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1. Introduction. In the late eighteenth century both Euler and Legen-
dre noticed that n2 +n+41 is prime for n = 0, 1, . . . , 39, and remarked that
there are few polynomials with such small degree and coefficients that give
such a long string of consecutive prime values. Rabinowitsch, at the 1912
International Congress of Mathematicians [22], showed that n2 + n + A is
prime for n = 0, 1, . . . , A− 2 if and only if 4A− 1 is squarefree and the ring
of integers of the field Q(

√
1− 4A) has just one equivalence class of ideals

(that is, class number one). In 1934 Heilbronn [15] proved that there are
only finitely many such fields, and in 1952 Heegner [14] that there are just
seven such fields (1), corresponding to A = 1, 2, 3, 5, 11, 17 and 41.

One can generalize Rabinowitsch’s criterion to other polynomials, and
to other fields; for example, Mollin and Williams proved the following for
real quadratic fields: n2 + n−A is prime for all positive n <

√
A− 1 if and

only if the field Q(
√

4A+ 1) has class number one where either A = 4, or
A ≥ 5 is odd and is of the form m2 or m2 +m± 1 for some integer m (see
[21, pp. 352–354]).

One can develop a similar criterion for the case when the class number
is 2, or 3, or any fixed number (see [19, 20]). The idea in all of these proofs
is that if a large proportion of the values of a quadratic polynomial of dis-
criminant d are prime then there cannot be many small primes p for which
(d/p) = 1 (else those small primes would divide the values of the given
quadratic polynomial, preventing it from being prime very often). If that is
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(1) Q(
√
−4) and Q(

√
−8) also have class number one, but do not correspond to such

polynomials.
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the case then the value of L(1, (d/·)) will be surprisingly small (2), which is
equivalent to having h(d), the class number, small if d < 0, and to having
both h(d) and εd, the fundamental unit, small (3) if d > 0. We remark that
εd is “small” if and only if the continued fraction for (1 +

√
d)/2 or

√
d/2

(as d ≡ 1 or 0 (mod 4)) is short, that is, if d is a value of one of several
special forms. Siegel [26] showed that L(1, (d/·))� 1/|d|o(1) and Tatuzawa
[27] made Siegel’s argument explicit, excluding at most one d, a presumably
hypothetical counterexample to the Generalized Riemann Hypothesis (4).
Using Tatuzawa’s result, Mollin [19, 20] gives many explicit criteria “with
one possible exception”.

One might ask whether it is possible to find quadratic polynomials with
arbitrarily long strings of consecutive prime values (though we do not neces-
sarily constrain ourselves to a string almost as long as the largest coefficient
of the polynomial, as we did above); that is whether, for any given N can
we find A for which n2 +n+A is prime for n = 0, 1, . . . , N? This is an open
question, though in Section 2A we will show that such polynomials exist
assuming the prime k-tuplets conjecture.

In this paper we are primarily interested in further developing the the-
ory of quadratic polynomials for which many of the small values are prime
(rather than “all” as in Rabinowitsch’s result). It is well known (see [5])
that if the class number of some imaginary quadratic field with large dis-
criminant is one then we will have an egregious counterexample to the Gen-
eralized Riemann Hypothesis (that is, a zero of the associated Dirichlet
L-function which is very close to 1). Thus Rabinowitsch’s result can be
informally stated as “n2 + n + A is prime for n = 0, 1, . . . , A − 2 and
A > 41 if and only if the Generalized Riemann Hypothesis is very badly
false for some quadratic Dirichlet L-function”. One might guess that if
n2 + n + A is prime for very many of the numbers n = 0, 1, . . . , A − 2
(though not all) then perhaps still the Generalized Riemann Hypothesis is
false, though perhaps not with a zero quite so close to 1. This is indeed the
case:

Corollary 1. There exists a constant κ1 > 0 such that if there are more
than κ1N log log |A|/logN primes amongst the integers n2 +A or n2 +n+A
for n = 0, 1, . . . , N for some N then the Generalized Riemann Hypothesis is
false.

