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1. Introduction

1.1. The distribution of values of Dirichlet L-functions at s = 1 (i.e.,
L(χ, 1) for variable χ) has been studied since long, and has a vast litera-
ture. However, the case of the logarithmic derivatives L′(χ, 1)/L(χ, 1) has
not been as much studied. Motivated by their connections with the Euler–
Kronecker invariants of global fields (especially the cyclotomic fields), we
have started studying this distribution. In this article, we shall restrict our
attention to the maximal absolute values (for a given (large) conductor) and
to the “moments”. Further studies including the construction of the density
function for the distribution of L′(χ, s)/L(χ, s) on C, where s is fixed and χ
varies, has been left to [8] and to future publications. We note first that the
basic feature of the logarithmic derivative case is quite different from the
case of L-functions themselves. Instead of a Dirichlet series over the pos-
itive integers with periodic coefficients we have a Dirichlet series over the
prime powers, and instead of holomorphic L-functions we have meromorphic
L′/L-functions with poles at each zero of L(χ, s). Our method is based on
suitably chosen “explicit formulas” (Theorems 1, 2 of §2), and on the study
of distribution of zeros of L-functions.

1.2. We summarize our main results. For each prime number m, let Xm

denote the set of all non-principal multiplicative characters χ : (Z/m)× →
C×, and X+

m (resp. X−m) the subset consisting of even (resp. odd) characters.
For each χ ∈ Xm, L(χ, s) will denote the corresponding Dirichlet L-function.
As is well-known, L(χ, 1) 6= 0.
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First, concerning the maximal value

(1.2.1) max
χ∈Xm

∣∣∣∣L′(χ, 1)
L(χ, 1)

∣∣∣∣,
we shall assume the Generalized Riemann Hypothesis (GRH) and prove that
this is ≤ (2 + o(1)) log logm. In fact, our argument is given more generally
for any Dirichlet characters (that is, finite order Hecke characters) of any
number field (§3, Theorem 3 and Cor. 3.3.2). Numerical data for the quantity
(1.2.1) for m ≤ 105 are also provided (§3.1, Remark 1); they suggest that
the actual bound may be (1 + o(1)) log logm, though the slow growth of
log logm leaves room for doubt.

Secondly, for each pair (a, b) of non-negative integers, consider the mono-
mial P (a,b)(z) = zaz̄b. We shall prove, unconditionally, that

(1.2.2)
1
|Xm|

∑
χ∈Xm

P (a,b)

(
L′(χ, 1)
L(χ, 1)

)
= (−1)a+bµ(a,b) + O(mε−1)

for any ε > 0 (§5, Theorem 5). Here, µ(a,b) is some non-negative real number
defined in §4. This remains valid if Xm is replaced by X±m. A preliminary
result (Theorem 4) and the conditional version of Theorem 5 are given in
the preceding §4. If (a, b) = (1, 0), then µ(1,0) = 0, and the left hand side of
(1.2.2) is

(γQ(µm) − γ)/(m− 2).

Here, γQ(µm) denotes the Euler–Kronecker invariant of the cyclotomic field
studied in [6], [7], and γ = γQ, the Euler constant. So, we obtain some
(conditional and also unconditional) estimates for γQ(µm), and similarly for
γQ(cos(2π/m)) (see §6.1). For further discussions and examples, see §6.

1.3. The corresponding classical results on the values of Dirichlet L-
functions at s = 1 are as follows. Assuming the GRH, Littlewood proved in
[11] that

|L(χ, 1)| ≤ (2 + o(1))eγ log logm.

He also showed that for infinitely many real characters χ we have

L(χ, 1) ≥ (1 + o(1))eγ log logm.

Walfisz and Chowla [2] independently showed that this lower bound holds
unconditionally. This method does not attempt to produce prime discrim-
inants for which the lower bound holds. But note that Littlewood’s upper
bound is for all sufficiently large conductors m.

The classical result

(1.3.1)
1
|Xm|

∑
χ∈Xm

P (1,1)(L(χ, 1)) = ζ(2) + O((logm)2/m)
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by Paley and Selberg has been improved by several authors: W. Zhang
[19] sharpened and generalized it to the case of P (k,k), and Katsurada–
Matsumoto [9] obtained an ultimate asymptotic expansion (for the case
P (1,1)). However, methods used for these do not seem to be applicable to
our case.

Other more or less related references include [14], [16], and [4], [12], [15],
[17, Ch. IX].

1.4. Here, we explain the general features and individual subtleties re-
lating to the formulas (1.2.2), (1.3.1). Let α(n) ∈ C (n = 1, 2, . . . ) be
such that α(n) = O(nε) for any ε > 0, and consider the Dirichlet series
φ(s) =

∑
n α(n)n−s (which is absolutely convergent for Re(s) > 1). For

each χ ∈ X?
m = Xm ∪ {χ0}, consider also the associated Dirichlet series

φχ(s) =
∑

n χ(n)α(n)n−s. Then the orthogonality relation for characters
leads almost directly to the asymptotic formula

1
|X?

m|
∑
χ∈X?

m

P (a,b)(φχ(s)) =
m−1∑
n=1

αa(n)αb(n)
n2σ

+ Oa,b(m1+ε−σ)

for any σ = Re(s) > 1 + ε. Here, αk(n) denotes the Dirichlet coefficient of
φ(s)k (k = 0, 1, 2, . . . ). In particular,

(1.4.1) lim
m→∞

1
|X?

m|
∑
χ∈X?

m

P (a,b)(φχ(s)) =
∞∑
n=1

αa(n)αb(n)
n2σ

.

Now we ask whether this also holds for some s with Re(s) ≤ 1 when X?
m

is replaced by Xm; in particular, assuming that all of the φχ(s) (χ ∈ Xm)
are analytic at s = 1, whether the equality

lim
m→∞

1
|Xm|

∑
χ∈Xm

P (a,b)(φχ(1)) =
∞∑
n=1

αa(n)αb(n)
n2

holds. It is “simply” a question whether one can interchange, in (1.4.1),
the order of passage to the limits, m → ∞ and s → 1. But this depends
delicately on the analytic behavior of φ(s) to the left of Re(s) = 1. When
φ(s) = ζ(s) (resp. ζ ′(s)/ζ(s)), this is in fact valid and gives Zhang’s formula
(though stated only for (k, k) at the end of [19]) generalizing (1.3.1) (resp.
(the formula obtained by taking limm→∞ of) (1.2.2)).

