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In a recent paper [2], we proved that for ¢ > 40000, the Diophantine
equation (f+2)X* —tY? = 2 has at most two solutions in positive integers
X,Y. In this addendum, we recall a simple argument due to Ljunggren [4]
which, together with an observation due to Voutier [5], shows that for any
two positive integers a and b, the quartic equation aX?* — bY? = 2 has at
most two solutions in positive integers X, Y.

By the main result in [1], we restrict our attention to pairs of odd integers
a, b, and furthermore, we need only consider those pairs a,b for which the
quadratic equation ax? — by? = 2 is solvable in odd integers x,y. Given such
a pair of integers a,b, let (x,y) = (u1,v1) denote the smallest solution in
positive integers to az? — by? = 2, and define

S ury/a +v1vb
a,b \/§ .
For i > 1 odd, define sequences {u;}, {v;} by
V2
Then all positive integer solutions (z,y) to the quadratic equation az? —
by? = 2 are given by (x,y) = (u;, v;).
THEOREM 1. If a,b are positive integers, then the equation
(1) aXt —by? =2
has at most two solutions in positive integers X,Y .
As stated, Theorem 1 is best possible, since for the cases (a,b) = (2m? +
2m + 2,2m? 4 2m) and (a,b) = (2m? + 2m + 2, (m? + m)/2), there are
the two positive integer solutions (X,Y) = (1,1), (2m + 1,4m? + 4m + 3)
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and (X,Y) = (1,2), (2m + 1,8m? + 8m + 6) respectively to equation (1).
However, in the primary case considered in this paper, namely that a and b
are odd, we conjecture that there is at most one solution in positive integers
to (1). This conjecture was verified for (a,b) = (¢t +2,t), with ¢ in the range
1 <t < 1200.

Proof of Theorem 1. Let us first point out that Voutier [5] has refined
the argument in [2], thereby proving that for all odd positive integers ¢, the
quartic equation (t + 2)X?% — tY? = 2 has at most two solutions in odd
positive integers X,Y.

We will now assume that a, b are odd positive integers for which there is
at least one solution in odd integers (X,Y) to the equation aX* —bY?2 = 2.
Thus, there is at least one odd positive integer k£ with the property that wu
is a square, and we assume that k represents the smallest such integer. The
purpose for choosing the minimal such value is to first show that this integer
k divides all indices k; for which wuy, is a square, which will then allow us
to associate to the equation aX* — bY? = 2 a minimal positive integer ¢,
and a corresponding equation of the form (¢ +2)X* —tY? = 2, and describe
a one-to-one correspondence between the positive integer solutions to these
two equations. Given k as above, define the positive integer X specifically
by U = Xg .

Before proceeding, we remind the reader of two basic facts about the
sequence {u, } defined above. These facts follow from the elementary theory
of Lucas functions given in [3], and can easily be proved using binomial
expansions. We forego the details, since the proofs are identical to those of
Theorems 1.5 and 1.6 in [3]. The first property simply states that {u,} is a
divisibility sequence, while the second is referred to as the Law of Repetition.
We say that a prime power p! properly divides a positive integer n if p' divides
n and (p,n/p') = 1.

I. If m and n are odd, and m divides n, then u,, divides u,,.
II. Let p denote an odd prime, [ a positive integer with ged(p,l) = 1,
and t a non-negative integer. If « is a positive integer for which p®
properly divides u,, then p®** properly divides Upppt -

We now write u; = l1s2 with [; a positive squarefree integer. Note that
since {u,} is a divisibility sequence, u; divides wuy. If I; = 1, then uy is a
square, and hence kK = 1. We observe in this case that [; = 1 divides k.
Assume now that I; > 1, and let p denote a prime dividing /3. Then p
divides uq exactly to an odd power, say 2e + 1. Since uq divides uy, we
see that p?¢t! divides uy, but as uy, is a square, it follows that p***2 must
divide ug. By property II, it follows that p divides k, and since this holds
for all p dividing [y, it follows that [y divides k.
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If I > 1, write u, = lgs% with ls a positive squarefree integer. Since [y
divides k, we see that u;, divides uy. Also, note that ged(l,l2) = 1, since, by
the Law of Repetition, each prime dividing /; divides u;, = los3 exactly to
an even power. By precisely the same reasoning as that given in the previous
paragraph, it follows that the squarefree integer /112 divides k, and that w;,,
divides uy. Now if I3 = 1, then v, is a square, and so /1 = k. Otherwise, if
lo > 1, then we write u;,;, = lgsg with [3 squarefree, and just as above, it
follows that 1, s, l3 are pairwise coprime, that the squarefree integer lylol3
divides k, and that w;,;,;, divides uy. Since k is finite, this process evidently
must stop, and we conclude that there are pairwise coprime squarefree in-
tegers l1,...,l; such that k = [y ---1;. We remark that by arguing exactly
as above, if k; is any odd positive integer for which uy, is a square, then
k=1y---1; is a divisor of ky.

With &k and u = XZ as above, define ¢ by

t=au; —2=aXj—2="bvl,
and put

Vi 2+ Ve
Lol

We note that v = 7%, and remark that the sequence {v,} is also a divisibility
sequence. For i > 1 odd, we define new sequences {U;},{V;} by

i Unt+24 ViVt

Then
UVt +2+ ViVt Y ki uki\/&+vki\/5

V2 T T,
_ (uni/we) VE+ 2+ (o /o) VE
NG )
from which it follows that for each odd ¢ > 1,
Uiup, = U; X& = up;.

Therefore, ug; is a square precisely when U; is a square. As remarked at the
end of the previous paragraph, the set of squares in the sequence {u;} is
contained in the subsequence {uy;}, and hence there is a one-to-one corre-
spondence between the set of squares in {u;} and the set of squares in {U;}.

To complete the proof, we observe that by Voutier’s recent refinement
[5] of the main result of [2], the sequence {U;} contains at most two squares,
from which Theorem 1 now follows by the correspondence given in the pre-
vious paragraph.
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