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Digital (t,m, s)-nets and the spectral test

by

Peter Hellekalek (Salzburg)

1. Introduction. The notion of a (t,m, s)-net to a given base b is a
central concept of the modern theory of uniform distribution of sequences
modulo one. It has been introduced by Niederreiter [11] in a highly suc-
cessful attempt to unify and extend existing construction methods for low-
discrepancy point sets. Such nets are of fundamental importance in the
theory and practice of quasi-Monte Carlo methods.

The optimal choice for the quality parameter t is t = 0. Practical con-
struction methods for (t,m, s)-nets are based upon the concept of a dig-
ital (t,m, s)-net. We refer the reader to the surveys Niederreiter [12] and
Larcher [7] for further reading.

In this paper we will study the following question. Suppose that the
dimension s is given. What will be the best possible uniform distribution of
a (t,m, s)-net in base b on the s-dimensional torus [0, 1[s? More precisely,
for an appropriately chosen measure of uniform distribution, is it possible
to give exact upper and lower bounds for (digital) (t,m, s)-nets?

We will employ the concept of the generalized spectral test introduced
in Hellekalek [4] to find an answer for this question. Our results include an
upper bound for the general case and lower bounds for digital (t,m, s)-nets
in prime base b. All bounds are best possible.

Our method is based upon the exact computation of Weyl sums with
respect to an appropriate Walsh function system and the application of
elementary concepts of linear algebra.

In our proofs for strict digital (t,m, s)-nets in base b we use results
for associated linear codes established in Niederreiter and Pirsic [14] and
Skriganov [16]. Interestingly, duality comes into play with all applications
of the spectral test: see the survey Hellekalek [5].
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2. Preliminaries. Throughout this paper, if the integer b is a prime,
we will identify the ring Zb of residues modulo b with the finite field Fb. We
assume that the reader is familiar with the notion of arbitrary and digital
(t,m, s)-nets. The monograph [12] and the survey papers [7, 15] contain
comprehensive discussions of this topic. We refer to [2, 4] for details on the
b-adic representation of real numbers and integers as well as elementary
properties of the Walsh functions in base b.

Representation in base b. Let b ≥ 2 be a fixed integer. Every number
x ∈ [0, 1[ may be represented in the form x =

∑∞
j=0 xjb

−j−1, with digits
xj ∈ {0, 1, . . . , b− 1}. We will assume that xj 6= b− 1 for infinitely many j,
which implies uniqueness of the representation. The “digit vector” of x will
be denoted by

x = (x0, x1, . . .).

In the same fashion, with any nonnegative integer k, k =
∑∞

j=0 kjb
j , with

digits kj ∈ {0, 1, . . . , b−1}, we will associate the digit vector k = (k0, k1, . . .).
Throughout this paper, the zero vector (0, 0, . . .) will be denoted by 0.

If k = (k(1), . . . , k(s)) ∈ Zs, each k(i) ≥ 0, then the associated digit vector
is defined as

k = (k(1), . . . , k(s)).

Analogously, we define the digit vector that is associated with an element
x = (x(1), . . . , x(s)) ∈ [0, 1[s as x = (x(1), . . . , x(s)). For x ∈ [0, 1[ and k ∈ Z,
k ≥ 0, we define

k · x =
∞∑

j=0

kjxj (mod b).

This quantity is well defined because only finitely many digits kj will be
different from zero. We generalize this notion to dimension s in the obvious
manner:

k · x =
s∑

i=1

k(i) · x(i) (mod b),

where k = (k(1), . . . , k(s)) ∈ Zs and x = (x(1), . . . , x(s)) ∈ [0, 1[s.

Walsh functions in base b. For x ∈ [0, 1[s and k ∈ Zs with all k(i) ≥ 0,
we define the kth Walsh function wk in base b on the s-dimensional torus
[0, 1[s as follows. Let e(z) = e2πiz/b for z ∈ Z. Then

wk(x) = e(k · x).

