## A mean value density theorem of additive number theory

by<br>Friedrich Roesler (München)

Let $A$ be a finite set of integers and

$$
A+A=\{a+b: a, b \in A\}, \quad A-A=\{a-b: a, b \in A\}
$$

be the sum set and the difference set of $A$. We denote by

$$
S(A)=|A+A|, \quad D(A)=|A-A|
$$

the cardinality of these sets.
There should be intrinsic connections between $A+A$ and $A-A$, for the nontrivial coincidences $a+b=a^{\prime}+b^{\prime}$ of sums are equivalent to the nontrivial coincidences $a-a^{\prime}=b^{\prime}-b$ of differences.

If $A$ has $k$ elements, then obviously

$$
2 k-1 \leq S(A) \leq\binom{ k+1}{2}, \quad 2 k-1 \leq D(A) \leq k^{2}-k+1
$$

If $A=\{1, \ldots, k\}$ or more generally if $A$ is an arithmetic progression of $k$ integers, then $S(A)=D(A)=2 k-1$ and hence

$$
\frac{D(A)}{S(A)}=1
$$

If the $k$ elements of $A$ form a sufficiently fast growing sequence, then there are no nontrivial coincidences and thus $S(A)=\binom{k+1}{2}, D(A)=k^{2}-k+1$, and

$$
\frac{D(A)}{S(A)}=1+\left(1-\frac{2}{k}\right)\left(1-\frac{2}{k+1}\right)<2
$$

Nevertheless the general conjecture

$$
\begin{equation*}
1 \leq \frac{D(A)}{S(A)}<2 \tag{1}
\end{equation*}
$$

[^0]is false. G. A. Freuman and V. P. Pigarev [1] have constructed arbitrarily large sets $A$ and $A^{\prime}$ such that
$$
\frac{D(A)}{S(A)}>D(A)^{0.11} \quad \text { and } \quad \frac{D\left(A^{\prime}\right)}{S\left(A^{\prime}\right)}<D\left(A^{\prime}\right)^{-0.017}
$$

These sets are designed explicitly to violate (1) (comp. also [5]). But even natural born sets like $A_{k}=\left\{m^{2}: 0 \leq m<k\right\}, k=1,2, \ldots$, are far from obeying the estimate in (1): E. Landau's theorem [3, p. 643] on the number of integers $n \leq x$ which have a representation as a sum of two squares, combined with a theorem of G. Tenenbaum [2, p. 29, Theorem 21(ii)] on the number of integers $n \leq x$ having a divisor in the interval $] \sqrt{x} / 2, \sqrt{x}]$, shows

$$
\lim _{k \rightarrow \infty} \frac{D\left(A_{k}\right)}{S\left(A_{k}\right)}=\infty
$$

for the sequence $A_{\infty}=\left(m^{2}\right)_{m \geq 0}$ of squares.
Here we will prove a mean value version of (1):
Theorem. We have

$$
1 \leq \frac{D(k, N)}{S(k, N)}<2 \quad \text { for } 1 \leq k \leq N
$$

with

$$
\begin{aligned}
S(k, N) & :=\sum_{A \subset\{0,1, \ldots, N-1\},|A|=k} S(A), \\
D(k, N) & :=\sum_{A \subset\{0,1, \ldots, N-1\},|A|=k} D(A) .
\end{aligned}
$$

Both the lower bound 1 as well as the upper bound 2 in the Theorem are best possible (Remark 3).

The computation of $S(k, N)$ is straightforward (Proposition 1), whereas the treatment of $D(k, N)$ (Propositions 2 and 3) is more delicate. The reason is as follows:

To calculate $S(k, N)$ we have to count the number of subsets $A$ with $k$ elements in $\{0,1, \ldots, N-1\}$ such that $t \in A+A$ for given values $t$, i.e.

$$
\sigma_{t}(k, N):=|\{A \subset\{0,1, \ldots, N-1\}:|A|=k, t \in A+A\}| .
$$

Hence $A$ is counted in $\sigma_{t}(k, N)$ if and only if $A$ contains one of the sets

$$
\begin{equation*}
\{j, t-j\}, \quad 0 \leq j \leq t / 2 \tag{2}
\end{equation*}
$$

Concerning $D(k, N)$ we look at the number of subsets $A$ such that $t \in A-A$, i.e.

$$
\delta_{t}(k, N):=|\{A \subset\{0,1, \ldots, N-1\}:|A|=k, t \in A-A\}| .
$$

$A$ is counted in $\delta_{t}(k, N)$ if and only if $A$ contains one of the sets

$$
\begin{equation*}
\{j, t+j\}, \quad 0 \leq j \leq N-1-t \tag{3}
\end{equation*}
$$

The sets in (2) are pairwise disjoint, and therefore $\sigma_{t}(k, N)$ is given by a simple combinatorial formula. But the sets in (3) may have nonempty intersections, and this complicates the computation of $\delta_{t}(k, N)$.

We restrain from developing an exact formula for $D(k, N)$. If $k$ is not too small, then $D_{0}(k, N)$ in Proposition $3(2)$ is a fairly good approximation of $D(k, N)$; it is better than indicated by the error term $2 \theta\binom{N+1}{k+1}^{*}$ (comp. Remark 2) and precisely small enough to prove the Theorem.

The technical computations in the proofs suggest introducing the coefficients

$$
\binom{N}{k}^{*}:=\binom{N}{k}- \begin{cases}2^{k}\binom{M}{k} & \text { if } N=2 M \\ 2^{k-1}\left(\binom{M}{k}+\binom{M+1}{k}\right) & \text { if } N=2 M+1\end{cases}
$$

A combinatorial interpretation of these numbers is given in Remark 1.
Repeatedly we will have to handle the cases " $N$ even" and " $N$ odd" separately. Then we write $N=2 M+\delta, 0 \leq \delta \leq 1$.

The passage from the false estimate (1) to the mean value theorem "kills the arithmetic interest of the question" (J.-M. Deshouillers) which actual value is adopted by the quotient $D(A) / S(A)$ for a given set $A$. The estimate in the Theorem, and in some more detail the graph of the function $k \mapsto D(k, N) / S(k, N), 1 \leq k \leq N$ (comp. Remark 3), just describes an average density property of finite sets $A$. But perhaps it might serve as an intuitive clue in the examination of sets as to relative density of their sum and difference set.

If a growing sequence $A_{\infty}=\left(a_{m}\right)_{m \geq 0}$ of integers is very smooth, then, with $A_{k}=\left(a_{m}\right)_{0 \leq m<k}$, one may expect the sequence

$$
\begin{equation*}
\frac{D\left(A_{k}\right)}{S\left(A_{k}\right)}, \quad k=0,1,2, \ldots \tag{4}
\end{equation*}
$$

to converge. In the case of the squares $a_{m}=m^{2}$ it does, even if not to a value between 1 and 2. Similarly, if $a_{m}=\binom{m}{2}$, then the sequence of quotients in (4) seems to grow in principle, too. On the other hand, if $a_{m}=$ $\left[m^{3 / 2}\right]$, then the quotients in (4) probably fall to the limit 1 . But what kind of arithmetic properties or lack of such properties in $A_{\infty}$ might cause the sequence $D\left(A_{k}\right) / S\left(A_{k}\right)$ to grow or to fall or to converge at all?

