ1 < µ0 = 1.

So there is a zero of PM (·) between µn and µn+1 for every n = 0, 1, . . . ,M−1.
This gives M simple zeros in (−1, 1), and as PM (·) has degree M , they are
all the zeros. Denote these zeros by w1, . . . , wM with w1 > · · · > wM .

(4) The nth Chebyshev polynomial is defined by cos nθ = Tn(cos θ) (n ∈ N0) and has
degree n.
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Now A(z) = 0 if and only if PM (w) = 0, where w = cosh(πz/M). This
gives the M equations

cosh
πz

M
= wr (r = 1, . . . ,M).

By Lemma 2.1, each of them has all its roots on the imaginary axis. Apart
from the simplicity of the roots, this proves the first part of the theorem.

For the second part, note that πz/M = i(±θr +2πk), where cos θr = wr,
θr ∈ (0, π), and k ∈ Z. But µr < wr < µr−1, so

cos
rπ

M
< cos θr < cos

(r − 1)π

M
.

As cos is a decreasing function on [0, π], (r − 1)π/M < θr < rπ/M . Thus

z = i(±ψr + 2Mk) for r = 1, . . . ,M and k ∈ Z,

for some ψr ∈ (r− 1, r). Hence every interval (in, i(n+ 1)) contains exactly
one zero.

Theorem 2.3. Let f ∈ Q1 with f̂(q) real for all q and such that

infn∈N0 f(n) > 0. Then the entire extension of f as defined by (2.1) has

all its zeros real and simple, one in each interval (n, n+ 1) for every n ∈ Z.

Proof. We can apply Hurwitz’s theorem to our case, by taking

gN (z) =
∑

0≤q≤1
|q|≤N

αq coshπqz

with αq as in (2.2). Then gN → g uniformly on compact subsets of C and,
crucially, gN → g uniformly on the imaginary axis since

|gN (ix) − g(ix)| ≤
∑

|q|>N

|αq| → 0

independently of x. For all N sufficiently large, gN satisfies the conditions of
Theorem 2.2: the coefficients are real, and (−1)ngN (in) is real and positive
for all n (by uniform convergence on the imaginary axis and the assumption
that infn∈N0 f(n) > 0). Theorem 2.2 implies that gN has all its zeros on the
imaginary axis, one in each interval i(n, n + 1). By part (a) of Hurwitz’s
theorem, the zeros of g are also all on the imaginary axis (take D to be the
half-plane {z ∈ C : ℜz > 0} and {z ∈ C : ℜz < 0} in turn).

Now fix k ∈ Z and let C be the circle of centre i(k + 1/2) and radius
1/2. Then g(z) 6= 0 on C. By part (b) of Hurwitz’s theorem, g has the same
number of zeros inside C as gn for all n sufficiently large, i.e. one.

Remark. The zeros are necessarily bounded away from the integers
(and hence from each other). For we have f(n + x) = f(n) + xf ′(y) for
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some y with 0 < |y| < |x|, so that

|f(n+ x)| ≥ f(n) − |x| |f ′(y)| ≥ inf
n∈N0

f(n) − |x| sup
y∈R

|f ′(y)| > 0

for all x sufficiently small, independently of n.

2.2. Entire extensions associated to Ramanujan expansions. In the spe-
cial case when f has a Ramanujan expansion we can obtain a different
representation of the entire extension. More specifically, as in Corollary 1.2,
let f(n) =

∑
d|n ad where

∑
n |an| converges, so that f ∈ Q1. Define the

entire extension of f by (2.1). In particular we have (using f̂(0) = f̂(1) and

f̂(m/n) = f̂(1/n) for m,n coprime)

f(0) =
∞∑

n=1

φ(n)f̂

(
1

n

)
=

∞∑

n=1

φ(n)

n

∞∑

k=1

ank

k
=

∞∑

m=1

am

m

∑

d|m

φ(m) =
∞∑

m=1

am.

