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A mean value density theorem of additive number theory
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Friedrich Roesler (München)

Let A be a finite set of integers and

A+ A = {a+ b : a, b ∈ A}, A− A = {a− b : a, b ∈ A}
be the sum set and the difference set of A. We denote by

S(A) = |A+ A|, D(A) = |A− A|
the cardinality of these sets.

There should be intrinsic connections between A+A and A−A, for the
nontrivial coincidences a+b = a′+b′ of sums are equivalent to the nontrivial
coincidences a− a′ = b′ − b of differences.

If A has k elements, then obviously

2k − 1 ≤ S(A) ≤
(
k + 1

2

)
, 2k − 1 ≤ D(A) ≤ k2 − k + 1.

If A = {1, . . . , k} or more generally if A is an arithmetic progression of
k integers, then S(A) = D(A) = 2k − 1 and hence

D(A)
S(A)

= 1.

If the k elements of A form a sufficiently fast growing sequence, then there
are no nontrivial coincidences and thus S(A) =

(
k+1

2

)
, D(A) = k2 − k + 1,

and
D(A)
S(A)

= 1 +
(

1− 2
k

)(
1− 2

k + 1

)
< 2.

Nevertheless the general conjecture

(1) 1 ≤ D(A)
S(A)

< 2
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is false. G. A. Frĕıman and V. P. Pigarev [1] have constructed arbitrarily
large sets A and A′ such that

D(A)
S(A)

> D(A)0.11 and
D(A′)
S(A′)

< D(A′)−0.017.

These sets are designed explicitly to violate (1) (comp. also [5]). But even
natural born sets like Ak = {m2 : 0 ≤ m < k}, k = 1, 2, . . . , are far from
obeying the estimate in (1): E. Landau’s theorem [3, p. 643] on the number
of integers n ≤ x which have a representation as a sum of two squares,
combined with a theorem of G. Tenenbaum [2, p. 29, Theorem 21(ii)] on the
number of integers n ≤ x having a divisor in the interval ]

√
x/2,

√
x ], shows

lim
k→∞

D(Ak)
S(Ak)

=∞

for the sequence A∞ = (m2)m≥0 of squares.
Here we will prove a mean value version of (1):

Theorem. We have

1 ≤ D(k,N)
S(k,N)

< 2 for 1 ≤ k ≤ N,

with

S(k,N) :=
∑

A⊂{0,1,...,N−1}, |A|=k
S(A),

D(k,N) :=
∑

A⊂{0,1,...,N−1}, |A|=k
D(A).

Both the lower bound 1 as well as the upper bound 2 in the Theorem
are best possible (Remark 3).

The computation of S(k,N) is straightforward (Proposition 1), whereas
the treatment of D(k,N) (Propositions 2 and 3) is more delicate. The reason
is as follows:

To calculate S(k,N) we have to count the number of subsets A with k
elements in {0, 1, . . . , N − 1} such that t ∈ A+ A for given values t, i.e.

σt(k,N) := |{A ⊂ {0, 1, . . . , N − 1} : |A| = k, t ∈ A+ A}|.
Hence A is counted in σt(k,N) if and only if A contains one of the sets

(2) {j, t− j}, 0 ≤ j ≤ t/2.
Concerning D(k,N) we look at the number of subsets A such that t ∈ A−A,
i.e.

δt(k,N) := |{A ⊂ {0, 1, . . . , N − 1} : |A| = k, t ∈ A− A}|.
A is counted in δt(k,N) if and only if A contains one of the sets

(3) {j, t+ j}, 0 ≤ j ≤ N − 1− t.
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The sets in (2) are pairwise disjoint, and therefore σt(k,N) is given by
a simple combinatorial formula. But the sets in (3) may have nonempty
intersections, and this complicates the computation of δt(k,N).

We restrain from developing an exact formula for D(k,N). If k is not
too small, then D0(k,N) in Proposition 3(2) is a fairly good approximation
of D(k,N); it is better than indicated by the error term 2θ

(
N+1
k+1

)∗
(comp.

Remark 2) and precisely small enough to prove the Theorem.
The technical computations in the proofs suggest introducing the coeffi-

cients

(
N

k

)∗
:=
(
N

k

)
−





2k
(
M

k

)
if N = 2M ,

2k−1
((

M

k

)
+
(
M + 1
k

))
if N = 2M + 1.

A combinatorial interpretation of these numbers is given in Remark 1.
Repeatedly we will have to handle the cases “N even” and “N odd”

separately. Then we write N = 2M + δ, 0 ≤ δ ≤ 1.
The passage from the false estimate (1) to the mean value theorem “kills

the arithmetic interest of the question” (J.-M. Deshouillers) which actual
value is adopted by the quotient D(A)/S(A) for a given set A. The esti-
mate in the Theorem, and in some more detail the graph of the function
k 7→ D(k,N)/S(k,N), 1 ≤ k ≤ N (comp. Remark 3), just describes an
average density property of finite sets A. But perhaps it might serve as an
intuitive clue in the examination of sets as to relative density of their sum
and difference set.