(2) Here L(s, (d/·)) :=
∑
n≥1(d/n)/ns when Re(s) > 1, and is then analytically

continued to the rest of the complex plane.
(3) One has h(d) ≥ 1 and εd ≥ (1 +

√
d)/2, so that L(1, (d/·)) is small if and only if

h(d) and εd are both small by virtue of Dirichlet’s formula
√
dL(1, (d/·)) = h(d) log εd.

(4) The Generalized Riemann Hypothesis claims that all non-trivial zeros of L(s, (d/·))
are on the line Re(s) = 1/2.
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Our next result shows that Corollary 1 cannot be improved (other than
in giving a precise value for the constant κ1).

Proposition 1. There is a constant κ2 > 0 such that there are infinitely
many positive integers A for which there are more than κ2N log logA/logN
primes amongst the integers n2 + n+ A for n = 0, 1, . . . , N with N =

√
A.

We now discuss how our results relate to the predicted number of such
primes: For a given quadratic polynomial f(x) = ax2 + bx+ c with integer
coefficients, define the discriminant d = b2 − 4ac. For each prime p, define
ω(p) = ωf (p) to be the number of n (mod p) for which f(n) ≡ 0 (mod p).
There are two obvious reasons why there might not be many prime values
of f(n). The first is that f(x) is reducible over the rationals, which is equiv-
alent to d being a square. The second that prime p might divide f(n) for
every integer n, which is equivalent to ω(p) = p. Schinzel and Sierpiński’s
“Hypothesis H” [24] implies that if f is irreducible, and ω(p) < p for all
primes p then there are infinitely many integers n for which f(n) is prime (a
conjecture which is due to Bouniakovsky, see [23]), and Bateman and Horn
[3] gave the explicit conjecture that

(1.1) πf (N) := #{n ≤ N : |f(n)| is prime} ∼ cf
N

D logN
,

where cf :=
∏

p

(
1− ω(p)

p

)/(
1− 1

p

)

as N → ∞, where D = 2. (Moreover they conjecture that this holds for
polynomials of arbitrary degree D.)

If we fix the degree D then, by the fundamental lemma of the sieve [10,
Theorem 2.5], we have, uniformly,

(1.2) πf (N)�
∏

p≤N

(
1− ω(p)

p

)
N.

If
∑
p>N (1 − ω(p))/p � 1 then (1.2) becomes πf (N) � cfN/(D logN),

uniformly.
Henceforth assume that f has degree 2, with f(x) = ax2 + bx+ c. At the

beginning of Section 5, we show that

(1.3) cf � L(1, (d/·))−1 a

φ(a)
.

By determining when
∑
p>N (1− ω(p))/p� 1 we deduce

Theorem 1. Fix τ > 0. Uniformly for all quadratic polynomials f(x) =
ax2 + bx+ c, if N > |d|τ + log |a| then

(1.4) πf (N)� L(1, (d/·))−1 a

φ(a)
· N

logN
� cf

N

logN
.
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Moreover (1.4) holds uniformly for N > log |ad| if the Riemann Hypothesis
for L(s, (d/·)) is true.

Littlewood’s bounds [16] imply that (a/φ(a))L(1, (d/·))−1 � log log |ad|
assuming the Generalized Riemann Hypothesis (see Section 5A). Corollary 1
thus follows from Theorem 1.

One can show unconditionally, in a certain range, that many of the poly-
nomials x2 + x + A take on roughly the number of prime values predicted
by (1.1):

Theorem 2. For large R and N in the range Rε < N < R1/2 we have

#{n ≤ N : n2 + n+ A is prime} � N

logN
L(1, ((1− 4A)/·))−1

for at least a positive proportion of the integers A in the range R < A < 2R.