The reader will note that we have slightly abused the notion of an inner
product of digit vectors. If k(i) and x(i) are not of the same length, then the
missing digits in the b-adic representation are assumed to be filled up with
zeros.
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Weight functions. For a digit vector k = (k0, k1, . . .) in base b with only
finitely many digits kj different from zero, let v(k) denote the following
weight function:

v(k) =
{

1 + max{j : kj 6= 0} if k 6= (0, 0, . . .),
0 otherwise.

This type of weight function has been introduced in [14] and [16] (see also
[10, pp. 158, 163] for a first, implicit version of this concept). We observe
that the condition bg ≤ k < bg+1, g ≥ 0, for the integer k is equivalent to
the condition v(k) = g + 1 for the weight of its digit vector k. The weight
V (k) of a vector k = (k(1), . . . , k(s)) of digit vectors k(i) is defined as

V (k) =
s∑

i=1

v(k(i)).

Weyl sums. For a sequence ω = (xn)n≥0 on the torus [0, 1[s, and a
Riemann-integrable function f : [0, 1[s → C, let

SN (f, ω) =
1
N

N−1∑

n=0

f(xn)(1)

denote the mean value of the function f with respect to the first N elements
of ω. If f = wk for some k, then we speak of a Weyl sum.

Weyl’s criterion. Weyl’s criterion for the Walsh system (see [3, 4]) tells
us that the uniform distribution modulo one of a sequence ω is equivalent
to the condition

lim
N→∞

SN (wk, ω) = 0 ∀k 6= 0.

Spectral test. The Walsh spectral test defined below molds Weyl’s crite-
rion into a quantitative form, into a measure of the uniform distribution of
sequences modulo one.

Definition 1. For an integer vector k = (k(1), . . . , k(s)) with each k(i) ≥
0, let r(k) = bV (k). For an arbitrary sequence ω = (xn)n≥0 in [0, 1[s, the
Walsh spectral test σN (ω) of the first N elements of ω is defined as the
quantity

σN (ω) = sup
k6=0

|SN (wk, ω)|
r(k)

.(2)

Uniform distribution of the sequence ω is equivalent to the relation

lim
N→∞

σN (ω) = 0

(see [4]).

Digital nets and codes. Let ω = (xn)b
m−1
n=0 be a digital (t,m, s)-net in

base b and let b be a prime number. Choosing fixed bijections from the set
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of digits {0, 1, . . . , b− 1} to the finite field Fb, we may write xn in the form

xn = (nC1, nC2, . . . , nCs), 0 ≤ n < bm,

with some m ×m matrices Ci over Fb, 1 ≤ i ≤ s. Hence, we may view the
set ω = {xn, 0 ≤ n < bm} as a linear subspace of the vector space Fsmb ,
in other words, as a linear code over Fb. Let ω⊥ denote its dual code. The
definition of the weight functions v and V extends to Fmb and Fsmb in an
obvious manner. We refer the reader to [14, 16] for details.

3. Results. In this section, we will show a general upper bound for the
spectral test for arbitrary (t,m, s)-nets in base b ≥ 2, b some fixed integer
(see Theorem 4). Further, we will prove lower bounds for digital (t,m, s)-
nets in prime base b in Theorem 6. Finally, we will determine the exact
value of the spectral test for strict digital (t,m, s)-nets for a prime base b
(see Corollary 8). It follows that the bounds given in Theorems 4 and 6 are
best possible.

The first lemma is a basic tool in the study of (t,m, s)-nets by Walsh
functions. It was first proved in [8, Lemma 2a]. Our proof uses elementary
“geometrical” arguments.

Lemma 1. Let ω = (xn)b
m−1
n=0 be a (t,m, s)-net in base b, b ≥ 2 an arbi-

trary integer. Then

Sbm(wk, ω) = 0 ∀k : 0 < V (k) ≤ m− t.(3)

Proof. Suppose that k = (k(1), . . . , k(s)) is such that 0 < V (k) ≤ m− t.
This implies that not all k(i) are equal to zero and that v(k(i)) = gi with some
integer gi ≥ 0, 1 ≤ i ≤ s, where

∑s
i=1 gi ≤ m− t. In other words, k(i) < bgi ,

1 ≤ i ≤ s. It is elementary to see from its definition that the Walsh function
wk is constant on every elementary b-adic interval Ja, a = (a(1), . . . , a(s)), of
the form Ja =

∏s
i=1[a(i)b−gi , (a(i) + 1)b−gi [, where 0 ≤ a(i) < bgi , 1 ≤ i ≤ s.