If a growing sequence A∞ = (am)m≥0 of integers is very smooth, then,
with Ak = (am)0≤m<k, one may expect the sequence

(4)
D(Ak)
S(Ak)

, k = 0, 1, 2, . . . ,

to converge. In the case of the squares am = m2 it does, even if not to
a value between 1 and 2. Similarly, if am =

(
m
2

)
, then the sequence of

quotients in (4) seems to grow in principle, too. On the other hand, if am =
[m3/2], then the quotients in (4) probably fall to the limit 1. But what kind
of arithmetic properties or lack of such properties in A∞ might cause the
sequence D(Ak)/S(Ak) to grow or to fall or to converge at all?

I am grateful to J.-M. Deshouillers for his comments regarding existing
results related to this work.

We shall make use of the following combinatorial results:
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Lemma 1. We have

(1)
∑

j≥0

(−1)j
(
M

j

)(
2M − 2j
2M − k

)
= 2k

(
M

k

)
.

(2)
∑

j≥0

(−1)j
(
m

j

)(
N − 2j
k

)
=
∑

j≥0

2j
(
m

j

)(
N − 2m
N − k − j

)

for 0 ≤ m ≤ N/2.

P r o o f. (1) Riordan [4, p. 37, line 10]; (2) from part (1) by induction on
k and N .

Lemma 2. Let N = 2M + δ, 0 ≤ δ ≤ 1.

(1)
(
N + 2
k + 2

)∗
=
(

N

k + 2

)∗
+ 2
(

N

k + 1

)∗
+
(
N

k

)
.

(2)
(
N + 1
k + 1

)∗
=
(

N

k + 1

)∗
+
(
N

k

)∗
+ δ · 2k−1

(
M

k − 1

)
.

(3)
(
N + 2
k + 2

)∗
=
(
N + 1
k + 2

)∗
+
(

N

k + 1

)∗
+
(
N

k

)
− δ · 2k

(
M

k

)
.

(4)
(
N

k

)∗
=
∑

j≥0

(−1)j
(
M

j + 1

)(
N − 2− 2j
N − k

)
.

(5)
(

2M
k

)∗
=
∑

j≥1

2k−2j
(
k − j
j

)(
M

k − j

)
.

(6) 4
(

N

k + 2

)∗
+ 2
(
N + 1
k + 1

)∗
≤ (2N + 3)

(
N

k

)
+ 2k+2

(
M

k + 1

)
.

P r o o f. (1)–(3) immediate; (4) from Lemma 1(1); (5) by induction on k
and M ; (6) from part (1) by induction on k and N .

First we deal with the mean value S(k,N) for the sum sets.

Proposition 1. (1) For 1 ≤ k ≤ N and N = 2M + δ, 0 ≤ δ ≤ 1,

S(k,N) = (2N + 1)
(
N

k

)
+ 2k

(
M

k

)
− 2
(
N + 1
k + 2

)∗
− 2
(
N + 2
k + 2

)∗
.

(2) For k ≥ 2, S(k,N) satisfies the recursion

S(k,N) = S(k,N − 1) + S(k − 1, N − 2)

+ (2N − 1)
(
N − 2
k − 2

)
+ 2k−1

(
M − 1
k − 1

)
− 2
(
N − 2
k

)∗
.
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P r o o f. (1) By definition of σt(k,N) we have

S(k,N) =
2N−2∑

t=0

σt(k,N).

If A ⊂ {0, 1, . . . , N − 1} and A′ = {N − 1− a : a ∈ A}, then N − 1− i ∈
A+ A if and only if N − 1 + i ∈ A′ + A′. Hence

σN−1−i(k,N) = σN−1+i(k,N), 0 ≤ i ≤ N − 1,

and therefore

(5) S(k,N) = 2
N−1∑

t=0

σt(k,N)− σN−1(k,N).

Next we compute σt(k,N). If t = 2m− 1 is odd, then

(6) σ2m−1(k,N) =
(
N

k

)
−
∑

j≥0

(−1)j
(
m

j

)(
N − 2j
N − k

)
,

0 ≤ 2m− 1 ≤ N − 1,

since A ⊂ {0, 1, . . . , N − 1} with |A| = k is counted in σ2m−1(k,N) if
and only if A contains one of the m pairwise disjoint sets {0, 2m − 1},
{1, 2m− 2}, . . . , {m− 1,m}.

If t = 2m is even, then

(7) σ2m(k,N) =
(
N

k

)
−
∑

j≥0

(−1)j
(
m

j

)(
N − 1− 2j
N − 1− k

)
, 0 ≤ 2m ≤ N−1.

For A ⊂ {0, 1, . . . , N − 1} with |A| = k is counted in σ2m(k,N) if and
only if A contains one of the pairwise disjoint sets {0, 2m}, {1, 2m− 1}, . . . ,
{m− 1,m+ 1}, {m}.