We wish to establish some kind of converse result to Corollary 1, in the
spirit of Rabinowitsch. To do so we will need to be more precise about what
we mean by “the Generalized Riemann Hypothesis is false” in Corollary 1,
and so we shall now define “Siegel zeros”: If χ is a Dirichlet character modulo
q and L(s, χ) is the corresponding L-function, then (see [5, Chapter 14])
L(σ + it, χ) 6= 0 for σ ≥ 1 − c/log(q(|t| + 2)) (for some explicit c > 0),
except possibly when χ is real and t = 0. These are the “Siegel zeros” and
if they do not exist then one can prove many of the conjectured results of
analytic number theory (in other words, there are many arguments in which
one does not need the full strength of the Generalized Riemann Hypothesis,
but rather this weaker requirement). Following the notation of Heath-Brown
[11] we shall denote this zero by β if it exists, and assume

η :=
1

(1− β) log q
≥ 3

(and we know that η � q). It is well known [7, 8] (and see below) that if
d = 1−4A and h(d) = 1 with A sufficiently large then we have a Siegel zero
L(β, (d/·)) = 0 with 1− β ∼ 6/(π

√
d). For convenience we will take η = 1 if

there is no such Siegel zero.
Hecke [13] proved that if L(s, (d/·)) has no Siegel zero then L(1, (d/·))−1

� log |d| (which we reprove in Section 5B). We therefore deduce from The-
orem 1:

Corollary 1′. There exists a constant κ3 > 0 such that if there are
more than κ3N log |ad|/logN primes amongst the integers an2 + bn+ c for
n = 0, 1, . . . , N for some N then the L-function L(s, (d/·)) has a Siegel zero,
where d = b2 − 4ac.

We can also prove a result that comes close to being a converse to Corol-
lary 1′:
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Theorem 3. Suppose that the L-function L(s, (d/·)) with d = 1−4A has
a “Siegel zero” β with 1 − β ≤ 1/log3 |d|, that is, η ≥ log2 |d|. Then there
exists an integer N such that there are more than κ3N log |A|/logN primes
amongst the integers |n2 + n + A| with n = 0, 1, . . . , N . If d = −4A above
then we have the same conclusion for the polynomial |n2 + A|.

By Rabinowitsch’s Theorem one knows that if h(d) = 1 with d < 0
(which gives η ∼ (π/6)

√
|d|/log |d|) then πf (N) = N where N = (|d|−7)/4.

This might lead one to hope that whenever η is large enough, one can get
a very precise estimate for πf (N). We now show that one can get accurate
estimates, in a certain range, whenever η ≥ log |d|:

Theorem 4. Suppose that there is a Siegel zero for L(s, (d/·)) with η ≥
log |d|, where d ≡ 1 (mod 4). Then for f(x) = x2 + x+ (1− d)/4 we have

πf (N) ∼ %dN, where %d :=
∏

p≤
√
d

(
1− ω(p)

p

)
,

uniformly in the range d10 ≤ N ≤ do(η). If d ≡ 0 (mod 4) above then the
same conclusion holds with f(x) = x2 − d/4.

One can prove results similar to Theorems 3 and 4 for non-monic quadra-
tic polynomials of the same discriminant.

One can give a good estimate for %d in terms of cf and η:

Proposition 2. Suppose that there is a Siegel zero for L(s, (d/·)) with
η →∞ as |d| → ∞. Then

%d ∼
cf

log(|d|η)
.

Our results are not the first of this nature. It is known that if the Gener-
alized Riemann Hypothesis is true then one can obtain very sharp estimates
for the distribution of primes in arithmetic progressions [5] in a wide range.
Surprisingly if the Generalized Riemann Hypothesis is very wrong, in that
there is a Siegel zero, then we are also able to obtain sharp estimates in a
wide range (though at first quite different estimates). This phenomenon is
well known and most precisely explored by Heath-Brown [12] and Shiu [25].

In [1], Ankeny and Chowla show that the connection between class num-
bers and primes in arithmetic progressions can be made without resorting
to any analysis (see Section 2B below).

In [11], Heath-Brown uncovered a new and quite remarkable phenome-
non: If there are Siegel zeros then, at least in a certain range depending on
the Siegel zero, one can show that there are roughly the expected number
of twin primes. Thus if there are a surprisingly large number of Siegel zeros
the twin prime conjecture is true! Heath-Brown’s theorem is the result in
the literature which is most similar to Theorem 4: Both results allow us
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to determine that there are primes in sequences which we cannot approach
by other means. Moreover both are proved by sieve methods relying on the
fact that the set of primes one is sieving with is very sparse (the primes p
with (d/p) = 1). However Heath-Brown’s theorem lies far deeper in that our
polynomial is connected to the Siegel zero in an obvious way, whereas this is
evidently not the case for twin primes, and so the proof of his result seems
to require far more substantial techniques.