When φ(s) = ζ(s), the estimation of the error term using the Pólya–
Vinogradov inequality for character sums suffices. On the other hand, when
φ(s) = ζ ′(s)/ζ(s), it is more delicate; the estimation of the error term for
some carefully chosen approximations of L′(χ, 1)/L(χ, 1) is reduced to some
properties of the set of non-trivial zeros % of L(χ, s). Under GRH, the error
term for each χ is small, and this, together with Theorem 4 (§4.1), leads to
Corollary 4.1.2. Unconditionally, what we can show instead that still leads
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to our main result, Theorem 5 (§5.1), is that the average of the absolute
value of the error term is sufficiently small. To prove this, we use a result
of Montgomery [13] on the estimation of the total number of zeros % (for
χ ∈ Xm) with |Im(%)| ≤ T and Re(%) ≥ σ for (say) σ ≥ 4/5.

The case of log ζ(s) is also interesting (joint work of K. Matsumoto and
the first named author in progress). Unconditionally, one may get into the
region Re(s) > 1/2 in the cases of ζ(s) and also log ζ(s). But in the case of
ζ ′(s)/ζ(s), Re(s) = 1 would be the best possible, except that in the function
field case where GRH is valid, the analogue of (1.4.1) holds for any s with
Re(s) > 1/2 (cf. [8, Th. 7(iii)]).

We begin with the appropriate approximations of L′(χ, 1)/L(χ, 1) and
the associated “explicit formula”.

2. Explicit formulas

2.1. The invariant γ∗K,χ. Let K be a number field and χ be a primi-
tive Dirichlet character (i.e., a primitive Hecke character with finite order)
on K. Let L(χ, s) be the associated L-function. When χ = χ0, the principal
character, it is the Dedekind zeta function ζK(s) of K. As in [6], write γK
for the constant term divided by the residue, of the Laurent expansion of
ζK(s) at s = 1. Put

γ∗K,χ =
{
γK + 1 (χ = χ0),
L′(χ, 1)/L(χ, 1) (χ 6= χ0).

We shall use the following two basic formulas (Theorems 1, 2) for γ∗K,χ.

2.2. The main formula. For any x > 1, put

ΦK,χ(x) =
1

x− 1

∑
N(P )k≤x

(
x

N(P )k
− 1
)
χ(P )k logN(P ) (x > 1),

where the summation is over the pairs of a non-archimedean prime P of
K and a positive integer k such that N(P )k ≤ x. (When P divides the
conductor fχ of χ, we put χ(P ) = 0.) Note that ΦK,χ(x) is a continuous
function of x, and when χ = χ0, it is equal to the function ΦK(x) considered
in [6]. (Note also that

ΦK,χ(x) =
1

x− 1

x�

1

∑
N(P )k≤t

χ(P )k logN(P )
N(P )k

dt;

hence ΦK,χ(x) represents the average of the partial sums of −L′(χ, 1)/L(χ, 1).)



Logarithmic derivatives of Dirichlet L-functions 257

Theorem 1. For any x > 1, we have

γ∗K,χ = δχ log x− ΦK,χ(x) +
1

x− 1

∑
%

x% − 1
%(1− %)

(2.2.1)

+
a

2
F1(x) +

a′

2
F3(x) + r2F2(x).

Here, δχ = 1 (resp. 0) for χ = χ0 (resp. χ 6= χ0), % runs over all non-trivial
zeros of L(χ, s) (counted with multiplicities),

(2.2.2)
∑
%

= lim
T→∞

∑
|Im(%)|<T

,

a (resp. a′) is the number of real places of K where χ is unramified (resp.
ramified), r1 = a+ a′ (resp. r2) is the number of real (resp. complex) places
of K, and

F1(x) = log
x+ 1
x− 1

+
2

x− 1
log

x+ 1
2

,

F3(x) = log
x2

x2 − 1
+

2
x− 1

log
2x
x+ 1

,

F2(x) =
1
2

(F1(x) + F3(x)) = log
x

x− 1
+

1
x− 1

log x.

Note that Fi(x) (i = 1, 2, 3) are positive real-valued functions of x van-
ishing at x = ∞. When χ = χ0, (2.2.1) follows directly from the formulas
(1.2.1) and (1.4.1) of [6]. By letting x→∞ in (2.2.1), by the same argument
as in [6, §1.6], we obtain the following result.

Corollary 2.2.3. When χ 6= χ0,

L′(χ, 1)
L(χ, 1)

= − lim
x→∞

ΦK,χ(x) = − lim
x→∞

∑
N(P )k≤x

(
χ(P )
N(P )

)k
logN(P ).

2.3. A supplementary formula

Theorem 2. Let dK be the discriminant of K, and fχ be the conductor
of χ. Put dχ = |dK |N(fχ) and

αK,χ =
1
2

log dχ,

βK,χ = −a+ r2

2
(γQ + log 4π)− a′ + r2

2
(γQ + log π).

Then

(2.3.1) γ∗K,χ =
∑
%

1
1− %

− αK,χ − βK,χ.

The equality for the real part of (2.3.1) can be found in some standard
texts in analytic number theory, but we could not find any references for
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(2.3.1) itself. It is not a priori clear that the sum of (1− %)−1 over % in the
sense of (2.2.2) (which is the same as the sum of %′−1 over the non-trivial
zeros %′ of L(χ̄, s)) converges at all.

We add here that if χ = χ0, then αK,χ = αK , βK,χ = βK , and (2.3.1) is
nothing but (1.4.1) of [6].

2.4. Indications for verification of (2.2.1) and (2.3.1). Fix K and χ,
and for any x > 1 and σ ∈ R define

Ψ (σ)(x) =
∑

N(P )k<x

(
χ(P )
N(P )σ

)k
logN(P )

when x 6= N(P )k for any P and k, and Ψ (σ)(x) = 1
2(Ψ (σ)(x+0)+Ψ (σ)(x−0))

otherwise, so that

(2.4.1) ΦK,χ(x) =
1

x− 1
(xΨ (1)(x)− Ψ (0)(x)).