Hence σ2m(k,N) counts all
(
N−1
k−1

)
sets A with m ∈ A and

(
N − 1
k

)
−
∑

j≥0

(−1)j
(
m

j

)(
N − 1− 2j
N − 1− k

)

sets A such that m 6∈ A.
Equations (6) and (7) and Lemma 1(1) yield in particular

(8) σN−1(k,N) =
(
N

k

)
− 2k

(
M

k

)
.

Finally (5)–(8) show

S(k,N) = 2
(M−1+δ∑

m=0

σ2m(k,N) +
M∑

m=1

σ2m−1(k,N)
)
− σN−1(k,N)
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= 2
M−1+δ∑

m=0

((
N

k

)
−
∑

j≥0

(−1)j
(
m

j

)(
N − 1− 2j
N − 1− k

))

+ 2
M∑

m=1

((
N

k

)
−
∑

j≥0

(−1)j
(
m

j

)(
N − 2j
N − k

))

−
((

N

k

)
− 2k

(
M

k

))

= (2N + 1)
(
N

k

)
+ 2k

(
M

k

)

− 2
∑

j≥0

(−1)j
(
M + δ

j + 1

)(
N − 1− 2j
N − 1− k

)

− 2
∑

j≥0

(−1)j
(
M + 1
j + 1

)(
N − 2j
N − k

)

= (2N + 1)
(
N

k

)
+ 2k

(
M

k

)
− 2
(
N + 1
k + 2

)∗
− 2
(
N + 2
k + 2

)∗

by Lemma 2(4).
(2) Direct computation with Lemma 2(2, 3).

Now we start to estimate the mean value D(k,N) for the difference sets.

Proposition 2. (1) For 2 ≤ k ≤ N and 1 ≤ t ≤ N − 1,

δt(k,N) = δt(k,N − 1) + δt(k − 1, N − 2) +
(
N − 2
k − 2

)
+ Et(k,N)

with the error term
Et(k,N) = |Bt| − |B′t|,

where

Bt = {B : {1, t+ 1} ⊂ B ⊂ {1, . . . , t− 1, t+ 1, . . . , N − 1}, |B| = k − 1,

t = (t+ 1)− 1 is the only representation of t in B −B},
B′t = {B′ : {t, 2t} ⊂ B′ ⊂ {2, 3, . . . , N − 1}, |B′| = k − 1,

t = 2t− t is the only representation of t in B′ −B′}.
(2) For 1 ≤ t < N/2,

Et(k,N) = |Ct| − |C′t|
with

Ct = {B ∈ Bt : 3t ∈ B}, C′t = {B′ ∈ B′t : 2t+ 1 ∈ B′}.
P r o o f. (1) We divide the sets B ⊂ {0, 1, . . . , N − 1} with |B| = k into

three classes:
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(i) the sets B such that 0 6∈ B,
(ii) the sets B such that 0 ∈ B and t ∈ B,
(iii) the sets B such that 0 ∈ B and t 6∈ B.

The number of sets in (i) which are counted in δt(k,N) is δt(k,N − 1). The(
N−2
k−2

)
sets in (ii) are all counted in δt(k,N). The fact that the sets in (iii)

contain 0 is irrelevant because t is not in B. So we can cancel 0, and hence
the number of sets in (iii) which are counted in δt(k,N) is equal to

(9) |{B ⊂ {1, . . . , t− 1, t+ 1, . . . , N − 1} : |B| = k − 1, t ∈ B −B}|.
Now the sets B in (9) are divided into two classes:

(i′) the sets B which have a representation t = b−a with a, b ∈ B−{1},
(ii′) the sets B which have no such representation, i.e. for which t =

(t+ 1)− 1 is the only representation of t in B −B.

The number of sets in (ii′) is |Bt| by definition. For the description of
the number of sets in (i′) we use the map

φ : {1, . . . , t− 1, t+ 1, . . . , N − 1} → {2, 3, . . . , N − 1},
φ(1) := t, φ(x) := x otherwise.

The bijectivity of φ carries over to the map

Φ : {B ⊂ {1, . . . , t− 1, t+ 1, . . . ., N − 1} :

|B| = k − 1,∃a, b ∈ B − {1} : b− a = t}
→ {B′ ⊂ {2, 3, . . . , N − 1} : |B′| = k − 1,∃a′, b′ ∈ B′ − {t} : b′ − a′ = t},

Φ(B) := {φ(b) : b ∈ B}.
Hence the number of sets in (i′) is

|{B′ ⊂ {2, 3, . . . , N − 1} : |B′| = k − 1, ∃a′, b′ ∈ B′ − {t} : b′ − a′ = t}|
= δt(k − 1, N − 2)− |B′t| by definition of B′t.

Together we get the recursion formula for δt(k,N) with the error term
Et(k,N) = |Bt| − |B′t|.

(2) For 1 ≤ t < N/2 we use the bijective map

ψ : {1, . . . , t− 1, t+ 1, . . . , N − 1} → {2, 3, . . . , N − 1},
ψ(1) := t, ψ(t+ 1) := 2t, ψ(2t) := t+ 1, ψ(x) := x otherwise

and show:

(10) Ψ : Bt − Ct → B′t − C′t, Ψ(B) := {ψ(b) : b ∈ B}, is bijective.