Mahler [17] made precise the connection between class number and Siegel
zeros when d < 0, as follows: Define h′(d) := h(d)/

∑
a 1/a where the sum

runs over the minimal norms of ideals, one from each equivalence class.
If h′(d) �

√
|d|/log |d| then L(s, (d/·)) has a Siegel zero. Conversely if

L(β, (d/·)) = 0 for real β > 1 − c/log |d| for some sufficiently small con-
stant c > 0 then h′(d) �

√
|d|/log |d|. (Note that this is not exactly an

“if and only if” condition since the constants may be different in the two
statements.) Let us note that h(d) ≥ h′(d) ≥ 1 for all d < 0. Theorem 3 of
[9] states that for any fundamental discriminant d < 0 we have

h′(d) ∼ π

3

(
1 +

2
log |d| ·

L′(1, (d/·))
L(1, (d/·))

)−1 √|d|
log |d| .

In [9] it is noted that L′(1, (d/·))/L(1, (d/·))� log log |d| if the Generalized
Riemann Hypothesis is true so that h′(d) ∼ (π/3)

√
|d|/log |d|. One deduces,

unconditionally, that h′(d) �
√
|d|/(η log |d|). If there is a Siegel zero β with

η →∞ then h′(d) ∼ (π/(6η))
√
|d|/log |d|. Note that

%d � 1
/∑

a

1
a

= h′(d)/h(d)� 1/log2 |d|.

We end the introduction by giving a version of Theorem 4 avoiding men-
tion of zeros:

Corollary 2. Suppose that h(d) ≤
√
|d|/log2 |d|, with d a fundamental ,

negative discriminant. Let f(x) = x2 + x+ (1− d)/4 if d ≡ 1 (mod 4), and
f(x) = x2 − d/4 if d ≡ 0 (mod 4). Then πf (N) ∼ %dN uniformly in the

range |d|10 ≤ N ≤ |d|o(
√
|d|/h(d)).

In Section 7 we give an entirely elementary proof of a weak version of
this result: if h(d) = o(

√
|d|/log3 |d|) then we have the asymptotic formula

if logN/log |d| → ∞ and logN = o(
√
|d|/(h(d) log2 |d|)).

2. Elementary arguments

2A. Long strings of prime values of a high degree polynomial. A set of
integers a1 < . . . < ak is called admissible if, for every prime p, there exists
an integer n such that p does not divide n+ ai for any i. A consequence of
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Hardy and Littlewood’s prime k-tuplets conjecture is that if a1 < . . . < ak
is admissible then there exist infinitely many integers n for which each n+ai
is prime (though this conjecture was actually due to Dickson, see [24]).

Fix integer D ≥ 2. Let ai = iD − i for i = 0, 1, . . . , k. We claim that this
set of integers is admissible, for if not then for every n (mod p) there exists
i (mod p) with iD − i ≡ −n (mod p). But then the map g : Z/pZ → Z/pZ
defined by g(i) = iD − i is onto, and so is a bijection since the domain is
the same size as the range. However this is false since g(0) = g(1) = 0.
Therefore, by the prime k-tuplets conjecture, there exist infinitely many
integers n such that fn(i) = iD − i+ n = ai + n is prime for i = 0, 1, . . . , k.

The nearest unconditional theorem to this is Balog’s beautiful result [2]
that there exist infinitely many polynomials of degree D having prime values
at 2D + 1 consecutive integers.

2B. A connection between class number and prime count. The following
argument is a slight improvement of that in Ankeny and Chowla [1], which
in turn looks very similar to the proof of Dirichlet’s class number formula
in [5], though with a different conclusion:

The reduced quadratic forms ax2+bxy+cy2 of fundamental discriminant
d < 0 all satisfy a, |b|, c <

√
|d|. Every prime p is represented 1+(d/p) times

by such forms. Thus
∑

p≤x
(1 + (d/p)) ≤

∑

i

#{(m,n) : fi(m,n) ≤ x},

where the fi run through the reduced binary quadratic forms of discriminant
d. Now if x > |d| then #{(m,n) : fi(m,n) ≤ x} � x/

√
|d| and so the above

gives ∑

p≤x
(1 + (d/p))� h(d)x/

√
|d| � L(1, (d/·))x.