This can be interpreted by saying the divisors of 0 are all the positive inte-
gers, so that f(0) =

∑
d|0 ad =

∑∞
d=1 ad.

Proposition 2.4. Let f(n) =
∑

d|n ad, where
∑∞

n=1 |an| converges.

Let f also denote the extension to C as defined in (2.1). Then for z ∈ C\Z,
we have

f(z) =

(
e2πiz − 1

2πiz

)(
f(0) − 2z2

∞∑

n=1

f(n)

n2 − z2

)
.

Proof. Let

S(n) =
n∑

m=1

e2πizm/n =
e2πiz − 1

1 − e−2πiz/n
and T (n) =

n∑

m=1
(m,n)=1

e2πizm/n.

Then S(n) =
∑

d|n T (d) (see for example [2]). Using the fact that f̂(0) =

f̂(1) =
∑∞

m=1 am/m we have

f(z) =
∞∑

n=1

f̂

(
1

n

)
T (n) − f̂(1)

2
(e2πiz − 1)

=
∞∑

n=1

T (n)

n

∞∑

k=1

akn

k
− f̂(1)

2
(e2πiz − 1)

=
∞∑

m=1

am

m

∑

d|m

T (d) − 1

2
(e2πiz − 1)

∞∑

m=1

am

m
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=
∞∑

m=1

am

m

(
S(m) − 1

2
(e2πiz − 1)

)

= (e2πiz − 1)

∞∑

n=1

an

n

(
1

1 − e−2πiz/n
− 1

2

)
.

Now for z 6∈ Z,

1

1 − e−2πiz/n
− 1

2
=

n

2πiz
+
inz

π

∞∑

k=1

1

n2k2 − z2
.

Multiplying by (e2πiz − 1)an/n and summing over n gives

f(z) = (e2πiz − 1)

{
1

2πiz

∞∑

n=1

an +
iz

π

∞∑

n=1

an

∞∑

k=1

1

n2k2 − z2

}

=
e2πiz − 1

2πiz

{
f(0) − 2z2

∞∑

m=1

f(m)

m2 − z2

}
,

using f(m) =
∑

n|m an.

2.3. Zeros again. We have seen that under various conditions the zeros
of f are all real. In the case that f is given as in Proposition 2.4, we find
that we can relax these to the condition f(n) > 0 for all n ∈ N0. (This of

course implies that an is real for all n ∈ N and hence that f̂(q) is real.) We
start with a lemma:

Lemma 2.5. Let an and bn (n = 0, . . . , N) be real numbers such that

an > 0 and 0 ≤ b0 < b1 < · · · < bN . Let f : C \ {−b0, . . . ,−bN} → C be

defined by

f(z) =
N∑

n=0

an

bn + z
.

Then all zeros of f are real and negative, one in each interval (−bk,−bk−1).

Proof. We can write

f(z) =
PN (z)

(b0 + z) . . . (bN + z)
,

where PN is a polynomial of degree N . Hence f has N zeros (counting
multiplicities).

Since the an and bn are real, f(z) is real for real z. Consider f(x) for
x real in an interval (−bk,−bk−1). We have f(x) → −∞ as x → −bk−1

and f(x) → ∞ as x → −bk. It follows that f(x) has a zero in the interval
(−bk,−bk−1). This is true for each k = 1, . . . , N , giving N zeros of f in the
required intervals.
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Theorem 2.6. Let an and bn (n ∈ N0) be sequences of real numbers such

that an > 0, bn+1 > bn ≥ 0, and
∑∞

n=1 an/bn converges. Let f : C \ {−bn :
n ∈ N0} → C be defined by

f(z) =
∞∑

n=0

an

bn + z
.

Then all zeros of f are real and negative, one in each interval (−bk,−bk−1)
(k ∈ N).

Proof. Apply part (a) of Hurwitz’s theorem to our case, by taking

fN (z) =

N∑

n=0

an

bn + z
.