Then part (1) and assertion (10) give at once

Et(k,N) = |Bt| − |B′t| = |Bt − Ct|+ |Ct| − (|B′t − C′t|+ |C′t|)
= |Ct| − |C′t|.
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For the proof of (10) we have to show:

(I) B ∈ Bt − Ct implies Ψ(B) ∈ B′t − C′t,
(II) B′ ∈ B′t − C′t implies Ψ−1(B′) ∈ Bt − Ct.
(I) Let B ∈ Bt −Ct. Then 1, t+ 1 ∈ B and 2t+ 1, 3t 6∈ B. Application of

ψ for B′ := Ψ(B) shows that

t, 2t ∈ B′ and 2t+ 1, 3t 6∈ B′.
Hence t = 2t − t is a representation of t in B′ − B′, and B′ 6∈ C′t because
2t+ 1 6∈ B′. It remains to show that t = 2t− t is the only representation of
t in B′ − B′. So let t = b′ − a′ be any representation of t with a′, b′ ∈ B′.
Then

(11) {a′, b′} ∩ {t, t+ 1, 2t} 6= ∅.
For otherwise a′ and b′ would be invariant under ψ−1, and t = ψ−1(b′)−

ψ−1(a′) would be a representation of t in B − B which is different from
t = (t + 1) − 1. But a′ ∈ {t + 1, 2t} would imply a′ + t = b′ ∈ B′, and if
b′ ∈ {t, t + 1}, then b′ − t = a′ ∈ B′, which both are impossible. Hence by
(11), a′ = t or b′ = 2t, which means a′ = t and b′ = 2t because t = b′ − a′.

The proof of (II) is exactly the same. Just exchange

t+ 1↔ 2t, 2t+ 1↔ 3t, B,Bt, Ct, ψ, Ψ ↔ B′,B′t, C′t, ψ−1, Ψ−1

everywhere and 1↔ t at the “right” places, i.e. where ψ is involved.

Remark 1. The sets B1 and B′1 in Proposition 2(1) are identical, hence
E1(k,N) = 0, and then the recursion formula yields via induction

δ1(k,N) =
(
N

k

)
−
(
N + 1− k

k

)
.

Similarly one can show

δ2(k,N) =
(
N

k

)
−
(
N + 1− k

k

)
−
(
N − 1− k
k − 2

)
−
(
N − 3− k
k − 4

)
,

with
(
m
n

)
:= 0 if m < 0. Further,

δM (k, 2M) =
(

2M
k

)∗
and δM+1(k, 2M + 1) =

(
2M + 1

k

)∗
,

which furnishes a combinatorial interpretation of the coefficients
(
N
k

)∗
.

Presumably the sequences (δt(k,N))0≤t<N are almost decreasing. This
is easy to show within the interval N/2 ≤ t < N , whereas in 0 ≤ t ≤ N/2
there is at least the exception δM−1(M + 1, 2M) < δM (M + 1, 2M),M ≥ 3.

Now we develop a concept to estimate the error terms Et(k,N) of Propo-
sition 2. Let A be a set with N elements. We arrange these elements in a
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scheme

Sch(A;N) = (aij)1≤j≤`(i), 1≤i≤t =




a11 a12 . . . . . . a1,`(1)
a21 a22 . . . . . . a2,`(2)
...
at1 at2 . . . . . . at,`(t)




consisting of t rows of possibly different lengths `(i).
In particular, Sch(N/t) will denote the standard scheme

Sch(N/t) =




0 t 2t 3t . . .
1 t+ 1 2t+ 1 3t+ 1 . . .
2 t+ 2 2t+ 2 3t+ 2 . . .
...

t− 1 2t− 1 3t− 1 4t− 1 . . .




on the set A = {0, 1, . . . , N − 1}.
Schemes Sch(A;N) with r rows of length 1 and all rows of length at

most 2 will be denoted by Sch∗(A;N, r). For instance the standard scheme
Sch(N/t) is of type Sch∗({0, 1, . . . , N − 1};N, 2t−N) if (N − 1)/2 < t ≤ N .

Two schemes

Sch1(A;N) = (aij)1≤j≤`(i), 1≤i≤t and Sch2(A′;N) = (a′ij)1≤j≤`′(i), 1≤i≤t

with the same number N of elements and the same number t of rows are
called similar if their rows have the same lengths, i.e. if there exists a per-
mutation π on {1, . . . , t} such that `′(i) = `(π(i)) for 1 ≤ i ≤ t.

We call Sch2(A;N) finer than Sch1(A;N) if Sch2(A;N) results from
Sch1(A;N) by dissection of a row ai1 · · · ai,`(i) of Sch1(A;N) into two rows
ai1 · · · ai,m and ai,m+1 · · · ai,`(i). Further we require the relation “finer than”
to be transitive.