The “explicit formulas” for Ψ (σ)(x) (σ = 0, 1) obtained from Weil’s gen-
eral formula [18] (specialized as indicated in [6, §1.3]) read as follows:

Ψ (0)(x) = δχ(x+ log x− 1)−
∑
%

x% − 1
%

+
1
2

log dχ(2.4.2)

− a+ r2

2
(γQ + log π + log(x2 − 1))

− a′ + r2

2

(
γQ + log 4π + log

x− 1
x+ 1

)
,

Ψ (1)(x) = δχ(log x+ 1− x−1)−
∑
%

x%−1 − 1
%− 1

+
1
2

log dχ(2.4.3)

− a+ r2

2

(
γQ + log 4π − log

1 + x−1

1− x−1

)
− a′ + r2

2
(γQ + log π + log(1− x−2)).

From (2.4.1), (2.4.2) and (2.4.3), it follows directly that

ΦK,χ(x) = δχ log x+
1

x− 1

∑
%

(
x% − 1
%(1− %)

− x− 1
1− %

)
+

1
2

log dχ(2.4.4)

− a+ r2

2
(γQ + log 4π − F1(x))

− a′ + r2

2
(γQ + log π − F3(x)).



Logarithmic derivatives of Dirichlet L-functions 259

Now, since
∑

% |%|−2 converges, so does∑
%

x% − 1
%(1− %)

.

Hence by (2.4.4), the sum
∑

%(1−%)−1 (in the sense of (2.2.2)) also converges.
Note that (2.4.4) differs from (2.2.1) just by (2.3.1).

On the other hand, Lagarias–Odlyzko [10, (7.3)], gives

Ψ (0)(x) = δχ(x+ log x− 1)− γ∗K,χ −
∑
%

x%

%
+
∑
%

1
%(1− %)

(2.4.5)

− a+ r2

2
log

x2 − 1
4
− a′ + r2

2
log

4(x− 1)
x+ 1

,

and the same method also gives

Ψ (1)(x) = δχ(log x+ 1− x−1)− γ∗K,χ −
∑
%

x%−1

%− 1
(2.4.6)

− a+ r2

2
log

1− x−1

1 + x−1
− a′ + r2

2
log(1− x−2).

Note that the difference of (2.4.2) and (2.4.5), and also that of (2.4.3) and
(2.4.6), are both exactly the same supplementary formula (2.3.1). This (dou-
bly) proves (2.3.1) and hence also (2.2.1).

The method of [3], [10] is based on the formulas

Ψ (σ)(x) =
1

2πi

c+i∞�

c−i∞

xs

s
ZK,χ(s+ σ) ds

where c+ σ > 1, and

ZK,χ(s) = −L
′(χ, s)
L(χ, s)

=
∑
P,k

(
χ(P )
N(P )s

)k
logN(P )

for Re(s) > 1, and on the computation of the integral Ψ (σ)(x) in terms of
residues. The term −γ∗K,χ appears as the residue at s = 1− σ.

3. A GRH-bound for |L′(χ, 1)/L(χ, 1)|

3.1. By using Theorems 1, 2 above and some result from [6], we can
obtain an upper bound for |L′(χ, 1)/L(χ, 1)| under the Generalized Riemann
Hypothesis (GRH).
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Theorem 3. (Under GRH) Let χ be a non-principal primitive Dirichlet
character of a number field K with conductor fχ. Then

|L′(χ, 1)/L(χ, 1)| < 2(log log
√
dχ + 1)− γ∗K(3.1.1)

+ O
(

log |dK |+ log log dχ
log dχ

)
.

Here, dχ = |dK |N(fχ) and γ∗K = γK + 1, γK being the Euler–Kronecker
invariant of K.

Note that the RHS of (3.1.1) is positive (modulo the error term), by [6,
Theorem 1]. As will be made evident by the proof, the implicit constant in
the error term can be given explicitly whenever needed. An explicit bound
for the case K = Q will be given later.

Remark 1. Numerical experiments indicate that the coefficient 2 on the
RHS of (3.1.1) can probably be replaced by 1 + o(1). We assume and use
GRH in the following proof of Theorem 3, but we are not able to make use
of cancellations among the %-terms in the explicit formula for ΦK,χ(x), and
this seems to be the cause of the difference. Figure 1 for K = Q plots the
points

Qm = (m, max
χ∈Xm

|L′(χ, 1)/L(χ, 1)|) ∈ R2,

where Xm is the set of all primitive characters modulo m, and m runs
over all prime numbers in the three intervals [3, 21799], [48619, 49277], and
[104743, 104849]. This is given together with the graph of log logm.

20000 40000 60000 80000 100000

0.5

1

1.5

2

2.5

Fig. 1. Qm and (m, log logm)

Remark 2. An interesting case is when K = Q and χ is a quadratic
character such that L(χ, 1) > 0 and L′(χ, 1)/L(χ, 1) is large. In particular,
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suppose that L′(χ, 1)/L(χ, 1) > 2 and consider the graph of the real-valued
function t = L(χ, s) on the real s-line. Then the tangent line at s = 1 is
given by the equation

t = L(χ, 1) + L′(χ, 1)(s− 1)

and it meets the real axis at 1 − L(χ, 1)/L′(χ, 1), which lies between 1/2
and 1. So, when we look at the graph at s = 1 towards the left, the initial
direction of the graph is “going to violate the GRH”. The larger the value
of L′(χ, 1)/L(χ, 1), the stronger this tendency. But as the following graphs
of t = L(χ, s) show, such violations do not easily happen.

(i) m = 95717, χ(−1) = 1, L′(χ, 1)/L(χ, 1) = 2.16 . . . .
(ii) m = 1333963, χ(−1) = −1, L′(χ, 1)/L(χ, 1) = 2.736 . . . .

0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

0.25

Fig. 2. m = 95717

0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

Fig. 3. m = 1333963

It may be worthwhile to have more extensive computations of this kind
to see if this sheds any light on our perception of the GRH.