Then fN → f uniformly on compact subsets of C \ {−bn : n ∈ N0}. By
Lemma 2.5, fN has all its zeros real and negative, one in each interval
(−bk,−bk−1). By Hurwitz’s theorem, the zeros of f are also all real and
negative (take D to be the cut plane Ccut := C \ (−∞, 0]).

For x real and not equal to −bk for any k,

f ′(x) = −
∞∑

n=0

an

(bn + x)2
< 0.

Thus f is strictly decreasing on each interval (−bk,−bk−1). As before,
f(−bk + 0) = ∞ and f(−bk−1 − 0) = −∞. Hence f has exactly one zero in
each interval (−bk,−bk−1).

Corollary 2.7. Let f be as in Proposition 2.4 with entire extension as

defined by (2.1), and suppose f(n) > 0 for all n ∈ N0. Then the zeros of f
are real and simple, and are of the form ±µn (n ∈ N) with n− 1 < µn < n.

Proof. We have

f(z) = −2z2

(
e2πiz − 1

2πiz

)( ∞∑

n=0

f1(n)

n2 − z2

)
,

where f1(0) = 1
2f(0) and f1(n) = f(n) for n 6= 0. Thus f1(n) > 0 and

Theorem 2.6 can be applied. The zeros of f therefore occur when z2 is real
and positive, one in each interval (n2, (n + 1)2) (n ∈ N0); i.e. the zeros are
all real and simple, one in each interval (n, n+ 1) (n ∈ Z). Since e−πizf(z)
is even, the zeros come in pairs, and are of the form stated.

3. Some special and unbounded examples. From Examples 1.3,
σ−α(n) and ϕα(n) are in Q1 for α > 1. Also, both σ−α(n) and ϕα(n) have
Ramanujan expansions and the results from 2.2 can be applied here. Their
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values at 0 are ζ(α) and 1/ζ(α) respectively, and by Proposition 2.4 we have

σ−α(z) =

(
e2πiz − 1

2πiz

)(
ζ(α) − 2z2

∞∑

n=1

σ−α(n)

n2 − z2

)
,(3.1)

ϕα(z) =

(
e2πiz − 1

2πiz

)(
1

ζ(α)
− 2z2

∞∑

n=1

ϕα(n)

n2 − z2

)
.(3.2)

If α ≤ 1, then σ−α and ϕα are not in Q1 any longer, and their Fourier
series will not converge absolutely, so we cannot use (2.1) to define an entire
extension. However, for α > −1, we can still define them via the above.
Note that in (3.1) there is no obvious choice for σ−1(·) as the term ζ(α)
becomes infinite, so we avoid α = 1 here. For n ∈ N, σ−α(n) and ϕα(n) are
as usual, while σ−α(−n) = σ−α(n), ϕα(−n) = ϕα(n), and σ−α(0) = ζ(α),
ϕα(0) = 1/ζ(α).

For α > 1, σ−α(·) and ϕα(·) have all their zeros real and simple. We can
ask whether the same holds true if α ≤ 1. This turns out to be almost the
case in that, except for a couple of imaginary zeros, all the zeros are real
and simple.

We deduce the result by proving an adjusted version of Lemma 2.5. (In
fact we only require the case r = 0.)

Lemma 3.1. Let an and bn (n = 0, . . . , N) be real numbers such that

a0, . . . , ar < 0 < ar+1, . . . , aN and b0 < b1 < · · · < bN (some r ≥ 0). Further

suppose that
∑N

n=0 an > 0. Let f be defined by

f(z) =
N∑

n=0

an

bn + z
(z 6= −bn).

Then all zeros of f are real and simple, one in each interval (−bk,−bk−1),
k = 1, . . . , N , k 6= r + 1, and one in (−b0,∞).