The sets B ∈ Bt and B′ ∈ B′t in Proposition 2 have the following prop-
erty:

Except 1 and t+ 1 (resp. t and 2t), B and B′ do not contain two num-
bers which are neighbours in any row of the standard scheme Sch(N/t).
Hence generally a subset B ⊂ A will be called admissible for a given scheme
Sch(A;N) if and only if B does not contain two elements which are neigh-
bours in any of the rows of Sch(A;N).

Our concern will be the cardinality of the sets

Pk(Sch(A;N)) := {B ⊂ A : |B| = k,B admissible for Sch(A;N)}.

Lemma 3. (1) If two schemes Sch1 and Sch2 are similar , then

|Pk(Sch1)| = |Pk(Sch2)|.
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(2) If the scheme Sch2 is finer than Sch1, then

Pk(Sch2) ⊃ Pk(Sch1).

(3) In particular r2 ≥ r1 implies

|Pk(Sch∗(A;N, r2))| ≥ |Pk(Sch∗(A′;N, r1))|.

P r o o f. Immediate consequences of the definitions.

Lemma 4. Et(k,N) = 0 if t |N − 1.

P r o o f. Proposition 2 shows at once Bt = B′t for t = 1 and t = N−1, and
Ct = C′t = ∅ if N is odd and t = (N − 1)/2. Thus let 2 ≤ t = (N − 1)/r ∈ N
and r ≥ 3. We consider the standard scheme

Sch(N/t)

=




0 t 2t 3t 4t . . . (r − 1)t rt
1 t+ 1 2t+ 1 3t+ 1 4t+ 1 . . . (r − 1)t+ 1
2 t+ 2 2t+ 2 3t+ 2 4t+ 2 . . . (r − 1)t+ 2
...

t− 1 2t− 1 3t− 1 4t− 1 5t− 1 . . . rt− 1




and apply Proposition 2(2): Ct contains all subsets B of {0, 1, . . . , N − 1} −
{0, t} with |B| = k−1 and {1, t+1, 3t} ⊂ B, which—except 1 and t+1—do
not contain two neighbouring elements in any of the rows of Sch(N/t). In
particular these sets B do not contain any of the numbers 2t, 4t, 2t + 1.
Hence we cancel 0, t, 2t, 3t, 1, t+ 1, 2t+ 1 and if possible 4t in Sch(N/t) and
see: |Ct| counts the sets B0 = B − {1, t+ 1, 3t} with |B0| = k − 4 which are
admissible for the scheme

Sch1

=




5t . . . (r − 1)t rt
3t+ 1 4t+ 1 5t+ 1 . . . (r − 1)t+ 1

2 t+ 2 2t+ 2 3t+ 2 4t+ 2 5t+ 2 . . . (r − 1)t+ 2
...

t− 1 2t− 1 3t− 1 4t− 1 5t− 1 6t− 1 . . . rt− 1



.

Similarly C′t contains all subsets B′ of {0, 1, . . . , N − 1} − {0, 1} with
|B′| = k−1 and {t, 2t, 2t+1} ⊂ B′, which—except t and 2t—do not contain
two neighbouring numbers in any of the rows of Sch(N/t). In particular,
these sets B′ do not contain 3t, t+ 1, and 3t+ 1. Hence |C ′t| counts the sets
B′0 = B′ − {t, 2t, 2t + 1} with |B′0| = k − 4 which are admissible for the
scheme
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Sch2 =




4t . . . (r − 1)t rt
4t+ 1 . . . (r − 1)t+ 1

2 t+ 2 2t+ 2 3t+ 2 4t+ 2 . . . (r − 1)t+ 2
...

t− 1 2t− 1 3t− 1 4t− 1 5t− 1 . . . rt− 1



.

The first resp. second row of Sch1 has the same length as the second
resp. first row of Sch2. All other rows of Sch1 and Sch2 coincide. Thus Sch1

and Sch2 are similar, and Lemma 3(1) asserts

Et(k,N) = |Ct| − |C′t| = |Pk−4(Sch1)| − |Pk−4(Sch2)| = 0.

Remark 2. A refinement of the argument in the proof of Lemma 4 shows

(−1)rEt(k,N) ≥ 0 for
N − 1
r + 1

< t <
N − 1
r

, r = 1, 2, . . .

This change of signs in the error terms Et(k,N) makes it difficult to
derive an upper bound for

∑N−1
t=1 Et(k,N) which would be essentially better

than the one given in Lemma 7.

Lemma 5. We have

(1) Et(k,N) = |Pk−3(Sch∗(A;N−4, 2t−N))| for (N − 1)/2 < t < N−1.

(2)
∑

(N−1)/2<t<N

Et(k,N) =
(
N − 2
k − 1

)∗
.