3.2. Proof of Theorem 3. By Theorem 1,

L′(χ, 1)/L(χ, 1) = −ΦK,χ(x)+
1

x−1

∑
%

x%−1
%(1−%)

+
a+r2

2
F1(x)+

a′+r2

2
F3(x)

for any x > 1. Under GRH, %(1− %) = %%̄ > 0 and |x% − 1| ≤
√
x+ 1; hence

by Theorem 2,

1
x− 1

∣∣∣∣∑
%

x% − 1
%(1− %)

∣∣∣∣ ≤ 1√
x− 1

∑
%

1
%(1− %)

=
2√
x− 1

(Re(L′(χ, 1)/L(χ, 1)) + αK,χ + βK,χ)

≤ 2√
x− 1

(|L′(χ, 1)/L(χ, 1)|+ αK,χ).

Since
a+ r2

2
F1(x) +

a′ + r2

2
F3(x) = O((r1 + r2)(log x)/x)(3.2.1)

= O((αK + 1)(log x)/x),
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and |ΦK,χ(x)| ≤ ΦK(x), we obtain(
1− 2√

x− 1

)∣∣∣∣L′(χ, 1)
L(χ, 1)

∣∣∣∣ < ΦK(x) +
2αK,χ√
x− 1

+ O
(

(αK + 1) log x
x

)
,

where the implicit constant is independent of x,K and χ.
On the other hand, by using Theorems 1, 2 for χ = χ0, we obtain simi-

larly

ΦK(x) < log x− γ∗K +
2(γ∗K + αK)√

x− 1
+ O

(
(αK + 1) log x

x

)
.

Hence (
1− 2√

x− 1

)∣∣∣∣L′(χ, 1)
L(χ, 1)

∣∣∣∣ < log x− γ∗K +
2(γ∗K + αK,χ + αK)√

x− 1

+ O
(

(αK + 1) log x
x

)
.

Now recall that αK,χ = log
√
dχ, and take x = α2

K,χ. Then the above
formula gives

αK,χ−3
αK,χ−1

∣∣∣∣L′(χ, 1)
L(χ, 1)

∣∣∣∣ < 2 logαK,χ−γ∗K +
2γ∗K

αK,χ−1
+2+O

(
αK +1
αK,χ

)
(3.2.2)

< 2(logαK,χ+1)−γ∗K +O
(
αK +1
αK,χ

)
,

by Theorem 1 of [6]. To obtain an upper bound for |L′(χ, 1)/L(χ, 1)| itself,
we take αK,χ > 3 and add to the RHS of (3.2.2) its multiple by 2(αK,χ−3)−1.
But since

−γ∗K < αK + βK < αK

([6, Prop. 3]), we have

−γ∗K/(αK,χ − 3) < O((αK + 1)/αK,χ),

and hence∣∣∣∣L′(χ, 1)
L(χ, 1)

∣∣∣∣ < 2(logαK,χ + 1)− γ∗K + O
(
αK + logαK,χ

αK,χ

)
,

as desired.

3.3. The case K = Q. When K = Q, we can use the inequalities
ΦQ(x) < log x ([6, (1.6.36)]) and

(3.3.1)


F1(x) <

2
x− 1

(log x+ 1),

F3(x) <
1

x2 − 1
+

2
x− 1

log 2 <
1/2 + 2 log 2

x− 1
,

to obtain the following result.
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Corollary 3.3.2. (Under GRH) When K = Q, we have

log
√
dχ − 3

log
√
dχ − 1

∣∣∣∣L′(χ, 1)
L(χ, 1)

∣∣∣∣ < 2(log log
√
dχ + 1)− b+ χ(−1) log 2

log
√
dχ − 1

+


2 log log

√
dχ + 1

(log
√
dχ)2 − 1

if χ(−1) = 1,

log 2 + 1/4
(log

√
dχ)2 − 1

if χ(−1) = −1,

where b = γQ + log 2π − 2 = 0.415 . . . .

4. Moments of L′(χ, 1)/L(χ, 1); (I)

4.1. Now let K = Q, and let m run over the odd prime numbers. For
each such m, denote by Xm the collection of all non-principal primitive
Dirichlet characters χ : (Z/m)× → C×. For each pair (a, b) of non-negative
integers, let P (a,b)(z) = zaz̄b. In this section and in §5, we shall study the
behavior of the mean value of P (a,b)(L′(χ, 1)/L(χ, 1)) (for χ ∈ Xm) when
m is large. The goal of §4 is to obtain an unconditional result (Theorem 4)
and some conditional results (Lemma 1, Corollary 4.1.2).

As usual, Λ(n) = log p when n is a positive integral power of a prime
number p, and Λ(n) = 0 if either n = 1 or n has at least two prime factors.
For each non-negative integer k, define the arithmetic function Λk(n) by

Λ0(n) =
{

1 (n = 1),
0 (n > 1),

Λk(n) =
∑

n=n1···nk

Λ(n1) · · ·Λ(nk) (k > 0).

Note that Λk(n) = 0 unless the number of prime factors of n is at most k
and the sum of exponents in the prime factorization of n is at least k. It is
easy to see that

Λk(pr) =
(
r − 1
k − 1

)
(log p)k

for 1 ≤ k ≤ r, and that

(4.1.1) Λk(n) ≤ (log n)k

(cf. [8, §3.8]).
For each pair (a, b) of non-negative integers, put

µ(a,b) = µ(b,a) =
∞∑
n=1

Λa(n)Λb(n)
n2

.

Note that µ(0,0) = 1, µ(a,0) = µ(0,a) = 0 for any a > 0, µ(a,b) > 0 in all other
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cases, and

µ(a,1) =
∑
p

(log p)a+1

(p2 − 1)a
(a > 0).

In particular,

µ(1,1) =
∞∑
n=1

Λ(n)2

n2
=
∑
p

(log p)2

p2 − 1
= 0.80521 . . . .

Put Φχ(x) = ΦQ,χ(x), so that

Φχ(x) =
1

x− 1

∑
n≤x

(
x

n
− 1
)
Λ(n)χ(n).