Proof. As in Lemma 2.5, f has N zeros. Again by considering the be-
haviour of f near each −bn, we find that f has a zero in (−bk,−bk−1) for
k = 1, . . . , N except when k = r+ 1. This gives N − 1 zeros. The remaining
zero occurs in (−b0,∞) since f(−b+0 ) = −∞ and

f(x) ∼ 1

x

N∑

n=0

an as x→ ∞,

so that f(x) > 0 for x sufficiently large. This gives N zeros and there are
no others.

Theorem 3.2. Let (an) and (bn) (n ∈ N0) be sequences of real num-

bers such that a0, . . . , ar < 0 < an for all n > r (some r ≥ 0) and bn is

strictly increasing. Further suppose that
∑N

n=0 an is eventually positive. Let
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f : C \ {−bn : n ∈ N0} → C be defined by

f(z) =
∞∑

n=0

an

bn + z
.

Then the zeros of f are real and simple, one in each interval (−bk,−bk−1)
(k 6= r + 1) and one in (−b0,∞).

Proof. Apply Hurwitz’s theorem to the partial sums fN of f , which
tend to f uniformly on compact subsets of C \ {−bn : n ∈ N0}. For all N

sufficiently large,
∑N

n=0 an > 0, so fN satisfies the conditions of Lemma 3.1.
Hence (for such N) fN has its zeros real, one in each interval (−bk,−bk−1)
(k 6= r + 1) and one in (−b0,∞). By Hurwitz’s theorem, the zeros of f are
also all real.

For k ≤ r,

f(x) →
{
∞ if x→ −b−k ,
−∞ if x→ −b+k .

Hence there exist a, b ∈ (−bk,−bk−1) such that f < 0 on (−bk, a] and f > 0
on [b,−bk−1). Let C be a circular contour intersecting the real axis at a
and b. Now fN → f uniformly on C and its interior, and f 6= 0 on C.
Thus by part (b) of Hurwitz’s theorem, f and fN have the same number of
zeros inside C. But f has at least one zero here while fN has at most one
zero here. Hence f has exactly one zero in each interval (−bk,−bk−1). An
identical argument shows this holds for k ≥ r + 2 as well.

A similar argument applies to the interval (−b0,∞). Since f(−b+0 ) = −∞
and f is eventually positive, there exists c, d ∈ (−b0,∞) such that f < 0
on (−b0, c) and f > 0 on (d,∞). Again f and fN have the same number of
zeros inside the circular contour intersecting the real axis at c and d for N
sufficiently large, and this must again be 1.

Corollary 3.3.

(i) Let −1 < α < 1. Then the zeros of σ−α(·) are of the form ±µn

(n ∈ N), where n < µn < n+ 1, and ±iλ for some λ > 0.
(ii) Let 0 < α ≤ 1. Then the zeros of ϕα(·) are of the form ±νn (n ∈ N),

where n < νn < n + 1, and ±iκ for some κ ≥ 0. Further , κ > 0 if

α ∈ (0, 1) and κ = 0 if α = 1.

Proof. Apply Theorem 3.2 to the function

k(w) =
1

2w

(
ζ(α) + 2w

∞∑

n=1

σ−α(n)

n2 + w

)
=

∞∑

n=0

cn
n2 + w

,

where c0 = 1
2ζ(α) < 0 and cn = σ−α(n) > 0 for n ≥ 1. Thus the zeros of

k(w) are real and simple, one in each interval (−(n + 1)2,−n2) for n ≥ 1,
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and one in (0,∞). Denote them by −µ2
n and λ2 respectively, where n <

µn < n + 1 and λ > 0. Hence the zeros of k(−z2) are ±µn and ±iλ. Since
σ−α(z) = (i/π)k(−z2)(e2πiz − 1) and σ−α(·) is non-zero on the integers, the
result follows.

Similarly for ϕα(·), but this time we cannot apply Theorem 3.2 for α ≤ 0
since then ϕα(n) 6> 0. For α ∈ (0, 1), ϕα(0) < 0 < ϕα(n) and identical
arguments as above gives the result; namely, the zeros are ±νn (n ∈ N) and
±iκ, where κ > 0.