I am grateful to J.-M. Deshouillers for his comments regarding existing results related to this work.

We shall make use of the following combinatorial results:

Lemma 1. We have
(1) $\sum_{j \geq 0}(-1)^{j}\binom{M}{j}\binom{2 M-2 j}{2 M-k}=2^{k}\binom{M}{k}$.
(2) $\sum_{j \geq 0}(-1)^{j}\binom{m}{j}\binom{N-2 j}{k}=\sum_{j \geq 0} 2^{j}\binom{m}{j}\binom{N-2 m}{N-k-j}$

$$
\text { for } 0 \leq m \leq N / 2
$$

Proof. (1) Riordan [4, p. 37, line 10]; (2) from part (1) by induction on $k$ and $N$.

Lemma 2. Let $N=2 M+\delta, 0 \leq \delta \leq 1$.
(1) $\binom{N+2}{k+2}^{*}=\binom{N}{k+2}^{*}+2\binom{N}{k+1}^{*}+\binom{N}{k}$.
(2) $\binom{N+1}{k+1}^{*}=\binom{N}{k+1}^{*}+\binom{N}{k}^{*}+\delta \cdot 2^{k-1}\binom{M}{k-1}$.
(3) $\binom{N+2}{k+2}^{*}=\binom{N+1}{k+2}^{*}+\binom{N}{k+1}^{*}+\binom{N}{k}-\delta \cdot 2^{k}\binom{M}{k}$.
(4) $\binom{N}{k}^{*}=\sum_{j \geq 0}(-1)^{j}\binom{M}{j+1}\binom{N-2-2 j}{N-k}$.
(5) $\binom{2 M}{k}^{*}=\sum_{j \geq 1} 2^{k-2 j}\binom{k-j}{j}\binom{M}{k-j}$.
(6) $4\binom{N}{k+2}^{*}+2\binom{N+1}{k+1}^{*} \leq(2 N+3)\binom{N}{k}+2^{k+2}\binom{M}{k+1}$.

Proof. (1)-(3) immediate; (4) from Lemma 1(1); (5) by induction on $k$ and $M$; (6) from part (1) by induction on $k$ and $N$.

First we deal with the mean value $S(k, N)$ for the sum sets.
Proposition 1. (1) For $1 \leq k \leq N$ and $N=2 M+\delta, 0 \leq \delta \leq 1$,

$$
S(k, N)=(2 N+1)\binom{N}{k}+2^{k}\binom{M}{k}-2\binom{N+1}{k+2}^{*}-2\binom{N+2}{k+2}^{*} .
$$

(2) For $k \geq 2, S(k, N)$ satisfies the recursion

$$
\begin{aligned}
S(k, N)= & S(k, N-1)+S(k-1, N-2) \\
& +(2 N-1)\binom{N-2}{k-2}+2^{k-1}\binom{M-1}{k-1}-2\binom{N-2}{k}^{*} .
\end{aligned}
$$

Proof. (1) By definition of $\sigma_{t}(k, N)$ we have

$$
S(k, N)=\sum_{t=0}^{2 N-2} \sigma_{t}(k, N) .
$$

If $A \subset\{0,1, \ldots, N-1\}$ and $A^{\prime}=\{N-1-a: a \in A\}$, then $N-1-i \in$ $A+A$ if and only if $N-1+i \in A^{\prime}+A^{\prime}$. Hence

$$
\sigma_{N-1-i}(k, N)=\sigma_{N-1+i}(k, N), \quad 0 \leq i \leq N-1,
$$

and therefore

$$
\begin{equation*}
S(k, N)=2 \sum_{t=0}^{N-1} \sigma_{t}(k, N)-\sigma_{N-1}(k, N) . \tag{5}
\end{equation*}
$$

Next we compute $\sigma_{t}(k, N)$. If $t=2 m-1$ is odd, then

$$
\begin{align*}
& \sigma_{2 m-1}(k, N)=\binom{N}{k}-\sum_{j \geq 0}(-1)^{j}\binom{m}{j}\binom{N-2 j}{N-k},  \tag{6}\\
& 0 \leq 2 m-1 \leq N-1,
\end{align*}
$$

since $A \subset\{0,1, \ldots, N-1\}$ with $|A|=k$ is counted in $\sigma_{2 m-1}(k, N)$ if and only if $A$ contains one of the $m$ pairwise disjoint sets $\{0,2 m-1\}$, $\{1,2 m-2\}, \ldots,\{m-1, m\}$.

If $t=2 m$ is even, then

$$
\begin{equation*}
\sigma_{2 m}(k, N)=\binom{N}{k}-\sum_{j \geq 0}(-1)^{j}\binom{m}{j}\binom{N-1-2 j}{N-1-k}, \quad 0 \leq 2 m \leq N-1 . \tag{7}
\end{equation*}
$$

For $A \subset\{0,1, \ldots, N-1\}$ with $|A|=k$ is counted in $\sigma_{2 m}(k, N)$ if and only if $A$ contains one of the pairwise disjoint sets $\{0,2 m\},\{1,2 m-1\}, \ldots$, $\{m-1, m+1\},\{m\}$.

Hence $\sigma_{2 m}(k, N)$ counts all $\binom{N-1}{k-1}$ sets $A$ with $m \in A$ and

$$
\binom{N-1}{k}-\sum_{j \geq 0}(-1)^{j}\binom{m}{j}\binom{N-1-2 j}{N-1-k}
$$

sets $A$ such that $m \notin A$.
Equations (6) and (7) and Lemma 1(1) yield in particular

$$
\begin{equation*}
\sigma_{N-1}(k, N)=\binom{N}{k}-2^{k}\binom{M}{k} . \tag{8}
\end{equation*}
$$

Finally (5)-(8) show

$$
S(k, N)=2\left(\sum_{m=0}^{M-1+\delta} \sigma_{2 m}(k, N)+\sum_{m=1}^{M} \sigma_{2 m-1}(k, N)\right)-\sigma_{N-1}(k, N)
$$

$$
\begin{aligned}
= & 2 \sum_{m=0}^{M-1+\delta}\left(\binom{N}{k}-\sum_{j \geq 0}(-1)^{j}\binom{m}{j}\binom{N-1-2 j}{N-1-k}\right) \\
& +2 \sum_{m=1}^{M}\left(\binom{N}{k}-\sum_{j \geq 0}(-1)^{j}\binom{m}{j}\binom{N-2 j}{N-k}\right) \\
& -\left(\binom{N}{k}-2^{k}\binom{M}{k}\right) \\
= & (2 N+1)\binom{N}{k}+2^{k}\binom{M}{k} \\
& -2 \sum_{j \geq 0}(-1)^{j}\binom{M+\delta}{j+1}\binom{N-1-2 j}{N-1-k} \\
& -2 \sum_{j \geq 0}(-1)^{j}\binom{M+1}{j+1}\binom{N-2 j}{N-k} \\
= & (2 N+1)\binom{N}{k}+2^{k}\binom{M}{k}-2\binom{N+1}{k+2}^{*}-2\binom{N+2}{k+2}^{*}
\end{aligned}
$$

by Lemma 2(4).
(2) Direct computation with Lemma 2(2, 3).