Theorem 4. For each pair (a, b) of non-negative integers, and x ≥ m,
we have

1
|Xm|

∑
χ∈Xm

P (a,b)(Φχ(x)) = µ(a,b) + O
(

(log x)d

m

)
,

where d = a+ b+ 1 when ab = 0, and d = a+ b+ 2 otherwise. This remains
valid if Xm is replaced by the set of all even (resp. odd) characters. The
implicit constant depends on a and b.

Now, the following conditional Lemma 1 gives an easily observable con-
nection between Φχ(x) and −L′(χ, 1)/L(χ, 1).

Lemma 1. (Under GRH) For x > 1, we have

L′(χ, 1)
L(χ, 1)

+ Φχ(x) = O
(

logm√
x

+
log x
x

)
(χ ∈ Xm),

the implicit constant being absolute.

Proofs of Theorem 4 and Lemma 1 will be given in §4.2. By using both
these results for x = m2, we easily obtain the following corollary (a similar
argument in the more complicated unconditional case is in §5.3 below).

Corollary 4.1.2. (Under GRH)

1
|Xm|

∑
χ∈Xm

P (a,b)(L′(χ, 1)/L(χ, 1)) = (−1)a+bµ(a,b) + O
(

(logm)d

m

)
.

In particular ,

(4.1.3) lim
m→∞

1
|Xm|

∑
χ∈Xm

P (a,b)(L′(χ, 1)/L(χ, 1)) = (−1)a+bµ(a,b).

These remain valid if Xm is replaced by the set of all even (resp. odd) char-
acters.
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4.2. Proof of Theorem 4. First, since Φχ0(x) = O(log x), we may include
the principal character in proving the theorem. Write X?

m = Xm∪{χ0}. Put

(4.2.1) µ(a,b)(x) =
1
|X?

m|
∑
χ∈X?

m

P (a,b)(Φχ(x)) =
1
|X?

m|
∑
χ∈X?

m

Φχ(x)aΦχ̄(x)b.

Then the orthogonality relation for characters implies directly that

(4.2.2) µ(a,b)(x) =
m−1∑
c=1

λ(a)(c, x)λ(b)(c, x),

where

λ(k)(c, x) =
1

(x− 1)k
∑

n1,...,nk<x
n1···nk≡c (modm)

k∏
i=1

(
x

ni
− 1
)
Λ(ni)

for k ≥ 1, and λ(0)(c, x) = 1, 0 for c = 1, > 1 respectively. So, if we put

(4.2.3) L(k)(N, x) =
1

(x− 1)k
∑

n1,...,nk<x
n1···nk=N

k∏
i=1

(
x

ni
− 1
)
Λ(ni)

for k,N ≥ 1, and L(0)(N, x) = 1, 0 for N = 1, > 1 (respectively), then

(4.2.4) λ(k)(c, x) =
[(xk−c)/m]∑

l=0

L(k)(c+ lm, x).

We shall show that the terms with l > 0 are altogether negligible, and that
the term with l = 0 can be expressed as the sum of a simpler quantity and
a negligible one. To see this, we first note that L(k)(N, x) 6= 0 only when
N < xk, and that in this case

L(k)(N, x) ≤ 1
N

∑
n1,...,nk<x
n1···nk=N

Λ(n1) · · ·Λ(nk)

≤ 1
N
Λk(N) ≤ (logN)k

N
< kk

(log x)k

N
.

From this, it follows immediately that the sum of terms with l > 0 in (4.2.4)
is O((log x)k+1/m). Therefore,

(4.2.5) λ(k)(c, x) = L(k)(c, x) + O((log x)k+1/m).

Note that λ(0)(c, x) = L(0)(c, x); hence the above exponent of log x can be
replaced by 0 when k = 0. Now we shall show that

(4.2.6) L(k)(c, x) =
Λk(c)
c

+ O((logm)k/x) (x ≥ m).
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This is based on a very simple inequality. For any x > 0 and i, j ≥ 1, we
have (x − i)(x − j) ≥ (x − 1)(x − ij); hence for any n1, . . . , nk ≥ 1 and
x > n1 · · ·nk,

(x− 1)k ≥ (x− n1) · · · (x− nk) ≥ (x− 1)k−1(x− n1 · · ·nk).

This gives directly

0 ≤
k∏
i=1

1
ni
− 1

(x− 1)k

k∏
i=1

(
x

ni
− 1
)
≤ c− 1
c(x− 1)

for any n1, . . . , nk ≥ 1 with n1 · · ·nk = c and x ≥ m. Therefore,

(4.2.7)
1

(x− 1)k

k∏
i=1

(
x

ni
− 1
)

=
k∏
i=1

1
ni

+ O
(

1
x

)
.

Now, note that for N = c and x ≥ m, the summation condition n1, . . . , nk
< x in (4.2.3) is automatic. Therefore, (4.2.7) and (4.1.1) give (4.2.6).

Now since Λk(c) = O((logm)k), we obtain, from (4.2.2), (4.2.5) and
(4.2.6),

µ(a,b)(x) =
m−1∑
c=1

Λa(c)Λb(c)
c2

+ O
(

(log x)a+b+2

m

)
.

(Note that the exponent a+ b+2 can be replaced by a+ b+1 when ab = 0.)
But since ∑

n≥m

Λa(n)Λb(n)
n2

≤
∑
n≥m

(log n)a+b

n2
= O

(
(logm)a+b

m

)
,

the first statement of the theorem follows.
Based on this, the additional statement for even characters (and hence

also for odd characters) can be reduced to the following simple estimate:

m−1∑
c=1

Λa(c)Λb(m− c)
c(m− c)

≤ (logm)a+b
m−1∑
c=1

1
c(m− c)

(4.2.8)

= O
(

(logm)a+b+1

m

)
.

Indeed, write µ(a,b)
+ (x) for the modification of (4.2.1) where X?

m is re-
placed by all even characters including χ0. Then the orthogonality relation
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for characters gives

µ
(a,b)
+ (x) =

∑
1≤c,c′≤m−1
c′≡±c (modm)

λ(a)(c, x)λ(b)(c′, x)

= µ(a,b)(x) +
m−1∑
c=1

λ(a)(c, x)λ(b)(m− c, x).