P r o o f. (1) For (N − 1)/2 < t < N − 1 Proposition 2(1) shows B′t = ∅
and hence

Et(k,N) = |Bt|.
Again we consider the standard scheme Sch(N/t), which is now of type

Sch∗({0, 1, . . . , N − 1};N, 2t−N).
Bt contains all subsets B of {0, 1, . . . , N − 1} − {0, t} with |B| = k − 1

and {1, t+1} ⊂ B, which—except 1 and t+1—do not contain two numbers
in any of the rows of Sch(N/t). Hence |Bt| is the number of subsets B0 =
B − {1, t + 1} of A = {0, 1, . . . , N − 1} − {0, t, 1, t + 1} with |B0| = k − 3,
admissible for the scheme Sch∗(A;N−4, 2t−N), which results from Sch(N/t)
by cancellation of the first two rows.

(2) Part (1) shows

Et(k,N) =
k−3∑

j=0

2j
(
N − t− 2

j

)(
2t−N
k − 3− j

)
, (N − 1)/2 < t < N − 1,

for if B ∈ Pk−3(Sch∗(A;N − 4, 2t − N)) contains j elements out of the
N − t− 2 rows of length 2, for which there are 2j

(
N−t−2

j

)
possibilities, then
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there are
( 2t−N
k−3−j

)
possibilities left for the remaining k− 3− j elements of B

in the 2t−N rows of length 1.
Hence with N = 2M + δ, 0 ≤ δ ≤ 1, and in view of Lemma 4,
∑

(N−1)/2<t<N

Et(k,N) =
∑

M+δ≤t≤N−2

∑

j≥0

2j
(
N − t− 2

j

)(
2t−N
k − 3− j

)

=
∑

0≤m≤M−2

∑

j≥0

2j
(
m

j

)(
(N − 4)− 2m

(N − 4)− (N − k − 1)− j

)

=
∑

0≤m≤M−2

∑

j≥0

(−1)j
(
m

j

)(
N − 4− 2j
N − k − 1

)

(by Lemma 1(2))

=
∑

j≥0

(−1)j
(
M − 1
j + 1

)(
N − 2− 2(j + 1)

N − k − 1

)

=
(
N − 2
k − 1

)
−
∑

j≥0

2j
(
M − 1
j

)(
δ

k − 1− j

)

(by Lemma 1(2))

=
(
N − 2
k − 1

)∗
.

Lemma 6. We have
N−1∑

t=1

Et(k,N) ≥ 0.

P r o o f. Let N = 2M +δ, 0 ≤ δ ≤ 1, and 2 ≤ t ≤M −1. By Proposition
2(1) we have

(12) −Et(k,N) ≤ |B′t|.

To estimate |B′t| we start again by regarding Sch(N/t). All sets B ∈ B′t
contain k − 1 numbers, in particular t and 2t, and certainly not 0 and 1.
Hence if we cancel 0, 1, t, 2t in Sch(N/t) we obtain a scheme Sch(A;N − 4)
with at most t rows and such that

(13) |B′t| ≤ |Pk−3(Sch(A;N − 4))|.

Now we refine this scheme by cutting every row of length l ≥ 3 into rows
of length 2 and possibly one row of length 1. The resulting scheme is of type
Sch∗(A;N − 4, τ(t)) with some τ(t) ≤ t, and Lemma 3(2) asserts

(14) |Pk−3(Sch(A;N − 4))| ≤ |Pk−3(Sch∗(A;N − 4, τ(t)))|.
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Therefore, by Lemma 4,
N−1∑

t=1

Et(k,N) =
∑

2≤t≤M−1

Et(k,N) +
∑

M+δ≤t≤N−2

Et(k,N)

≥ −
∑

2≤t≤M−1

|Pk−3(Sch∗(A;N − 4, τ(t)))|

+
∑

M+1+δ≤t≤N−2

|Pk−3(Sch∗(A;N − 4, 2t−N))|

(by (12)–(14), and Lemma 5(1))

=
∑

2≤t≤M−1

(|Pk−3(Sch∗(A;N − 4, 2t− 2 + δ))|

−|Pk−3(Sch∗(A;N − 4, τ(t)))|),
and here all summands are nonnegative by Lemma 3(3), since

2t− 2 + δ ≥ t ≥ τ(t) for 2 ≤ t ≤M − 1.

Lemma 7. We have
N−1∑

t=1

Et(k,N) ≤
(
N − 1
k − 1

)∗
.

P r o o f. We already know that

Et(k,N) = 0 for t |N − 1 (by Lemma 4),

Et(k,N) ≤ |Ct| for 2 ≤ t < (N − 1)/3 (by Proposition 2(2)),

Et(k,N) ≤ 0 for N/3 ≤ t < N/2 (by Proposition 2(2)),

and ∑

(N−1)/2<t<N

Et(k,N) =
(
N − 2
k − 1

)∗
(by Lemma 5(2)).