Now we start to estimate the mean value $D(k, N)$ for the difference sets.
Proposition 2. (1) For $2 \leq k \leq N$ and $1 \leq t \leq N-1$,

$$
\delta_{t}(k, N)=\delta_{t}(k, N-1)+\delta_{t}(k-1, N-2)+\binom{N-2}{k-2}+E_{t}(k, N)
$$

with the error term

$$
E_{t}(k, N)=\left|\mathcal{B}_{t}\right|-\left|\mathcal{B}_{t}^{\prime}\right|
$$

where

$$
\begin{aligned}
& \mathcal{B}_{t}=\{B:\{1, t+1\} \subset B \subset\{1, \ldots, t-1, t+1, \ldots, N-1\},|B|=k-1 \\
& t=(t+1)-1\text { is the only representation of } t \text { in } B-B\}, \\
& \mathcal{B}_{t}^{\prime}=\left\{B^{\prime}:\{t, 2 t\} \subset B^{\prime} \subset\{2,3, \ldots, N-1\},\left|B^{\prime}\right|=k-1,\right. \\
&\left.t=2 t-t \text { is the only representation of } t \text { in } B^{\prime}-B^{\prime}\right\} .
\end{aligned}
$$

(2) For $1 \leq t<N / 2$,

$$
E_{t}(k, N)=\left|\mathcal{C}_{t}\right|-\left|\mathcal{C}_{t}^{\prime}\right|
$$

with

$$
\mathcal{C}_{t}=\left\{B \in \mathcal{B}_{t}: 3 t \in B\right\}, \quad \mathcal{C}_{t}^{\prime}=\left\{B^{\prime} \in \mathcal{B}_{t}^{\prime}: 2 t+1 \in B^{\prime}\right\}
$$

Proof. (1) We divide the sets $B \subset\{0,1, \ldots, N-1\}$ with $|B|=k$ into three classes:
(i) the sets $B$ such that $0 \notin B$,
(ii) the sets $B$ such that $0 \in B$ and $t \in B$,
(iii) the sets $B$ such that $0 \in B$ and $t \notin B$.

The number of sets in (i) which are counted in $\delta_{t}(k, N)$ is $\delta_{t}(k, N-1)$. The $\binom{N-2}{k-2}$ sets in (ii) are all counted in $\delta_{t}(k, N)$. The fact that the sets in (iii) contain 0 is irrelevant because $t$ is not in $B$. So we can cancel 0 , and hence the number of sets in (iii) which are counted in $\delta_{t}(k, N)$ is equal to

$$
\begin{equation*}
|\{B \subset\{1, \ldots, t-1, t+1, \ldots, N-1\}:|B|=k-1, t \in B-B\}| \tag{9}
\end{equation*}
$$

Now the sets $B$ in (9) are divided into two classes:
(i') the sets $B$ which have a representation $t=b-a$ with $a, b \in B-\{1\}$,
(ii') the sets $B$ which have no such representation, i.e. for which $t=$ $(t+1)-1$ is the only representation of $t$ in $B-B$.

The number of sets in (ii') is $\left|\mathcal{B}_{t}\right|$ by definition. For the description of the number of sets in ( $i^{\prime}$ ) we use the map

$$
\begin{gathered}
\phi:\{1, \ldots, t-1, t+1, \ldots, N-1\} \rightarrow\{2,3, \ldots, N-1\}, \\
\phi(1):=t, \quad \phi(x):=x \quad \text { otherwise } .
\end{gathered}
$$

The bijectivity of $\phi$ carries over to the map $\Phi:\{B \subset\{1, \ldots, t-1, t+1, \ldots, N-1\}:$

$$
\begin{gathered}
|B|=k-1, \exists a, b \in B-\{1\}: b-a=t\} \\
\rightarrow\left\{B^{\prime} \subset\{2,3, \ldots, N-1\}:\left|B^{\prime}\right|=k-1, \exists a^{\prime}, b^{\prime} \in B^{\prime}-\{t\}: b^{\prime}-a^{\prime}=t\right\} \\
\Phi(B):=\{\phi(b): b \in B\}
\end{gathered}
$$

Hence the number of sets in $\left(\mathrm{i}^{\prime}\right)$ is

$$
\begin{aligned}
\mid\left\{B^{\prime} \subset\{2,3, \ldots, N-1\}:\left|B^{\prime}\right|\right. & \left.=k-1, \exists a^{\prime}, b^{\prime} \in B^{\prime}-\{t\}: b^{\prime}-a^{\prime}=t\right\} \mid \\
& =\delta_{t}(k-1, N-2)-\left|\mathcal{B}_{t}^{\prime}\right| \quad \text { by definition of } \mathcal{B}_{t}^{\prime}
\end{aligned}
$$

Together we get the recursion formula for $\delta_{t}(k, N)$ with the error term $E_{t}(k, N)=\left|\mathcal{B}_{t}\right|-\left|\mathcal{B}_{t}^{\prime}\right|$.
(2) For $1 \leq t<N / 2$ we use the bijective map

$$
\begin{gathered}
\psi:\{1, \ldots, t-1, t+1, \ldots, N-1\} \rightarrow\{2,3, \ldots, N-1\} \\
\psi(1):=t, \quad \psi(t+1):=2 t, \quad \psi(2 t):=t+1, \quad \psi(x):=x \quad \text { otherwise }
\end{gathered}
$$

and show:

$$
\begin{equation*}
\Psi: \mathcal{B}_{t}-\mathcal{C}_{t} \rightarrow \mathcal{B}_{t}^{\prime}-\mathcal{C}_{t}^{\prime}, \quad \Psi(B):=\{\psi(b): b \in B\}, \text { is bijective. } \tag{10}
\end{equation*}
$$

Then part (1) and assertion (10) give at once

$$
\begin{aligned}
E_{t}(k, N) & =\left|\mathcal{B}_{t}\right|-\left|\mathcal{B}_{t}^{\prime}\right|=\left|\mathcal{B}_{t}-\mathcal{C}_{t}\right|+\left|\mathcal{C}_{t}\right|-\left(\left|\mathcal{B}_{t}^{\prime}-\mathcal{C}_{t}^{\prime}\right|+\left|\mathcal{C}_{t}^{\prime}\right|\right) \\
& =\left|\mathcal{C}_{t}\right|-\left|\mathcal{C}_{t}^{\prime}\right|
\end{aligned}
$$