Therefore, it remains to prove that

(4.2.9)
m−1∑
c=1

λ(a)(c, x)λ(b)(m− c, x) = O
(

(log x)d

m

)
.

But by (4.2.5) and (4.2.6) we have

λ(k)(c, x) =
Λk(c)
c

+ O
(

(log x)k
′

m

)
(x ≥ m),

where k′ = k + 1 for k > 0, and k′ = 0 for k = 0. And since moreover
m−1∑
c=1

Λk(c)
c

= O((logm)k
′
),

(4.2.9) is reduced to (4.2.8).
This completes the proof of Theorem 4.

Proof of Lemma 1. The main explicit formula (2.2.1) gives, for any x > 1,
L′(χ, 1)
L(χ, 1)

+ Φχ(x) =
1

x− 1

∑
%

x% − 1
%(1− %)

+
1
2
F2−χ(−1)(x).

By (3.3.1), the second term on the RHS has order at most O((log x)/x).
Moreover, under the GRH, the absolute value of the first term is at most

1√
x− 1

∑
%

1
%(1− %)

≤ 1√
x− 1

(
2Re

(
L′(χ, 1)
L(χ, 1)

)
+ logm

)
= O

(
logm√
x− 1

)
by Theorems 2 and 3. The rest is obvious.

5. Moments of L′(χ, 1)/L(χ, 1); (II)

5.1. Statement of results. In this section, we establish the following un-
conditional version of Corollary 4.1.2.

Theorem 5. We have, unconditionally ,
1
|Xm|

∑
χ∈Xm

P (a,b)(L′(χ, 1)/L(χ, 1)) = (−1)a+bµ(a,b) + O(mε−1),

for any ε > 0. In particular , the limit formula (4.1.3) holds unconditionally.
The same remains valid if Xm is replaced by X±m.
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5.2. The key lemma. Recall that the corresponding conditional result,
Corollary 4.1.2, was proved by a direct combination of Theorem 4 and
Lemma 1 (§4.1). Among them, Lemma 1 was conditional. Our proof of
Theorem 5 is obtained by combining Theorem 4 with the following uncon-
ditional substitute for Lemma 1, in which (i) is supplementary and (ii) is
more crucial.

Lemma 2.

(i) Let χ ∈ Xm, x ≥ m, and ε > 0. Then∣∣∣∣L′(χ, 1)
L(χ, 1)

∣∣∣∣+
∣∣∣∣L′(χ, 1)
L(χ, 1)

+ Φχ(x)
∣∣∣∣� {

mε for χ = χ1,

( logm)2 for χ 6= χ1,

where χ1 denotes the unique quadratic character in Xm.
(ii) Let x ≥ m12. Then∑

χ∈Xm
χ 6=χ1

∣∣∣∣L′(χ, 1)
L(χ, 1)

+ Φχ(x)
∣∣∣∣� (log x)15.

5.3. Reducing Theorem 5 to Lemma 2. We shall use the following ele-
mentary inequality ([8, §6.8]):

(5.3.1) |P (a,b)(z + w)− P (a,b)(z)| ≤ (a+ b)|w|(|z|+ |w|)a+b−1 (z, w ∈ C).

(This is a simple explicit version of the mean value theorem for polynomials
in two variables.)

Take z = −L′(χ, 1)/L(χ, 1) and w = L′(χ, 1)/L(χ, 1) + Φχ(x). Then
(5.3.1), together with Lemma 2(i) (for a, b fixed and x ≥ m) gives

|P (a,b)(Φχ(x))− P (a,b)(−L′(χ, 1)/L(χ, 1))|

�

{
mε(a+b) for χ = χ1,

(logm)2(a+b−1)|L′(χ, 1)/L(χ, 1) + Φχ(x)| for χ 6= χ1.

Now put x = m12. Then the above and Lemma 2(ii) give∑
χ∈Xm

|P (a,b)(Φχ(x))− P (a,b)(−L′(χ, 1)/L(χ, 1))|

� mε(a+b) + (logm)2(a+b−1)+15 � mε′ .

Therefore,
1
|Xm|

∑
χ∈Xm

P (a,b)(−L′(χ, 1)/L(χ, 1)) =
1
|Xm|

∑
χ∈Xm

P (a,b)(Φχ(x)) + O(mε′−1)

= µ(a,b) + O(mε′−1)

by virtue of Theorem 4. Thus, Theorem 5 is reduced to Lemma 2. (Since
Theorem 4 remains valid with Xm replaced by X±m, so does Theorem 5.)
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5.4. Reducing Lemma 2 to L-zero sum estimates. We are going to prove
Lemma 2 by using the explicit formula (Theorem 1 of §2). Together with
the estimate (3.2.1) of the archimedean part, this gives

(5.4.1)
L′(χ, 1)
L(χ, 1)

+ Φχ(x) =
1

x− 1

∑
%∈Zχ

x% − 1
%(1− %)

+ O
(

log x
x

)
,

where Zχ denotes the set of all non-trivial zeros of L(χ, s). This formula
reduces Lemma 2 to appropriate estimates of the quantities∑

%∈Zχ

∣∣∣∣ x% − 1
%(1− %)

∣∣∣∣, ∑
χ∈Xm
χ 6=χ1

∑
%∈Zχ

∣∣∣∣ x% − 1
%(1− %)

∣∣∣∣.
These will be collected in the sublemma below, of which (ii) may be of
independent interest. But first we recall a classical result on zero-free regions.

It is well-known (cf., e.g., [3]) that there is an effective and absolute
constant c > 0, and (possibly) a real simple zero β1 > 1/2 of L(χ1, s), such
that if % = β + iγ is any non-trivial zero of L(χ, s) (χ ∈ Xm) with |γ| ≤ T ,
T ≥ 1, then either χ = χ1 and % is one of β1, 1− β1, or

(5.4.2) min(1− β, β) >
c

log(mT )
.

Sublemma 5.4.3.