Thus all we need is an appropriate upper bound for |Ct|, 2 ≤ t <
(N − 1)/3. So let us look once more at the standard scheme Sch(N/t). Ct
contains the subsets B ⊂ {0, 1, . . . , N − 1} − {0, t} with |B| = k − 1 and
{1, t + 1, 3t} ⊂ B, which—except 1 and t + 1—do not contain two neigh-
bouring numbers in any of the rows of Sch(N/t). In particular these sets B
do not contain the numbers 2t and 2t+ 1. Hence |Ct| counts certain subsets
B0 = B−{1, t+ 1, 3t} of A = {0, 1, . . . , N − 1}− {0, t, 1, t+ 1, 3t, 2t, 2t+ 1}
with |B0| = k−4 which are admissible for the scheme Sch(A;N−7), resulting
from Sch(N/t) by cancellation of 0, t, 1, t+ 1, 3t, 2t, and 2t+ 1:

|Ct| ≤ |Pk−4(Sch(A;N − 7))|.
We refine this scheme by cutting every row of length l ≥ 3 into rows of
length 2 and possibly one row of length 1. Then the resulting scheme is of
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type Sch∗(A;N − 7, τ(t)) with some τ(t) ≤ t, for Sch(A;N − 7) has at most
t rows. Then Lemma 3(2) asserts

|Pk−4(Sch(A;N − 7))| ≤ |Pk−4(Sch∗(A;N − 7, τ(t)))|.
Hence for 2 ≤ t < (N − 1)/3,

(15) |Ct| ≤ |Pk−4(Sch∗(A;N − 7, τ(t)))|, τ(t) ≤ t.
On the other hand, Lemma 5 with N − 3 and k − 1 instead of N and k

yields
(
N − 5
k − 2

)∗
=

∑

(N−4)/2<t<N−4

|Pk−4(Sch∗(A;N − 7, 2t−N + 3))|(16)

=
∑

2−δ≤t≤M−2

|Pk−4(Sch∗(A;N − 7, 2t+ δ − 3))|

(by substitution t 7→ t+M + δ − 3 with N = 2M + δ, 0 ≤ δ ≤ 1)

≥
∑

2≤t<(N−1)/3

|Pk−4(Sch∗(A;N − 7, 2t+ δ − 3))|.

Therefore by (15) and (16),
(
N − 5
k − 2

)∗
−

∑

2≤t<(N−1)/3

|Ct|

≥
∑

2≤t<(N−1)/3

(|Pk−4(Sch∗(A;N − 7, 2t+ δ − 3))|

−|Pk−4(Sch∗(A;N − 7, τ(t)))|),
and by Lemma 3(3), all summands here are nonnegative, since t ≥ τ(t) and
thus 2t+ δ−3 ≥ τ(t). This is obvious for t ≥ 3 and also for t = 2 and δ = 1.
But if t = 2 and δ = 0, then N − 7 is odd and hence τ(2) = 1.

This shows
∑

2≤t<(N−1)/3

|Ct| ≤
(
N − 5
k − 2

)∗
,

and combined with the estimates at the beginning of the proof and with
Lemma 2(2) we finally get

N−1∑

t=1

Et(k,N) ≤
(
N − 2
k − 1

)∗
+
(
N − 5
k − 2

)∗
≤
(
N − 1
k − 1

)∗
.

Proposition 3. (1) For 2 ≤ k ≤ N and suitable θ ∈ [0, 1],

D(k,N) = D(k,N−1)+D(k−1, N−2)+(2N−1)
(
N − 2
k − 2

)
+2θ

(
N − 1
k − 1

)∗
.
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(2) Explicitly for 1 ≤ k ≤ N and θ ∈ [0, 1],

D(k,N) = D0(k,N) + 2θ
(
N + 1
k + 1

)∗

with

D0(k,N) = (2N + 1)
(
N

k

)
− 2
(

N

k + 1

)
− 2
(
N + 2
k + 2

)
+ 2
(
N + 2− k
k + 2

)
.

P r o o f. (1) Clearly

(17) D(k,N) =
(
N

k

)
+ 2

N−1∑

k=1

δt(k,N),

since D(k,N) =
∑
−N+1≤t≤N−1 δt(k,N) by definition and

δ0(k,N) =
(
N

k

)
, δ−t(k,N) = δt(k,N).

Therefore the recursion formula in Proposition 2(1) gives

D(k,N) =
(
N

k

)
+ 2

N−1∑

t=1

(δt(k,N − 1) + δt(k − 1, N − 2))

+ 2(N − 1)
(
N − 2
k − 2

)
+ 2

N−1∑

t=1

Et(k,N)

= 2
∑

t≥1

δt(k,N − 1) + 2
∑

t≥1

δt(k − 1, N − 2)

+ (2N − 2)
(
N − 2
k − 2

)
+
(
N − 1
k

)

+
(
N − 2
k − 1

)
+
(
N − 2
k − 2

)
+ 2θ

(
N − 1
k − 1

)∗

(with θ ∈ [0, 1], by Lemmata 6 and 7)

= D(k,N − 1) +D(k − 1, N − 2)

+ (2N − 1)
(
N − 2
k − 2

)
+ 2θ

(
N − 1
k − 1

)∗
(by (17)).

(2) The initial values are

D(1, N) = N = D0(1, N), N ≥ 1,

and
D(k, k) = 2k − 1 = D0(k, k), k ≥ 1.