For the proof of (10) we have to show:
(I) $B \in \mathcal{B}_{t}-\mathcal{C}_{t}$ implies $\Psi(B) \in \mathcal{B}_{t}^{\prime}-\mathcal{C}_{t}^{\prime}$,
(II) $B^{\prime} \in \mathcal{B}_{t}^{\prime}-\mathcal{C}_{t}^{\prime}$ implies $\Psi^{-1}\left(B^{\prime}\right) \in \mathcal{B}_{t}-\mathcal{C}_{t}$.
(I) Let $B \in \mathcal{B}_{t}-\mathcal{C}_{t}$. Then $1, t+1 \in B$ and $2 t+1,3 t \notin B$. Application of $\psi$ for $B^{\prime}:=\Psi(B)$ shows that

$$
t, 2 t \in B^{\prime} \quad \text { and } \quad 2 t+1,3 t \notin B^{\prime}
$$

Hence $t=2 t-t$ is a representation of $t$ in $B^{\prime}-B^{\prime}$, and $B^{\prime} \notin \mathcal{C}_{t}^{\prime}$ because $2 t+1 \notin B^{\prime}$. It remains to show that $t=2 t-t$ is the only representation of $t$ in $B^{\prime}-B^{\prime}$. So let $t=b^{\prime}-a^{\prime}$ be any representation of $t$ with $a^{\prime}, b^{\prime} \in B^{\prime}$. Then

$$
\begin{equation*}
\left\{a^{\prime}, b^{\prime}\right\} \cap\{t, t+1,2 t\} \neq \emptyset . \tag{11}
\end{equation*}
$$

For otherwise $a^{\prime}$ and $b^{\prime}$ would be invariant under $\psi^{-1}$, and $t=\psi^{-1}\left(b^{\prime}\right)-$ $\psi^{-1}\left(a^{\prime}\right)$ would be a representation of $t$ in $B-B$ which is different from $t=(t+1)-1$. But $a^{\prime} \in\{t+1,2 t\}$ would imply $a^{\prime}+t=b^{\prime} \in B^{\prime}$, and if $b^{\prime} \in\{t, t+1\}$, then $b^{\prime}-t=a^{\prime} \in B^{\prime}$, which both are impossible. Hence by (11), $a^{\prime}=t$ or $b^{\prime}=2 t$, which means $a^{\prime}=t$ and $b^{\prime}=2 t$ because $t=b^{\prime}-a^{\prime}$.

The proof of (II) is exactly the same. Just exchange

$$
t+1 \leftrightarrow 2 t, \quad 2 t+1 \leftrightarrow 3 t, \quad B, \mathcal{B}_{t}, \mathcal{C}_{t}, \psi, \Psi \leftrightarrow B^{\prime}, \mathcal{B}_{t}^{\prime}, \mathcal{C}_{t}^{\prime}, \psi^{-1}, \Psi^{-1}
$$

everywhere and $1 \leftrightarrow t$ at the "right" places, i.e. where $\psi$ is involved.
Remark 1. The sets $\mathcal{B}_{1}$ and $\mathcal{B}_{1}^{\prime}$ in Proposition 2(1) are identical, hence $E_{1}(k, N)=0$, and then the recursion formula yields via induction

$$
\delta_{1}(k, N)=\binom{N}{k}-\binom{N+1-k}{k} .
$$

Similarly one can show

$$
\delta_{2}(k, N)=\binom{N}{k}-\binom{N+1-k}{k}-\binom{N-1-k}{k-2}-\binom{N-3-k}{k-4},
$$

with $\binom{m}{n}:=0$ if $m<0$. Further,

$$
\delta_{M}(k, 2 M)=\binom{2 M}{k}^{*} \quad \text { and } \quad \delta_{M+1}(k, 2 M+1)=\binom{2 M+1}{k}^{*},
$$

which furnishes a combinatorial interpretation of the coefficients $\binom{N}{k}^{*}$.
Presumably the sequences $\left(\delta_{t}(k, N)\right)_{0 \leq t<N}$ are almost decreasing. This is easy to show within the interval $N / 2 \leq t<N$, whereas in $0 \leq t \leq N / 2$ there is at least the exception $\delta_{M-1}(M+1,2 M)<\delta_{M}(M+1,2 M), M \geq 3$.

Now we develop a concept to estimate the error terms $E_{t}(k, N)$ of Proposition 2. Let $A$ be a set with $N$ elements. We arrange these elements in a
scheme

$$
\operatorname{Sch}(A ; N)=\left(a_{i j}\right)_{1 \leq j \leq \ell(i), 1 \leq i \leq t}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1, \ell(1)} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2, \ell(2)} \\
\vdots & & & & \\
a_{t 1} & a_{t 2} & \ldots & \ldots & a_{t, \ell(t)}
\end{array}\right)
$$

consisting of $t$ rows of possibly different lengths $\ell(i)$.
In particular, $\operatorname{Sch}(N / t)$ will denote the standard scheme

$$
\operatorname{Sch}(N / t)=\left(\begin{array}{ccccc}
0 & t & 2 t & 3 t & \ldots \\
1 & t+1 & 2 t+1 & 3 t+1 & \ldots \\
2 & t+2 & 2 t+2 & 3 t+2 & \ldots \\
\vdots & & & & \\
t-1 & 2 t-1 & 3 t-1 & 4 t-1 & \ldots
\end{array}\right)
$$

on the set $A=\{0,1, \ldots, N-1\}$.
Schemes $\operatorname{Sch}(A ; N)$ with $r$ rows of length 1 and all rows of length at most 2 will be denoted by $\operatorname{Sch}^{*}(A ; N, r)$. For instance the standard scheme $\operatorname{Sch}(N / t)$ is of type $\operatorname{Sch}^{*}(\{0,1, \ldots, N-1\} ; N, 2 t-N)$ if $(N-1) / 2<t \leq N$.

Two schemes
$\operatorname{Sch}_{1}(A ; N)=\left(a_{i j}\right)_{1 \leq j \leq \ell(i), 1 \leq i \leq t} \quad$ and $\quad \operatorname{Sch}_{2}\left(A^{\prime} ; N\right)=\left(a_{i j}^{\prime}\right)_{1 \leq j \leq \ell^{\prime}(i), 1 \leq i \leq t}$ with the same number $N$ of elements and the same number $t$ of rows are called similar if their rows have the same lengths, i.e. if there exists a permutation $\pi$ on $\{1, \ldots, t\}$ such that $\ell^{\prime}(i)=\ell(\pi(i))$ for $1 \leq i \leq t$.

We call $\operatorname{Sch}_{2}(A ; N)$ finer than $\operatorname{Sch}_{1}(A ; N)$ if $\operatorname{Sch}_{2}(A ; N)$ results from $\operatorname{Sch}_{1}(A ; N)$ by dissection of a row $a_{i 1} \cdots a_{i, \ell(i)}$ of $\operatorname{Sch}_{1}(A ; N)$ into two rows $a_{i 1} \cdots a_{i, m}$ and $a_{i, m+1} \cdots a_{i, \ell(i)}$. Further we require the relation "finer than" to be transitive.

The sets $B \in \mathcal{B}_{t}$ and $B^{\prime} \in \mathcal{B}_{t}^{\prime}$ in Proposition 2 have the following property:

Except 1 and $t+1$ (resp. $t$ and $2 t$ ), $B$ and $B^{\prime}$ do not contain two numbers which are neighbours in any row of the standard scheme $\operatorname{Sch}(N / t)$. Hence generally a subset $B \subset A$ will be called admissible for a given scheme $\operatorname{Sch}(A ; N)$ if and only if $B$ does not contain two elements which are neighbours in any of the rows of $\operatorname{Sch}(A ; N)$.