(i) Let χ ∈ Xm be fixed. Then∑
%∈Zχ

′
∣∣∣∣ 1
%(1− %)

∣∣∣∣� (logm)2,(5.4.4)

1
β1(1− β1)

� mε,(5.4.5) ∑
%∈Zχ
|γ|>T

∣∣∣∣ x%

%(1− %)

∣∣∣∣� x log(mT )
T

(x, T > 1).(5.4.6)

(ii) For x ≥ (mT )6 and T > 1,∑
χ∈Xm

∑
%∈Zχ
|γ|≤T

′
∣∣∣∣ x%

%(1− %)

∣∣∣∣� x(log x)15.

Here,
∑′ denotes the sum over % 6= β1.

Reducing Lemma 2 to the sublemma. (i) By (5.4.1), we have, for x ≥ m
(≥ 2),
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L(χ, 1)

+ Φχ(x)
∣∣∣∣� ∑

%∈Zχ

∣∣∣∣ 1
%(1− %)

∣∣∣∣+
logm
m

�
{
mε (χ = χ1),
(logm)2 (χ 6= χ1),

by the first two inequalities in the sublemma. Since |Φχ(m)| ≤ |Φχ0(m)| �
logm, the same holds for |L′(χ, 1)/L(χ, 1)|; whence Lemma 2(i).

(ii) By (5.4.1) for χ 6= χ1,∣∣∣∣L′(χ, 1)
L(χ, 1)

+ Φχ(x)
∣∣∣∣� 1

x− 1

∑
|γ|≤T

′
∣∣∣∣ x%

%(1− %)

∣∣∣∣+
1

x− 1

∑
|γ|>T

∣∣∣∣ x%

%(1− %)

∣∣∣∣
+

1
x− 1

∑ ′
∣∣∣∣ 1
%(1− %)

∣∣∣∣+ O
(

log x
x

)
,

where the indication % ∈ Zχ is suppressed. Hence, by Sublemma 5.4.3(i),
the right hand side above is

� 1
x

∑
|γ|≤T

′
∣∣∣∣ x%

%(1− %)

∣∣∣∣+
log(mT )

T
+

(logm)2

x
+

log x
x

.

Now let T = m, x ≥ m12. Then by this and Sublemma 5.4.3(ii),∑
χ 6=χ1

∣∣∣∣L′(χ, 1)
L(χ, 1)

+ Φχ(x)
∣∣∣∣� 1

x

∑
χ∈Xm

∑
|γ|≤m

′
∣∣∣∣ x%

%(1− %)

∣∣∣∣+ logm

� (log x)15 + logm� (log x)15,

as desired.

5.5. Proof of Sublemma 5.4.3(i). First, since β1 > 1/2 and 1−β1 � m−ε

(e.g., [3, §21]), (5.4.5) is obvious. Secondly, (5.4.4) and (5.4.6) follow directly
by using the well-known inequality (e.g. [3])

]{% | |γ − T | < 1} � log(m(T + 2))

to estimate the number of terms in a given interval, and∣∣∣∣ 1
%(1− %)

∣∣∣∣� {
logm (|γ| ≤ 1, % 6= β1),
γ−2 (|γ| > 1),

to estimate each summand. (The first case of the above inequality follows
from (5.4.2) for T = 1.)

5.6. Proof of Sublemma 5.4.3(ii). For each 0 ≤ σ ≤ 1 and T ≥ 2, set
N(σ, T, χ) = ]{% = β + iγ ∈ Zχ | β ≥ σ, |γ| ≤ T},
N(σ, T,m) =

∑
χ∈Xm

N(σ, T, χ).
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Then, firstly, as is well-known,

(5.6.1) N(0, T,m)� mT log(mT ).

Secondly, by Montgomery [13, Theorem 12.1] (cf. also a sharper result due
to Huxley–Jutila [5]),

(5.6.2) N(σ, T,m)� (mT )5(1−σ)/2(log(mT ))14 for σ ≥ 4/5.

Now let T ≥ 2, x > 1, and consider the sum

(5.6.3) S̃(x,m, T ) =
∑
χ∈Xm

∑
%∈Zχ
|γ|≤T

′
xβ.

We claim that

(5.6.4) S̃(x,m, T )� x(log x)14 for x ≥ (mT )6.

To prove this claim, first note that the sum in (5.6.3) over those % with
β ≤ 4/5 is

� x4/5N(0, T,m)� x4/5(mT ) log(mT )� x4/5+1/6 log x� x,

by (5.6.1). The remaining sum is given by

−
1�

4/5

xσdσN(σ, T,m) ≤ x4/5N(4/5, T,m) +
1�

4/5

(xσ log x)N(σ, T,m) dσ.

The first term of the right hand side is, again, � x, while by (5.6.2), the
second term is

(5.6.5) � (log x)(mT )5/2(log(mT ))14
1�

4/5

(x/(mT )5/2)σ dσ.

But since
1�

4/5

(x/(mT )5/2)σ dσ ≤ (x/(mT )5/2)/log(x/(mT )5/2)� (x/(mT )5/2)/log x

by our assumption on x, (5.6.5) is

� x(log(mT ))14 � x(log x)14.

This proves the claim (5.6.4).
Now, let us finally estimate the sum

S(x,m, T ) =
∑
χ∈Xm

∑
%∈Zχ
|γ|≤T

′
∣∣∣∣ x%

%(1− %)

∣∣∣∣
in question. First, the sum over those % with β ≤ 4/5 is � x4/5m(logm)2

by Sublemma 5.4.3(i); hence it is � x. So, let us restrict ourselves to those
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% with β ≥ 4/5. Then since

|%(1− %)| ≥ Re(%(1− %)) = β(1− β) + γ2,

and β > 1/2, 1 − β > c/log(mT ), we may use |%(1 − %)| > c/(2 log(mT ))
when |γ| ≤ 2, and |%(1−%)| > γ2 when |γ| > 2, to estimate S(x,m, T ). This
gives

S(x,m, T )� (2/c) log(mT )S̃(x,m, 2) +
∑
j≥0

2j+1≤T

∑
χ∈Xm

∑
2j≤|γ|≤2j+1

1
γ2
xβ

� log(mT )S̃(x,m, 2) +
∑
j≥0

2−2jS̃(x,m, 2j+1).