Finally, if α = 1, then ϕ1(0) = 0 < ϕ1(n) and we must have κ = 0.

Remark. It would be interesting to study in more detail the distribution
of the zeros of, say, d(z) (= σ0(z)). For example, a simple heuristic argument
applied to the real function e−iπxd(x) suggests (5) the approximation

µn ≈ n+
d(n)

d(n) + d(n+ 1)
.

4. Behaviour of f(ix) for large x. In general, we can say little
about the behaviour of f , as defined by (2.1), along the imaginary axis.
If

∑
0<q<1 a(q) is an absolutely convergent series over all the rationals be-

tween 0 and 1, then ∑

0<q<1

a(q)e−qx → 0

as x→ ∞. It follows immediately that f(ix) = 1
2 f̂(1) + o(1).

If f has a Ramanujan expansion and is as in Proposition 2.4, we can say
more regarding the o(1) term.

Let A(s) denote the Dirichlet series defined for ℜs ≥ 0 by

A(s) =

∞∑

n=1

an

ns
.

Then we have (6)

2x2
∞∑

n=1

f(n)

n2 + x2
=

1

2πi

\
(c)

π

sin(πs/2)

∞∑

n=1

f(n)

ns
xs ds

=
1

2πi

\
(c)

π

sin(πs/2)
ζ(s)A(s)xs ds,

which is valid for x > 0 and any 1 < c < 2. (Here
T
(c) means limT→∞

Tc+iT
c−iT .)

By moving the contour to the left we pass the simple zero of ζ(s) at s = 1

(5) Joining the points (n, (−1)nd(n)) and (n+1, (−1)n+1d(n+1)) with a straight line.

(6) This is based on the identity x2

1+x2 = 1
2πi

T
(c)

π
sin(πs/2)

xs ds for 0 < c < 2.
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picking up a residue πA(1)x = πf̂(1)x. We can go as far as ℜs = δ (any
δ > 0) so that

f(ix) =
1

2
f̂(1) +O(xδ−1).

With more knowledge of the analytic character of A(s) we can push the
contour further to the left to obtain better approximations.

In the special example of σ−α(·), we have A(s) = ζ(s)ζ(s+ α), so that

2x2
∞∑

n=1

σ−α(n)

n2 + x2
=

1

2πi

\
(c)

π

sin(πs/2)
ζ(s)ζ(s+ α)xs ds.

This is valid for x > 0 and any c such that max{1, 1 − α} < c < 2.
Moving the line of integration to the left, we pick up the residues at the

poles of the integrand. This is justifiable since (sin(πs/2))−1 is exponentially
small on vertical lines. The residues are at s = 1, s = 1 − α and s = 0 (the
poles of 1/sin(πs/2) at s = −2n (n ∈ N) are cancelled by the trivial zeros
of ζ(s)), and the residues are, respectively,

πζ(α+ 1)x,
πζ(1 − α)

sin(π/2)(1 − α)
x1−α, 2ζ(0)ζ(α).

Since ζ(0) = −1
2 , we have sin(π/2)(1 − α) = cos(πα/2), and using the

functional equation for ζ leads to

σ−α(ix) − 1

2
ζ(α+ 1) =

Γ (α)ζ(α)

(2πx)α
+O

(
1

xA

)

for every A.
Similarly, for ϕα(·) we obtain (after moving the line of integration past 0)

2x2
∞∑

n=1

ϕα(n)

n2 + x2
=

π

ζ(α+ 1)
x− 1

ζ(α)
+

1

2πi

\
(c)

π

sin(πs/2)

ζ(s)

ζ(s+ α)
xs ds,

for 1 − α < c < 0 (if α > 1). Moving further to the left we encounter the
poles of 1/ζ(s+ α), i.e. the zeros of ζ(s+α). It easily follows from this that
the Riemann Hypothesis holds if and only if

ϕα(ix) − 1

2ζ(α+ 1)
= O(xε−α−1/2)

for every ε > 0.
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