Our concern will be the cardinality of the sets

$$
\mathcal{P}_{k}(\operatorname{Sch}(A ; N)):=\{B \subset A:|B|=k, B \text { admissible for } \operatorname{Sch}(A ; N)\}
$$

Lemma 3. (1) If two schemes $\mathrm{Sch}_{1}$ and $\mathrm{Sch}_{2}$ are similar, then

$$
\left|\mathcal{P}_{k}\left(\operatorname{Sch}_{1}\right)\right|=\left|\mathcal{P}_{k}\left(\operatorname{Sch}_{2}\right)\right|
$$

(2) If the scheme $\mathrm{Sch}_{2}$ is finer than $\mathrm{Sch}_{1}$, then

$$
\mathcal{P}_{k}\left(\operatorname{Sch}_{2}\right) \supset \mathcal{P}_{k}\left(\mathrm{Sch}_{1}\right)
$$

(3) In particular $r_{2} \geq r_{1}$ implies

$$
\left|\mathcal{P}_{k}\left(\operatorname{Sch}^{*}\left(A ; N, r_{2}\right)\right)\right| \geq\left|\mathcal{P}_{k}\left(\operatorname{Sch}^{*}\left(A^{\prime} ; N, r_{1}\right)\right)\right|
$$

Proof. Immediate consequences of the definitions.
Lemma 4. $E_{t}(k, N)=0$ if $t \mid N-1$.
Proof. Proposition 2 shows at once $\mathcal{B}_{t}=\mathcal{B}_{t}^{\prime}$ for $t=1$ and $t=N-1$, and $\mathcal{C}_{t}=\mathcal{C}_{t}^{\prime}=\emptyset$ if $N$ is odd and $t=(N-1) / 2$. Thus let $2 \leq t=(N-1) / r \in \mathbb{N}$ and $r \geq 3$. We consider the standard scheme
$\operatorname{Sch}(N / t)$

$$
=\left(\begin{array}{cccccccc}
0 & t & 2 t & 3 t & 4 t & \ldots & (r-1) t & r t \\
1 & t+1 & 2 t+1 & 3 t+1 & 4 t+1 & \ldots & (r-1) t+1 & \\
2 & t+2 & 2 t+2 & 3 t+2 & 4 t+2 & \ldots & (r-1) t+2 & \\
\vdots & & & & & & & \\
t-1 & 2 t-1 & 3 t-1 & 4 t-1 & 5 t-1 & \ldots & r t-1
\end{array}\right)
$$

and apply Proposition $2(2): \mathcal{C}_{t}$ contains all subsets $B$ of $\{0,1, \ldots, N-1\}-$ $\{0, t\}$ with $|B|=k-1$ and $\{1, t+1,3 t\} \subset B$, which-except 1 and $t+1$-do not contain two neighbouring elements in any of the rows of $\operatorname{Sch}(N / t)$. In particular these sets $B$ do not contain any of the numbers $2 t, 4 t, 2 t+1$. Hence we cancel $0, t, 2 t, 3 t, 1, t+1,2 t+1$ and if possible $4 t$ in $\operatorname{Sch}(N / t)$ and see: $\left|\mathcal{C}_{t}\right|$ counts the sets $B_{0}=B-\{1, t+1,3 t\}$ with $\left|B_{0}\right|=k-4$ which are admissible for the scheme

Sch $_{1}$

$$
=\left(\begin{array}{cccccccc} 
& & & & & 5 t & \ldots & (r-1) t \\
& & 3 t+1 & 4 t+1 & 5 t+1 & \ldots & (r-1) t+1 \\
2 & t+2 & 2 t+2 & 3 t+2 & 4 t+2 & 5 t+2 & \ldots & (r-1) t+2 \\
\vdots & & & & & & & \\
t-1 & 2 t-1 & 3 t-1 & 4 t-1 & 5 t-1 & 6 t-1 & \ldots & r t-1
\end{array}\right) .
$$

Similarly $\mathcal{C}_{t}^{\prime}$ contains all subsets $B^{\prime}$ of $\{0,1, \ldots, N-1\}-\{0,1\}$ with $\left|B^{\prime}\right|=k-1$ and $\{t, 2 t, 2 t+1\} \subset B^{\prime}$, which-except $t$ and $2 t$-do not contain two neighbouring numbers in any of the rows of $\operatorname{Sch}(N / t)$. In particular, these sets $B^{\prime}$ do not contain $3 t, t+1$, and $3 t+1$. Hence $\left|\mathcal{C}_{t}^{\prime}\right|$ counts the sets $B_{0}^{\prime}=B^{\prime}-\{t, 2 t, 2 t+1\}$ with $\left|B_{0}^{\prime}\right|=k-4$ which are admissible for the scheme
$\operatorname{Sch}_{2}=\left(\begin{array}{cccccccc} & & & & 4 t & \ldots & (r-1) t & r t \\ & & & & 4 t+1 & \ldots & (r-1) t+1 & \\ 2 & t+2 & 2 t+2 & 3 t+2 & 4 t+2 & \ldots & (r-1) t+2 & \\ \vdots & & & & & & \\ t-1 & 2 t-1 & 3 t-1 & 4 t-1 & 5 t-1 & \ldots & r t-1\end{array}\right)$.
The first resp. second row of $\mathrm{Sch}_{1}$ has the same length as the second resp. first row of $\mathrm{Sch}_{2}$. All other rows of $\mathrm{Sch}_{1}$ and $\mathrm{Sch}_{2}$ coincide. Thus $\mathrm{Sch}_{1}$ and $\mathrm{Sch}_{2}$ are similar, and Lemma 3(1) asserts

$$
E_{t}(k, N)=\left|\mathcal{C}_{t}\right|-\left|\mathcal{C}_{t}^{\prime}\right|=\left|\mathcal{P}_{k-4}\left(\mathrm{Sch}_{1}\right)\right|-\left|\mathcal{P}_{k-4}\left(\mathrm{Sch}_{2}\right)\right|=0
$$

Remark 2. A refinement of the argument in the proof of Lemma 4 shows

$$
(-1)^{r} E_{t}(k, N) \geq 0 \quad \text { for } \quad \frac{N-1}{r+1}<t<\frac{N-1}{r}, r=1,2, \ldots
$$

This change of signs in the error terms $E_{t}(k, N)$ makes it difficult to derive an upper bound for $\sum_{t=1}^{N-1} E_{t}(k, N)$ which would be essentially better than the one given in Lemma 7.