Thus, if π(x; d, a) ≤ (2 − ε)π(x)/φ(|d|) for some x ≥ |d|, for all a with
(d/a) = −1, then L(1, (d/·))� ε/log x.

3. Linnik’s Theorem. By equations (13) and (14) of Section 19 of [5],
we have, for x ≥ T ≥ |d| ≥ 1 where d is not a square,

(3.1)
∑

p≤x

(
d

p

)
log p+

xβ

β
� x log2 x

T
+ x1/2 +

∑

|γ|<T
xRe%,

where the “xβ/β” occurs only if there is a Siegel zero β of L(β, (d/·)), and
the sum is over all other zeros % = σ+ iγ of this L-function. By the proof of
Linnik’s Theorem in [4] on pages 54–55, we find that for fixed C > 9, there
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exists a small constant c > 0 such that if x ≥ TC then
(3.2)

∑

|d|≤T

∑

|γ|<T
xRe% � x1/2T 3 + δx1−c/log T ,

where δ = (1−β) logT if there is a Siegel zero, and δ = 1 otherwise. Here we
sum over the zeros of L(s, (d/·)), with d squarefree, and of ζ(s) when d = 1.
Note that we have improved “T 5” to “T 3” in (3.2) from what appears in
[4], though this follows easily from the proof there by noting that L(s, (d/·))
with |d| ≤ T has � T 2 zeros with |γ| < T .

Fix C > 9. Inserting (3.2) into (3.1) with T = |d| log3 x gives, for
x > |d|C ,

(3.3)
∑

p≤x

(
d

p

)
log p+

xβ

β
� x

|d| logx
+
x1−c/log |d|

η

(after some calculations when x > ed).
Let

∑′ be a sum over squarefree integers d such that L(s, (d/·)) has no
Siegel zero. Thus we get, for x > DC with T = D log3 x, by summing (3.1)
and then applying (3.2),

(3.4)
∑′

D<|d|≤2D

∣∣∣∣
∑

p≤x

(
d

p

)
log p

∣∣∣∣�
x

log x
+
x1−c/logD

η
.

By partial summation we thus deduce, for x > DA,

(3.5)
∑′

D<|d|≤2D

∣∣∣∣
∑

p≥x

(d/p)
p

∣∣∣∣�
1

logD
+

1
η
� 1.

4. Maier’s method: The proofs of Proposition 1 and Theorem 2.
Our idea is to use Maier’s method [18] as explained in [6]: Fix large N and
ε > 0. Let M be the product of all of the primes ≤ y := ε logN . If there is a
Siegel zero modulo M , let q be the conductor of the character whose Dirich-
let L-function has this zero. Not only does q divide M but we can also show
that its largest prime factor p must be larger than any given bound once N
is sufficiently large. In this case let m = M/p (thus guaranteeing that q does
not divide m); if there had been no Siegel zero then let m = M . Now there is
no Siegel zero modulo m, and we see that m = N ε+o(1) and that there exists
an absolute constant B > 2 such that π(5t/4,m, a)−π(t,m, a)� π(t)/φ(m)
for t > mB provided (a,m) = 1 (by Linnik’s Theorem [4]). Here π(t) denotes
the number of primes ≤ t, and π(t,m, a) the number of primes ≤ t which
are ≡ a (modm).