But the condition x ≥ (mT )6 in (5.6.4) remains valid if T is replaced by
anything smaller; hence

S(x,m, T )� (log(mT ))x(log x)14 � x(log x)15,

as desired.
This settles the proof of the sublemma, hence of Lemma 2, and hence

that of Theorem 5.

6. Applications to distributions of L′(χ, 1)/L(χ, 1)

6.1. In this section, we shall give several remarks on the distribution of
L′(χ, 1)/L(χ, 1), which can be deduced from Corollary 4.1.2 and Theorem 5.

The case a+b = 1. The decomposition of ζQ(µm)(s)/ζ(s) into the product
of L(χ, s) (χ ∈ Xm), and the similar one for the real cyclotomic field, give
rise to the additive decompositions

γQ(µm) = γQ +
∑
χ 6=χ0

L′(χ, 1)/L(χ, 1),

γQ(µm)+ = γQ +
∑
χ 6=χ0

χ(−1)=1

L′(χ, 1)/L(χ, 1)

(see §2.1 for the definition of γK). So, the case (a, b) = (1, 0) of Corollary
4.1.2 and Theorem 5 give the following estimates.

Corollary 6.1.1.

|γQ(µm)|, |γQ(µm)+ | =
{

O((logm)2) (under GRH ),
O(mε) (unconditionally).

As is pointed out in [6], [7], when we study the range of values of the
Euler–Kronecker invariants γK for a given family of global fields K (where
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for each family we impose the additional condition |dK | ≤ x, dK the dis-
criminant, x grows), it is important to study the upper and the lower bound
carefully and separately, because each reflects the arithmetic nature of the
family in a different way. The upper bound is usually small (under GRH,
� log log |dK |) and the arithmetic implication is not well understood. The
lower bound for the most general family is negative and has larger absolute
values (� − log |dK |), and when the family has increasingly many primes
with small norms, the negative range is in fact much wider than the positive
range. Even for the family of number fields with a given degree N > 2,
the negative range is wider. Now, in the case of cyclotomic fields Q(µm)
or Q(µm)+, each of which has only few primes with small norms, the sit-
uation is very much different. In this case, we have a GRH upper bound
(2+ε) logm [6, Theorem 1], and as for the lower bound, numerical evidence
and some L-zero interpretations suggest that their Euler–Kronecker invari-
ants are always positive [7]. However, the best result for the lower bound we
have obtained so far is the above corollary for their absolute values.

More recently (after the preliminary version of this article containing the
above conditional estimate had been circulated), we were informed that An-
drey Badzyan has proved (among other things in [1]) the following stronger
estimate by using (our explicit formula for ΦK(x) and) sieve methods

|γQ(µm)| = O((logm)(log logm)) (under GRH).

The case a + b = 2. Write (α, β) = Re(αβ̄) for any α, β ∈ C. Then
Theorem 5 for (a, b) = (2, 0), (1, 1), (0, 2) gives:

Corollary 6.1.2. Let α ∈ C with |α| = 1. Then

lim
m→∞

1
|Xm|

∑
χ∈Xm

(
α,
L′(χ, 1)
L(χ, 1)

)2

=
1
2

lim
m→∞

1
|Xm|

∑
χ∈Xm

∣∣∣∣L′(χ, 1)
L(χ, 1)

∣∣∣∣2 =
1
2
µ(1,1).

This remains valid if Xm is replaced by X±m.

The case a+ b = 3. In this case, µ(2,1) = 0.0705 . . . . This shows that the
average of (Re(L′(χ, 1)/L(χ, 1)))3 for large m is −3

4µ
(2,1), which is negative!

The same argument shows that the average of (Re(L′(χ, 1)/L(χ, 1)))k is
negative for large m, for any odd integer k ≥ 3. (Recall, from the case
a + b = 1, that when k = 1 this average tends to 0 as m → ∞ and that
conjecturally it is positive for each m.) What this might indicate is the
possibility that the distribution of L′(χ, 1)/L(χ, 1) on the left half plane is
more spread out while that on the right is more numerous and accumulated
near the y-axis. Such a tendency becomes evident only when m is large (see
Figures 4, 5 below).

The case (a, b) = (2, 2). We have µ(2,2) = 1.25 . . . , which is considerably
larger than the square of µ(1,1). The result for a+b = 2 alone does not exclude
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the possibility that the points L′(χ, 1)/L(χ, 1) are distributed near the cir-
cle with center O and radius

√
µ(1,1) with their arguments nearly uniformly

distributed. But this result for (2, 2) shows that this cannot be the case.
We have computed other higher powers; for example, we can show that

the average of (Re(L′(χ, 1)/L(χ, 1)))8 for large m exceeds 2.09.

Histograms for some m. Figures 4 resp. 5 are histograms for the distri-
bution of L′(χ, 1)/L(χ, 1) on the domain {z = x+ iy ∈ C}, for χ ∈ X+

m resp.
X−m, when m = 104849. (Incidentally, log logm = 2.4475 . . . .) The difference
of slopes on the left and the right sides seems to be in accordance with the
last remark in the above description for the case a+ b = 3.
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Fig. 4. m = 104849, even characters
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Fig. 5. m = 104849, odd characters

A final remark. One can show the following, at least under GRH ([8,
especially Remark (ii) in §6.9]). If we average, with weight |Xm|−1, the
distribution over all primes m ≤ N , then the joint histogram converges to
a limit as N → ∞, and the height of the limit histogram at each z ∈ C
is given by M1(z)/(2π), where Mσ(z) is the “M-function” constructed and
studied there. In particular, the limit height at (0, 0) can be computed as
the integral of its Fourier dual M̃1(z) over C. Approximately, M1(0)/(2π) =
2.41 . . . /(2π) = 0.38 . . . (loc.cit., Remark 3.11.17).
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Fig. 6. m < 21799
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Figure 6 gives the joint histogram for N = 21799. The height at its origin
looks close to 0.38, but we must add that the value computed by using the
smaller square region |x|, |y| < 0.05 is less close and is about 0.364 . . . . We
need better approximations from both sides to be able to determine the
value more accurately.
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