Lemma 5. We have
(1) $E_{t}(k, N)=\left|\mathcal{P}_{k-3}\left(\operatorname{Sch}^{*}(A ; N-4,2 t-N)\right)\right|$ for $(N-1) / 2<t<N-1$.

$$
\begin{equation*}
\sum_{(N-1) / 2<t<N} E_{t}(k, N)=\binom{N-2}{k-1}^{*} . \tag{2}
\end{equation*}
$$

Proof. (1) For $(N-1) / 2<t<N-1$ Proposition 2(1) shows $\mathcal{B}_{t}^{\prime}=\emptyset$ and hence

$$
E_{t}(k, N)=\left|\mathcal{B}_{t}\right| .
$$

Again we consider the standard scheme $\operatorname{Sch}(N / t)$, which is now of type $\operatorname{Sch}^{*}(\{0,1, \ldots, N-1\} ; N, 2 t-N)$.
$\mathcal{B}_{t}$ contains all subsets $B$ of $\{0,1, \ldots, N-1\}-\{0, t\}$ with $|B|=k-1$ and $\{1, t+1\} \subset B$, which - except 1 and $t+1$-do not contain two numbers in any of the rows of $\operatorname{Sch}(N / t)$. Hence $\left|\mathcal{B}_{t}\right|$ is the number of subsets $B_{0}=$ $B-\{1, t+1\}$ of $A=\{0,1, \ldots, N-1\}-\{0, t, 1, t+1\}$ with $\left|B_{0}\right|=k-3$, admissible for the scheme $\operatorname{Sch}^{*}(A ; N-4,2 t-N)$, which results from $\operatorname{Sch}(N / t)$ by cancellation of the first two rows.
(2) Part (1) shows

$$
E_{t}(k, N)=\sum_{j=0}^{k-3} 2^{j}\binom{N-t-2}{j}\binom{2 t-N}{k-3-j}, \quad(N-1) / 2<t<N-1,
$$

for if $B \in \mathcal{P}_{k-3}\left(\operatorname{Sch}^{*}(A ; N-4,2 t-N)\right)$ contains $j$ elements out of the $N-t-2$ rows of length 2, for which there are $2^{j}\binom{N-t-2}{j}$ possibilities, then
there are $\binom{2 t-N}{k-3-j}$ possibilities left for the remaining $k-3-j$ elements of $B$ in the $2 t-N$ rows of length 1 .

Hence with $N=2 M+\delta, 0 \leq \delta \leq 1$, and in view of Lemma 4,

$$
\begin{aligned}
\sum_{(N-1) / 2<t<N} E_{t}(k, N) & =\sum_{M+\delta \leq t \leq N-2} \sum_{j \geq 0} 2^{j}\binom{N-t-2}{j}\binom{2 t-N}{k-3-j} \\
& =\sum_{0 \leq m \leq M-2} \sum_{j \geq 0} 2^{j}\binom{m}{j}\binom{(N-4)-2 m}{(N-4)-(N-k-1)-j} \\
& =\sum_{0 \leq m \leq M-2} \sum_{j \geq 0}(-1)^{j}\binom{m}{j}\binom{N-4-2 j}{N-k-1}
\end{aligned}
$$

(by Lemma 1(2))
$=\sum_{j \geq 0}(-1)^{j}\binom{M-1}{j+1}\binom{N-2-2(j+1)}{N-k-1}$

$$
=\binom{N-2}{k-1}-\sum_{j \geq 0} 2^{j}\binom{M-1}{j}\binom{\delta}{k-1-j}
$$

(by Lemma 1(2))

$$
=\binom{N-2}{k-1}^{*}
$$

Lemma 6. We have

$$
\sum_{t=1}^{N-1} E_{t}(k, N) \geq 0
$$

Proof. Let $N=2 M+\delta, 0 \leq \delta \leq 1$, and $2 \leq t \leq M-1$. By Proposition 2(1) we have

$$
\begin{equation*}
-E_{t}(k, N) \leq\left|\mathcal{B}_{t}^{\prime}\right| \tag{12}
\end{equation*}
$$

To estimate $\left|\mathcal{B}_{t}^{\prime}\right|$ we start again by regarding $\operatorname{Sch}(N / t)$. All sets $B \in \mathcal{B}_{t}^{\prime}$ contain $k-1$ numbers, in particular $t$ and $2 t$, and certainly not 0 and 1 . Hence if we cancel $0,1, t, 2 t$ in $\operatorname{Sch}(N / t)$ we obtain a scheme $\operatorname{Sch}(A ; N-4)$ with at most $t$ rows and such that

$$
\begin{equation*}
\left|\mathcal{B}_{t}^{\prime}\right| \leq\left|\mathcal{P}_{k-3}(\operatorname{Sch}(A ; N-4))\right| . \tag{13}
\end{equation*}
$$

Now we refine this scheme by cutting every row of length $l \geq 3$ into rows of length 2 and possibly one row of length 1 . The resulting scheme is of type Sch* $^{*}(A ; N-4, \tau(t))$ with some $\tau(t) \leq t$, and Lemma 3(2) asserts

$$
\begin{equation*}
\left|\mathcal{P}_{k-3}(\operatorname{Sch}(A ; N-4))\right| \leq\left|\mathcal{P}_{k-3}\left(\operatorname{Sch}^{*}(A ; N-4, \tau(t))\right)\right| \tag{14}
\end{equation*}
$$

Therefore, by Lemma 4,

$$
\begin{aligned}
\sum_{t=1}^{N-1} E_{t}(k, N)= & \sum_{2 \leq t \leq M-1} E_{t}(k, N)+\sum_{M+\delta \leq t \leq N-2} E_{t}(k, N) \\
\geq & -\sum_{2 \leq t \leq M-1}\left|\mathcal{P}_{k-3}\left(\operatorname{Sch}^{*}(A ; N-4, \tau(t))\right)\right| \\
& +\sum_{M+1+\delta \leq t \leq N-2}\left|\mathcal{P}_{k-3}\left(\operatorname{Sch}^{*}(A ; N-4,2 t-N)\right)\right| \\
= & \sum_{2 \leq t \leq M-1}\left(\left|\mathcal{P}_{k-3}\left(\operatorname{Sch}^{*}(A ; N-4,2 t-2+\delta)\right)\right|\right. \\
& \left.-\left|\mathcal{P}_{k-3}\left(\operatorname{Sch}^{*}(A ; N-4, \tau(t))\right)\right|\right)
\end{aligned}
$$

and here all summands are nonnegative by Lemma $3(3)$, since

$$
2 t-2+\delta \geq t \geq \tau(t) \quad \text { for } 2 \leq t \leq M-1
$$

Lemma 7. We have

$$
\sum_{t=1}^{N-1} E_{t}(k, N) \leq\binom{ N-1}{k-1}^{*}
$$

Proof. We already know that

$$
\begin{array}{ll}
E_{t}(k, N)=0 & \text { for } t \mid N-1(\text { by Lemma } 4) \\
E_{t}(k, N) \leq\left|\mathcal{C}_{t}\right| & \text { for } 2 \leq t<(N-1) / 3(\text { by Proposition } 2(2)) \\
E_{t}(k, N) \leq 0 & \text { for } N / 3 \leq t<N / 2(\text { by Proposition } 2(2))
\end{array}
$$

and

$$
\sum_{(N-1) / 2<t<N} E_{t}(k, N)=\binom{N-2}{k-1}^{*} \quad(\text { by Lemma } 5(2))
$$