For each prime p ≤ y we select δp = −1, 0 or 1. Now select odd a
(mod 4m) so that ((1 − 4a)/p) = δp for all primes p ≤ y (this is easily ac-
complished using the Chinese Remainder Theorem). We shall select integer
R, divisible by 4m, so that NO(1) > R ≥ N2, and we choose ε < 1/B so
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that R > mB. Now, by swapping the order of summation we get

(4.1)
∑

R<A≤2R
A≡a (mod 4m)

#{n ≤ N : n2 + n+ A is prime}

=
∑

n≤N
{π(2R+ (n2 + n); 4m,n2 + n+ a)

− π(R+ (n2 + n); 4m,n2 + n+ a)}

�
∑

n≤N
(n2+n+A,4m)=1

1
φ(4m)

· R

logR

� 1
φ(m)

· R

logN
N
∏

p≤y

(
1− 1 + δp

p

)
� R

m
· N

logN

∏

p≤y

(
1− δp

p

)

since each n2 + n ≤ 2R.

Proof of Proposition 1. Let us take each δp = −1 and R = N2. Then
the maximum value of #{n ≤

√
A : n2 + n + A is prime} for R < A ≤ 2R

with A ≡ a (mod 4m), is larger than the average in the sum above, which
is � N log logN/logN.

Proof of Theorem 2. Select

B >
∑

N1/4<p≤R10

1
p
≥
∣∣∣∣

∑

N1/4<p≤R10

(d/p)
p

∣∣∣∣,

and so that B is bigger than the bound implicit in (3.5).
Now for any A included in the above sum, and d = 1 − 4A, we have

δp = (d/p) for all p ≤ y. Write d = kl2 where k is squarefree. We apply (3.5)
with d = k, x = R10 and D = 4R/l2. Thus |∑p>R10(d/p)/p| < B unless k

is the modulus of a Siegel zero. There are O(
√
R) such A (at most one for

each l).
Also

∑

4R<−d≤8R
d≡1−4a (mod 16m)

∣∣∣∣
∑

y<p≤N1/4

(d/p)
p

∣∣∣∣
2

�
∑

4R<−d≤8R
d≡1−4a (mod 16m)

∑

y<p≤N1/4

1
p2

+
∑

y<p<q≤N1/4

1
pq

∣∣∣∣
∑

4R<−d≤8R
d≡1−4a (mod 16m)

(
d

pq

)∣∣∣∣

� R

my
+N1/2 � R

m logN
.
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Therefore |∑y<p≤N1/4 (d/p)/p| < B for all but O(R/(m logN)) values of
A in this range. Let S be this set of values of A together with those A
which gave rise to k, the modulus of a Siegel zero, above. Then S has
O(R/(m logN)) elements.

Now suppose A ∈ S. By the small sieve we have

#{n ≤ N : n2 + n+ A is prime} ≤ #{n ≤ N : (n2 + n+ A,m) = 1}
� N

log y

∏

p≤y

(
1− δp

p

)
,

so that the contribution of all elements of S to the left side of (4.1) is

� (R/m)(N/(logN log logN))
∏

p≤y
(1− δp/p),

which is negligible compared to the right side of (4.1). Therefore (4.1) may
be rewritten as

(4.2)
1

R/m

∑

R<A≤2R
A≡a (mod 4m)

A6∈S

#{n ≤ N : n2 + n+A is prime}

� N

logN

∏

p≤y

(
1− δp

p

)
.

If A 6∈ S then, by the definition of S,

(4.3)
∏

p≤y

(
1− δp

p

)
�
∏

p≤N

(
1− (d/p)

p

)
� L(1, (d/·))−1.

By (1.2) we deduce that

#{n ≤ N : n2 + n+ A is prime} � N

logN

∏

p≤N

(
1− (d/p)

p

)

� N

logN

∏

p≤y

(
1− δp

p

)
.

Inserting this into (4.2) we find that

#{n ≤ N : n2 + n+ A is prime} � N

logN

∏

p≤y

(
1− δp

p

)

for a positive proportion of A 6∈ S, and the result follows from (4.3).

5. Estimating the Euler product in (1.2). First note that

ω(p) =
{

1 + (d/p) if p does not divide a,
(d/p) if p does divide a.
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As
∏
p≤N, p|a p/(p− 1) ∼ a/φ(a) if N ≥ log a, we deduce that

(5.1)
∏

p≤N

(
1− ω(p)

p

)
� 1

logN
· a

φ(a)

∏

p≤N

(
1− (d/p)

p

)
,

which implies (1.3).