The rest is straightforward induction on k and N with the use of the
recursion formula of part (1) and Lemma 2(2) for the θ-terms.
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Now we use the recursion formulae of S(k,N) and D(k,N) to prove:

Theorem. We have

1 ≤ D(k,N)
S(k,N)

< 2 for 1 ≤ k ≤ N.

P r o o f. First we show

∆1(k,N) := D(k,N)− S(k,N) ≥ 0 for 1 ≤ k ≤ N
by induction on k and N . The initial values are

∆1(1, N) = D(1, N)− S(1, N) = N −N = 0,

∆1(k, k) = D(k, k)− S(k, k) = (2k − 1)− (2k − 1) = 0,

and the induction step N − 1 7→ N with N = 2M + δ > k ≥ 2 is

∆1(k,N) = D(k,N)− S(k,N)

≥ D(k,N − 1) +D(k − 1, N − 2) + (2N − 1)
(
N − 2
k − 2

)

− S(k,N − 1)− S(k − 1, N − 2)

− (2N − 1)
(
N − 2
k − 2

)
− 2k−1

(
M − 1
k − 1

)
+ 2
(
N − 2
k

)∗

(by Proposition 3(1) and Proposition 1(2))

= ∆1(k,N − 1) +∆1(k − 1, N − 2)− 2k−1
(
M − 1
k − 1

)
+ 2
(
N − 2
k

)∗

≥ 2
(

2M − 2
k

)∗
− 2k−1

(
M − 1
k − 1

)

(by induction hypothesis and Lemma 2(2))

≥ 2k−1(k − 2)
(
M − 1
k − 1

)
(by Lemma 2(5))

≥ 0.

Finally we prove

∆2(k,N) := 2S(k,N)−D(k,N) > 0 for 1 ≤ k ≤ N,
again by induction on k and N , and by Propositions 1(2) and 3(1):

∆2(1, N) = 2N −N = N > 0,

∆2(k, k) = 2(2k − 1)− (2k − 1) = 2k − 1 > 0,

and the induction step N − 1 7→ N with N = 2M + δ > k ≥ 2 is

∆2(k,N) = 2S(k,N)−D(k,N)

≥ 2S(k,N − 1) + 2S(k − 1, N − 2) + 2(2N − 1)
(
N − 2
k − 2

)
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+ 2k
(
M − 1
k − 1

)
− 4
(
N − 2
k

)∗

−D(k,N − 1)−D(k − 1, N − 2)

− (2N − 1)
(
N − 2
k − 2

)
− 2
(
N − 1
k − 1

)∗

= ∆2(k,N − 1) +∆2(k − 1, N − 2) + (2N − 1)
(
N − 2
k − 2

)

+ 2k
(
M − 1
k − 1

)
− 4
(
N − 2
k

)∗
− 2
(
N − 1
k − 1

)∗

> 0

by induction hypothesis and Lemma 2(6).

Remark 3. The development of S(k,N) in Proposition 1(1) and of
D0(k,N) in Proposition 3(2) in powers of N yields, as N →∞,

S(k,N) =
(
k + 1

2

)(
N

k

)
+O(Nk−1),(18)

D0(k,N) = (k2 − k + 1)
(
N

k

)
+O(Nk−1).(19)

The appearance of the coefficients
(
k+1

2

)
and k2−k+ 1 is not surprising:

If N is large compared to k, then within most of the
(
N
k

)
subsets A of

{0, 1, . . . , N−1} with |A| = k there are only very few nontrivial coincidences
a+b = a′+b′. In particular sets with |A| = k and without such coincidences
have S(A) =

(
k+1

2

)
and D(A) = k2 − k + 1 (comp. introduction). Therefore

the upper bound D(k,N) ≤ (k2− k+ 1)
(
N
k

)
is obvious. On the other hand,

D(k,N) ≥ D0(k,N) by Proposition 3(2), which together with (19) yields

D(k,N) = (k2 − k + 1)
(
N

k

)
+O(Nk−1).

This and (18) imply at once

lim
N→∞

D(k,N)
S(k,N)

= 1 +
(

1− 2
k

)(
1− 2

k + 1

)

and

lim
k→∞

lim
N→∞

D(k,N)
S(k,N)

= 2.

On the other hand, the explicit formulae for S(k,N) and D(k,N) show
immediately that there exists a positive constant c0 such that for all N ≥ 1,

1 ≤ D(k,N)
S(k,N)

< 1 +
c0
N

for N/2 < k ≤ N.
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Hence the lower bound 1 as well as the upper bound 2 of the Theorem
are best possible, and their values are not caused by accidental irregularities
of the quotient D(k,N)/S(k,N) for small values of k and N .
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Paris, 1982–83, Birkhäuser, Boston, 1984, 267–273.

Zentrum Mathematik
Technische Universität München
D-80290 München, Germany
E-mail: roeslerf@mathematik.tu-muenchen

Received on 17.8.1998 (3448)