Thus all we need is an appropriate upper bound for $\left|\mathcal{C}_{t}\right|, 2 \leq t<$ $(N-1) / 3$. So let us look once more at the standard scheme $\operatorname{Sch}(N / t) . \mathcal{C}_{t}$ contains the subsets $B \subset\{0,1, \ldots, N-1\}-\{0, t\}$ with $|B|=k-1$ and $\{1, t+1,3 t\} \subset B$, which-except 1 and $t+1$-do not contain two neighbouring numbers in any of the rows of $\operatorname{Sch}(N / t)$. In particular these sets $B$ do not contain the numbers $2 t$ and $2 t+1$. Hence $\left|\mathcal{C}_{t}\right|$ counts certain subsets $B_{0}=B-\{1, t+1,3 t\}$ of $A=\{0,1, \ldots, N-1\}-\{0, t, 1, t+1,3 t, 2 t, 2 t+1\}$ with $\left|B_{0}\right|=k-4$ which are admissible for the scheme $\operatorname{Sch}(A ; N-7)$, resulting from $\operatorname{Sch}(N / t)$ by cancellation of $0, t, 1, t+1,3 t, 2 t$, and $2 t+1$ :

$$
\left|\mathcal{C}_{t}\right| \leq\left|\mathcal{P}_{k-4}(\operatorname{Sch}(A ; N-7))\right| .
$$

We refine this scheme by cutting every row of length $l \geq 3$ into rows of length 2 and possibly one row of length 1 . Then the resulting scheme is of
type $\operatorname{Sch}^{*}(A ; N-7, \tau(t))$ with some $\tau(t) \leq t$, for $\operatorname{Sch}(A ; N-7)$ has at most $t$ rows. Then Lemma 3(2) asserts

$$
\left|\mathcal{P}_{k-4}(\operatorname{Sch}(A ; N-7))\right| \leq\left|\mathcal{P}_{k-4}\left(\operatorname{Sch}^{*}(A ; N-7, \tau(t))\right)\right|
$$

Hence for $2 \leq t<(N-1) / 3$,

$$
\begin{equation*}
\left|\mathcal{C}_{t}\right| \leq\left|\mathcal{P}_{k-4}\left(\operatorname{Sch}^{*}(A ; N-7, \tau(t))\right)\right|, \quad \tau(t) \leq t \tag{15}
\end{equation*}
$$

On the other hand, Lemma 5 with $N-3$ and $k-1$ instead of $N$ and $k$ yields

$$
\begin{align*}
\binom{N-5}{k-2}^{*} & =\sum_{(N-4) / 2<t<N-4}\left|\mathcal{P}_{k-4}\left(\operatorname{Sch}^{*}(A ; N-7,2 t-N+3)\right)\right|  \tag{16}\\
& =\sum_{2-\delta \leq t \leq M-2}\left|\mathcal{P}_{k-4}\left(\operatorname{Sch}^{*}(A ; N-7,2 t+\delta-3)\right)\right|
\end{align*}
$$

(by substitution $t \mapsto t+M+\delta-3$ with $N=2 M+\delta, 0 \leq \delta \leq 1$ )

$$
\geq \sum_{2 \leq t<(N-1) / 3}\left|\mathcal{P}_{k-4}\left(\operatorname{Sch}^{*}(A ; N-7,2 t+\delta-3)\right)\right|
$$

Therefore by (15) and (16),

$$
\begin{aligned}
&\binom{N-5}{k-2}^{*}- \sum_{2 \leq t<(N-1) / 3}\left|\mathcal{C}_{t}\right| \\
& \geq \sum_{2 \leq t<(N-1) / 3}\left(\left|\mathcal{P}_{k-4}\left(\operatorname{Sch}^{*}(A ; N-7,2 t+\delta-3)\right)\right|\right. \\
&\left.-\left|\mathcal{P}_{k-4}\left(\operatorname{Sch}^{*}(A ; N-7, \tau(t))\right)\right|\right)
\end{aligned}
$$

and by Lemma 3(3), all summands here are nonnegative, since $t \geq \tau(t)$ and thus $2 t+\delta-3 \geq \tau(t)$. This is obvious for $t \geq 3$ and also for $t=2$ and $\delta=1$. But if $t=2$ and $\delta=0$, then $N-7$ is odd and hence $\tau(2)=1$.

This shows

$$
\sum_{2 \leq t<(N-1) / 3}\left|\mathcal{C}_{t}\right| \leq\binom{ N-5}{k-2}^{*}
$$

and combined with the estimates at the beginning of the proof and with Lemma 2(2) we finally get

$$
\sum_{t=1}^{N-1} E_{t}(k, N) \leq\binom{ N-2}{k-1}^{*}+\binom{N-5}{k-2}^{*} \leq\binom{ N-1}{k-1}^{*}
$$

Proposition 3. (1) For $2 \leq k \leq N$ and suitable $\theta \in[0,1]$, $D(k, N)=D(k, N-1)+D(k-1, N-2)+(2 N-1)\binom{N-2}{k-2}+2 \theta\binom{N-1}{k-1}^{*}$.
(2) Explicitly for $1 \leq k \leq N$ and $\theta \in[0,1]$,

$$
D(k, N)=D_{0}(k, N)+2 \theta\binom{N+1}{k+1}^{*}
$$

with

$$
D_{0}(k, N)=(2 N+1)\binom{N}{k}-2\binom{N}{k+1}-2\binom{N+2}{k+2}+2\binom{N+2-k}{k+2} .
$$

Proof. (1) Clearly

$$
\begin{equation*}
D(k, N)=\binom{N}{k}+2 \sum_{k=1}^{N-1} \delta_{t}(k, N) \tag{17}
\end{equation*}
$$

since $D(k, N)=\sum_{-N+1 \leq t \leq N-1} \delta_{t}(k, N)$ by definition and

$$
\delta_{0}(k, N)=\binom{N}{k}, \quad \delta_{-t}(k, N)=\delta_{t}(k, N) .
$$

Therefore the recursion formula in Proposition 2(1) gives

$$
\begin{aligned}
D(k, N)= & \binom{N}{k}+2 \sum_{t=1}^{N-1}\left(\delta_{t}(k, N-1)+\delta_{t}(k-1, N-2)\right) \\
& +2(N-1)\binom{N-2}{k-2}+2 \sum_{t=1}^{N-1} E_{t}(k, N) \\
= & 2 \sum_{t \geq 1} \delta_{t}(k, N-1)+2 \sum_{t \geq 1} \delta_{t}(k-1, N-2) \\
& +(2 N-2)\binom{N-2}{k-2}+\binom{N-1}{k} \\
& +\binom{N-2}{k-1}+\binom{N-2}{k-2}+2 \theta\binom{N-1}{k-1}^{*} \\
= & D(k, N-1)+D(k-1, N-2) \\
& +(2 N-1)\binom{N-2}{k-2}+2 \theta\binom{N-1}{k-1}^{*} \quad(\text { by }(17)) .
\end{aligned}
$$

(2) The initial values are

$$
D(1, N)=N=D_{0}(1, N), \quad N \geq 1
$$

and

$$
D(k, k)=2 k-1=D_{0}(k, k), \quad k \geq 1 .
$$

The rest is straightforward induction on $k$ and $N$ with the use of the recursion formula of part (1) and Lemma 2(2) for the $\theta$-terms.