5A. Assuming the Generalized Riemann Hypothesis. Littlewood [16]
showed, assuming the Generalized Riemann Hypothesis, that for any non-
principal character χ of modulus d, we have

(5.2)
∏

log2 d<p≤x
(1− χ(p)/p) = 1 + o(1),

and so we deduce (1.4) from inserting (5.1) and then (5.2) into (1.2). We
also deduce from Littlewood’s estimate L(1, χ) ∼ ∏p≤log2 d(1 − χ(p)/p)−1

that 1/log log d� L(1, χ)� log log d, since 1−1/p ≤ |1−χ(p)/p| ≤ 1+1/p.

5B. Assuming that there is no Siegel zero. By (3.3) and partial summa-
tion, for d2C ≤ y < x, we obtain

(5.3)
∏

y<p≤x

(
1− (d/p)

p

)
= exp

(
O

(
1
d

+
1

yc/log d

))
.

Taking y = d2C , we deduce that L(1, (d/·)) � ∏p≤y(1 − (d/p)/p)−1. Thus
1/log |d| � L(1, (d/·))� log |d|.

Proof of Theorem 1 (when there is no Siegel zero). By (5.3) and (5.1)
we deduce from (1.2) that (1.4) holds uniformly when x > d2C . The result
follows since

∏
dτ<p≤d2C (1− (d/p)/p) � 1.

5C. Assuming that there is a Siegel zero. If x > dη then by (3.3) we get

∑

p≤x
(d/p) log p� x exp

(
− log x

log dη

)
+

x

log x
,

and so, by partial summation we then deduce

(5.4)
∏

dη<p≤x

(
1− (d/p)

p

)
� 1.

If dη > x ≥ dC then by (3.3) and (3.2) (where we sum over the zeros of
ζ(s)) we get

∑

p≤x
(1 + (d/p)) log p�

(
x− xβ

β

)
+

x

|d| logx
+
x1−c/log |d|

η
� x log x

log(dη)
.
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By partial summation we obtain for dη > x > y ≥ dC

(5.5)
∏

y<p≤x

(
1− 1 + (d/p)

p

)
= 1 +O

(
log x

log(dη)

)
.

Proof of Theorem 1 (when there is a Siegel zero). Fix c > 0. By (5.4),
(5.5) and (5.1) we find that for any x > |d|c + log |a|,

∏

p≤x

(
1− ω(p)

p

)
�

∏

p≤xdη

(
1− ω(p)

p

)
� a

φ(a)
· L(1, (d/·))−1

log(xdη)

� a

φ(a)
· L(1, (d/·))−1

log x
,

by (5.4). Theorem 1 follows from inserting this into (1.2).
Note that if p | a then ω(p) = (d/p) = 0 or 1. In Lemma 3 of [11] it is

shown that
∑
p≤d500(1 + (d/p))(log p)/p� log d/

√
log η, and so

∑

p≤d500

ω(p)
log p
p
� log d√

log η
.

Taking y = d10 gives

(5.6)
∏

z<p≤y

(
1− ω(p)

p

)
= 1 +O

(
1

log z
· log d√

log η

)
.

Combining (5.5) and (5.6) we find that, for any ε > 0 with ε
√

log η → ∞,
provided

∑
p|a, p≤y 1/p = o(1),

(5.7)
∏

dε<p≤x

(
1− ω(p)

p

)
= 1 + o(1)

where x = do(η). We also note that this implies that, for any a,

%d :=
∏

p≤
√
d

(
1− ω(p)

p

)
≥
∏

p≤
√
d

(
1− 1 + (d/p)

p

)
(5.8)

�
∏

p≤d1/
√

log η

(
1− 2

p

)
� log η

log2 d
.

6. Prime values of a quadratic polynomial

6A. Sieving. First note that if f(x) = x2+x+A or x2+A for some integer
A, and if f(n) is composite for n ≤ N , with N �

√
A, then there exists

a prime q � N for which q divides f(n). Therefore, by the fundamental
lemma of the sieve, if y = No(1) then, for m =

∏
p≤y p, we have

(6.1) πf (N) = #{n ≤ N : (f(n),m) = 1}
+O

( ∑

y<q�N
#{n ≤ N : q | f(n) and (f(n),m) = 1}

)
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= {1 + o(1)}N
∏

p≤y

(
1− ω(p)

p

)

+O

( ∑

y<q�N

ω(q)N
q

∏

p≤N/q

(
1− ω(p)

p

))
.