Let ca denote the value of wk on Ja. Then wk can be written as the step
function wk =

∑
a ca1Ja , where summation is over all possible vectors a

and 1Ja denotes the characteristic function of the interval Ja, 1Ja(x) = 1 if
x ∈ Ja, and 1Ja(x) = 0 otherwise. Hence, Sbm(wk, ω) =

∑
a caSbm(1Ja , ω).

Let λs stand for the Lebesgue measure on [0, 1[s. The volume λs(Ja) of
Ja is independent of a, λs(Ja) = b−

∑s
i=1 gi . It is a basic fact about Walsh

functions that the integral of wk over the whole unit cube [0, 1[s is zero.
This implies

∑
a ca = 0, which gives the identity

Sbm(wk, ω) =
∑

a

caSbm(1Ja − λs(Ja), ω).

The (t,m, s)-net property of ω implies that every interval Ja contains the
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same number of points of ω. This number is equal to bm−
∑s
i=1 gi . Hence,

Sbm(1Ja − λs(Ja), ω) =
1
bm

(bm−
∑s
i=1 gi − bmλs(Ja)) = 0,

for all choices of a. The result follows.

Lemma 2. Let ω = (xn)b
m−1
n=0 be a finite sequence of bm points in the

s-dimensional unit cube [0, 1[s and suppose that

Sbm(wk, ω) = 0 ∀k : 0 < V (k) ≤ m− t.(4)

Then ω is a (t,m, s)-net.

Proof. Suppose that J is an arbitrary elementary b-adic interval of the
form

J =
s∏

i=1

[a(i)b−gi , (a(i) + 1)b−gi [,

with 0 ≤ a(i) < bgi , gi ≥ 0, and
∑s

i=1 gi = m− t. We put

f(x) = 1J(x)− λs(J), x ∈ [0, 1[s.

In order to show that ω is a (t,m, s)-net in base b, it suffices to prove that
Sbm(f, ω) = 0.

If 1̂J(k) denotes the kth Walsh coefficient of the function 1J , then, due
to [2, Lemmas 2 and 3], the following identity holds:

f(x) =
∑

k∈∆∗
1̂J(k)wk(x) ∀x ∈ [0, 1[s,

where ∆∗ = {k 6= 0 : 0 ≤ k(i) < bgi , 1 ≤ i ≤ s}. From this relation,
we deduce that Sbm(f, ω) =

∑
k∈∆∗ 1̂J(k)Sbm(wk, ω). Further, the condition

k ∈ ∆∗ implies V (k) ≤∑s
i=1 gi = m− t. Hence, all Weyl sums Sbm(wk, ω)

will be equal to zero. This implies Sbm(f, ω) = 0.

Corollary 3. Let ω = (xn)b
m−1
n=0 be a finite sequence of bm points in

the s-dimensional unit cube [0, 1[s. Then ω is a (t,m, s)-net if and only if

Sbm(wk, ω) = 0 ∀k : 0 < V (k) ≤ m− t.
Theorem 4. Let ω = (xn)b

m−1
n=0 be a (t,m, s)-net in base b, b ≥ 2 an

arbitrary integer. Then

σbm(ω) ≤ 1/bm−t+1.(5)

Proof. Corollary 3 implies that we only have to consider those k which
satisfy V (k) > m− t. It is elementary to see that

σbm(ω) = max
{

max
k:m−t<V (k)≤m

|SN (wk, ω)|
r(k)

, sup
k:V (k)>m

|SN (wk, ω)|
r(k)

}
.
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Now,

sup
k:V (k)>m

|SN (wk, ω)|
r(k)

≤ 1
bm+1 .

It is obvious that

max
k:m−t<V (k)≤m

|SN (wk, ω)|
r(k)

≤ 1
bm−t+1 .

The result follows.