Now we use the recursion formulae of $S(k, N)$ and $D(k, N)$ to prove:
Theorem. We have

$$
1 \leq \frac{D(k, N)}{S(k, N)}<2 \quad \text { for } 1 \leq k \leq N .
$$

Proof. First we show

$$
\Delta_{1}(k, N):=D(k, N)-S(k, N) \geq 0 \quad \text { for } 1 \leq k \leq N
$$

by induction on $k$ and $N$. The initial values are

$$
\begin{aligned}
\Delta_{1}(1, N) & =D(1, N)-S(1, N)=N-N=0, \\
\Delta_{1}(k, k) & =D(k, k)-S(k, k)=(2 k-1)-(2 k-1)=0,
\end{aligned}
$$

and the induction step $N-1 \mapsto N$ with $N=2 M+\delta>k \geq 2$ is

$$
\begin{aligned}
\Delta_{1}(k, N)= & D(k, N)-S(k, N) \\
\geq & D(k, N-1)+D(k-1, N-2)+(2 N-1)\binom{N-2}{k-2} \\
& -S(k, N-1)-S(k-1, N-2) \\
& -(2 N-1)\binom{N-2}{k-2}-2^{k-1}\binom{M-1}{k-1}+2\binom{N-2}{k}^{*}
\end{aligned}
$$

(by Proposition 3(1) and Proposition 1(2))

$$
=\Delta_{1}(k, N-1)+\Delta_{1}(k-1, N-2)-2^{k-1}\binom{M-1}{k-1}+2\binom{N-2}{k}^{*}
$$

$$
\geq 2\binom{2 M-2}{k}^{*}-2^{k-1}\binom{M-1}{k-1}
$$

(by induction hypothesis and Lemma 2(2))

$$
\begin{aligned}
& \geq 2^{k-1}(k-2)\binom{M-1}{k-1} \quad \text { (by Lemma 2(5)) } \\
& \geq 0 .
\end{aligned}
$$

Finally we prove

$$
\Delta_{2}(k, N):=2 S(k, N)-D(k, N)>0 \quad \text { for } 1 \leq k \leq N
$$

again by induction on $k$ and $N$, and by Propositions 1(2) and 3(1):

$$
\begin{aligned}
\Delta_{2}(1, N) & =2 N-N=N>0, \\
\Delta_{2}(k, k) & =2(2 k-1)-(2 k-1)=2 k-1>0,
\end{aligned}
$$

and the induction step $N-1 \mapsto N$ with $N=2 M+\delta>k \geq 2$ is

$$
\begin{aligned}
\Delta_{2}(k, N) & =2 S(k, N)-D(k, N) \\
& \geq 2 S(k, N-1)+2 S(k-1, N-2)+2(2 N-1)\binom{N-2}{k-2}
\end{aligned}
$$

$$
\begin{aligned}
& +2^{k}\binom{M-1}{k-1}-4\binom{N-2}{k}^{*} \\
& -D(k, N-1)-D(k-1, N-2) \\
& -(2 N-1)\binom{N-2}{k-2}-2\binom{N-1}{k-1}^{*} \\
= & \Delta_{2}(k, N-1)+\Delta_{2}(k-1, N-2)+(2 N-1)\binom{N-2}{k-2} \\
& +2^{k}\binom{M-1}{k-1}-4\binom{N-2}{k}^{*}-2\binom{N-1}{k-1}^{*} \\
> & 0
\end{aligned}
$$

by induction hypothesis and Lemma 2(6).
Remark 3. The development of $S(k, N)$ in Proposition 1(1) and of $D_{0}(k, N)$ in Proposition 3(2) in powers of $N$ yields, as $N \rightarrow \infty$,

$$
\begin{align*}
S(k, N) & =\binom{k+1}{2}\binom{N}{k}+O\left(N^{k-1}\right),  \tag{18}\\
D_{0}(k, N) & =\left(k^{2}-k+1\right)\binom{N}{k}+O\left(N^{k-1}\right) . \tag{19}
\end{align*}
$$

The appearance of the coefficients $\binom{k+1}{2}$ and $k^{2}-k+1$ is not surprising: If $N$ is large compared to $k$, then within most of the $\binom{N}{k}$ subsets $A$ of $\{0,1, \ldots, N-1\}$ with $|A|=k$ there are only very few nontrivial coincidences $a+b=a^{\prime}+b^{\prime}$. In particular sets with $|A|=k$ and without such coincidences have $S(A)=\binom{k+1}{2}$ and $D(A)=k^{2}-k+1$ (comp. introduction). Therefore the upper bound $D(k, N) \leq\left(k^{2}-k+1\right)\binom{N}{k}$ is obvious. On the other hand, $D(k, N) \geq D_{0}(k, N)$ by Proposition 3(2), which together with (19) yields

$$
D(k, N)=\left(k^{2}-k+1\right)\binom{N}{k}+O\left(N^{k-1}\right) .
$$

This and (18) imply at once

$$
\lim _{N \rightarrow \infty} \frac{D(k, N)}{S(k, N)}=1+\left(1-\frac{2}{k}\right)\left(1-\frac{2}{k+1}\right)
$$

and

$$
\lim _{k \rightarrow \infty} \lim _{N \rightarrow \infty} \frac{D(k, N)}{S(k, N)}=2 .
$$

On the other hand, the explicit formulae for $S(k, N)$ and $D(k, N)$ show immediately that there exists a positive constant $c_{0}$ such that for all $N \geq 1$,

$$
1 \leq \frac{D(k, N)}{S(k, N)}<1+\frac{c_{0}}{N} \quad \text { for } N / 2<k \leq N .
$$

Hence the lower bound 1 as well as the upper bound 2 of the Theorem are best possible, and their values are not caused by accidental irregularities of the quotient $D(k, N) / S(k, N)$ for small values of $k$ and $N$.

## References

[1] G. A. Freĭman and V. P. Pigarev, The relation between the invariants $R$ and $T$, in: Number-Theoretic Studies in the Markov Spectrum and in the Structural Theory of Set Addition, Kalinin. Gos. Univ., Moscow, 1973, 172-174 (in Russian).
[2] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Univ. Press, 1988.
[3] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2. Band, Teubner, Leipzig, 1909.
[4] J. Riordan, Combinatorial Identities, Krieger, Huntington, 1979.
[5] I. Z. Ruzsa, Sets of sums and differences, in: Séminaire de Théorie des Nombres de Paris, 1982-83, Birkhäuser, Boston, 1984, 267-273.

Zentrum Mathematik
Technische Universität München
D-80290 München, Germany
E-mail: roeslerf@mathematik.tu-muenchen


[^0]:    2000 Mathematics Subject Classification: Primary 11B05.