Here, the implied constants are independent of A.

6B. Estimates assuming there is a Siegel zero
(The proofs of Theorems 3 and 4)

Proof of Theorem 4. We assume that η → ∞ as d → ∞ to simplify our
calculations. We use the estimates of Section 5C. In (6.1) we suppose that
d10 < N < do(η) and y = dε where ε = τ/(log η)1/2 with τ →∞ as d→∞.

If y ≤ q ≤ N/y then
∏
p≤N/q(1− ω(p)/p) ∼ %d and

∑
y<q<N/y ω(q)/q =

o(1) by (5.7), and so (6.1) becomes

(6.2) πf (N)

= %dN

{
1 + o(1) +O

( ∑

N/y<q≤N

ω(q)
q

∏

N/q<p≤y

(
1− ω(p)

p

)−1)}
.

We note that, for N/y ≤ q ≤ N , we have

∏

N/q<p≤y

(
1− ω(p)

p

)−1

� min{1/%d, (log y/log(N/q))2}.

Now
∑
x<p<2x ω(p)/p � 1/log(dη) for x > dC , by (5.5). Combining these

last two bounds to estimate the error term in (6.2), after some calculation,
gives

� log y

%
1/2
d log(dη)

=
ε

η%
1/2
d

� τ log d
η log η

using (5.8). If η > log d, we take τ =
√

log η to deduce Theorem 4.

Proof of Theorem 3. If η > log2 d then take logN = log3 d/
√

log log d.
Then N is in the range of Theorem 4. Moreover log d/logN� log log d/log2 d
� %d by (5.8). Thus we have proved Theorem 3.

7. An elementary approach. It is possible to get results like Corollary
2 without recourse to any complex analysis (that is, the results of Section
3). For simplicity we will work with fundamental discriminants d < 0:

In Section 2B we saw that the number of primes p ≤ x with (d/p) = 0
or 1 is � L(1, (d/·))x, when x > |d|. Take m =

∏
p≤|d| p and N so that

logN/log |d| → ∞. The fundamental lemma of the sieve thus gives
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πf (N) = #{n ≤ N : (f(n),m) = 1}+O
( ∑

|d|<p�N
(1 + (d/p))N/p

)

= {1 + o(1)}N
∏

p≤|d|

(
1− ω(p)

p

)
+O(NL(1, (d/·)) logN).

We thus get

πf (N) ∼ N
∏

p≤|d|

(
1− ω(p)

p

)

provided logN = o(1/(L(1, (d/·)) log2 |d|)), which gives a non-trivial range
for N provided h(d) = o(

√
|d|/log3 |d|). Since this is weaker than Corollary

2 we do not pursue this further.

8. The value of %d: Proof of Proposition 2. Write T = dη/C and
U = dηC where C →∞ slowly. Then, by definition,

cf/%d ∼
∏

p≤T

(
1− 1

p

)−1 ∏
√
d<p≤T

(
1− ω(p)

p

) ∏

p>T

(
1− (d/p)

p

)

∼ eγ logU
∏

U<p≤T

(
1− ω(p)

p

)

using Mertens’ Theorem, (5.7) and (3.3), respectively. Now using (3.3) with
partial summation we obtain

log
( ∏

U<p≤T

(
1− ω(p)

p

))
= −

T�

U

t− tβ
t2 log t

dt+ o(1)

= −
C�

1/C

1− e−v
v

dv + o(1)→ − logC − γ

as C →∞. We took t = (dη)v above, and noted that (dη)1−β = e. Combin-
ing these last two estimates gives the result.
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[3] P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the
distribution of prime numbers, Math. Comp. 16 (1962), 363–367.

[4] E. Bombier i, Le grand crible dans la théorie analytique des nombres, Astérisque
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