The next lemma is a special case of a known result on character sums over
abelian groups (see [9], and also [1, Lemma 4A] for a restatement in terms of
Walsh functions, without proof). Our proof is elementary and self-contained.

Lemma 5. Let ω = (xn)b
m−1
n=0 be a digital (t,m, s)-net in base b, b a

prime. Then

(i) For all k, the Weyl sums Sbm(wk, ω) take only two values:

Sbm(wk, ω) ∈ {0, 1} ∀k.(6)

(ii) Nonzero Weyl sums may be characterized as follows:

Sbm(wk, ω) = 1⇔ k ∈ ω⊥.(7)

Proof. The points of ω have a b-adic representation of length m in every
coordinate. For this reason, we may restrict our attention to those indices
k = (k(1), . . . , k(s)) ∈ Zs where each k(i) has the property 0 ≤ k(i) < bm. Let
n satisfy 0 ≤ n < bm. The map

n 7→ k(i) · nCi
is a linear functional on the vector space Fmb , hence there exists a uniquely
determined element a(i) ∈ Fmb such that

k(i) · nCi = a(i) · n ∀n ∈ Fm
b ,

for 1 ≤ i ≤ s. It follows that

k · (nC1, nC2, . . . , nCs) = (a(1) + a(2) + . . .+ a(s)) · n(8)

= a · n ∀n ∈ Fmb ,
with a = a(1) + a(2) + . . .+ a(s). As a consequence,

Sbm(wk, ω) =
{

1 if a = 0,
0 otherwise.

This proves (i).
For (ii), let k ∈ ω⊥. This is to say,

k · (nC1, nC2, . . . , nCs) = 0 ∀n ∈ Fmb .
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This implies that wk(xn) = 1 for all n ∈ Fmb , and, hence, Sbm(wk, ω) = 1.
If we assume that Sbm(wk, ω) = 1, then necessarily a = 0, which implies
k ∈ ω⊥.

Theorem 6. Let ω = (xn)b
m−1
n=0 be a digital (t,m, s)-net in base b, b a

prime. Then
σbm(ω) ≥ 1/bm+1.(9)

Proof. Let ω denote the linear code in Fsmb associated with ω. The ele-
ments of ω have the form

(nC1, nC2, . . . , nCs), 0 ≤ n < bm.

The dimension of ω is less than or equal tom. Let δ(ω⊥) denote the minimum
distance of the dual code ω⊥,

δ(ω⊥) = min{V (k) : k ∈ ω⊥ \ {0}}.
Because the dimension dim(ω⊥) of ω⊥ is greater than or equal to (s− 1)m,
the generalized Singleton bound proved in [14, Prop. 1, p. 175] implies

δ(ω⊥) ≤ sm− dim(ω⊥) + 1 ≤ m+ 1.

This estimate, together with Lemma 5, yields

σbm(ω) = sup
k∈ω⊥\{0}

1
r(k)

= sup
k∈ω⊥\{0}

1
bV (k)

(10)

=
1

bminV (k)
=

1
bδ(ω

⊥)
≥ 1
bm+1 .

Theorem 7. Let ω = (xn)b
m−1
n=0 be a strict digital (t,m, s)-net in base b,

b a prime. Then
σbm(ω) ≥ 1/bm−t+1.(11)

Proof. The fact that ω is a strict (t,m, s)-net in base b implies the exis-
tence of an index k∗ with the properties

V (k∗) = m− t+ 1 and Sbm(wk∗ , ω) 6= 0.

For, otherwise, by Lemma 2, the net ω would be a (t − 1,m, s)-net. This
would contradict the strictness of ω.

Now, ω is also a digital (t,m, s)-net. The definition of the spectral test
and an application of Lemma 5 imply that

σbm(ω) ≥ |Sbm(wk∗ , ω)| /r(k∗) = 1/bm−t+1.

Corollary 8. Let ω = (xn)b
m−1
n=0 be a strict digital (t,m, s)-net in base

b, b a prime. Then
σbm(ω) = 1/bm−t+1.(12)

Proof. This result follows from Theorems 4 and 7.
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