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1. Introduction. In the course of studying the factorization of mero-
morphic functions (on the complex plane), Gross [13] introduced the concept
of a unique range set, which we now define. Let f be a function for which it
makes sense to talk about the “multiplicity” with which it takes on a value.
For example, f could be a non-constant polynomial or an entire function.
Let S be a set in the range of f. Then, define

E(f, S) =
⋃

a∈S
{(z,m) : f(z) = a with multiplicity m}.

Here z runs over the domain of f and m is any positive integer. Two func-
tions f and g of the same type are said to share S (with multiplicity) if
E(f, S) = E(g, S). A set S is called a unique range set (counting multiplic-
ity) for a family of functions F , if whenever one has E(f, S) = E(g, S) for
f, g ∈ F , then one must have f ≡ g.

Providing examples of unique range sets for (non-constant) complex en-
tire functions has been the subject of a number of recent papers. Nevanlinna
theory in one form or another has been the main tool used to construct those
examples. See [16] for a recent survey.

Boutabaa, Escassut, and Haddad [7] were the first to study unique range
sets for non-Archimedean entire functions (in characteristic zero) and as
part of their study, they found that if one restricts oneself to the study of
polynomials, then there is a nice geometric characterization for finite unique
range sets. Before stating their theorem, we recall that a set is called affinely
rigid if the only affine transformation preserving the set is the identity.

Theorem 1.1 (Boutabaa, Escassut, and Haddad [7]). Let K be a field
of characteristic zero. Let F be the family of non-constant polynomials with
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coefficients in K. Then a finite set S in K is a unique range set for F if
and only if S is affinely rigid.

Cherry and Yang [9] extended this theorem to the case of non-constant
non-Archimedean entire functions in one variable over a field of character-
istic zero, complete with respect to a non-Archimedean absolute value.

In the following, K will always be a field complete with respect to a non-
Archimedean absolute value. “Unique range set” will always mean unique
range set counting multiplicity for the family A∗(K) of non-constant non-
Archimedean entire functions on K. We can consider polynomials over any
field to be a special case. Namely, let K be any field. The “trivial” abso-
lute value | |0 on K is defined as follows. For x ∈ K with x 6= 0, we have
|x|0 = 1, and |0|0 = 0. This is clearly a non-Archimedean absolute value
on K, and K is clearly complete with respect to this absolute value. More-
over, the one-variable non-Archimedean entire functions on K are simply
the one-variable polynomials with coefficients in K. Hence, whenever we
state something for the family of non-Archimedean entire functions in one
variable, the statement remains true for polynomials.

Voloch [20] gave a purely “algebro-geometric” proof of Theorem 1.1 that
makes it clear that the same result holds in positive characteristic for sets
with cardinality prime to n. Namely,

Theorem 1.2 (Voloch [20]). Let K have characteristic p ≥ 0 and be
complete with respect to a non-Archimedean absolute value. Let A∗(K) be
the family of non-constant non-Archimedean entire functions on K. Let S
be a set of finite cardinality n, assumed prime to p if p > 0. Then S is a
unique range set for A∗(K) if and only if S is affinely rigid.

Voloch’s argument is reproduced in an appendix to the recent work of
Wang [21], so we do not discuss this in more detail here. The purpose of our
work is to investigate what can happen when the characteristic p divides
the cardinality of a set.

In [9], Cherry and Yang gave an example of a set of three elements which
was affinely rigid, but which was not a unique range set in characteristic
three. Voloch [20] remarked that his proof of Theorem 1.2 also shows there
is no unique range set of cardinality three in characteristic three. In Section 2
we provide a proof of the non-existence of three-element unique range sets
in characteristic three and we show that for every prime power q = pn ≥ 3,
there exist affinely rigid sets of cardinality q which are not unique range sets
in characteristic p. Our examples are constructed in such a way that one sees
clearly how the Frobenius morphism is exploited to create these examples.
One might expect that a set which is affinely rigid and not invariant under
some process involving the Frobenius morphism should be a unique range
set. Unfortunately, we are not able to formulate a precise conjecture in
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this direction, much less prove such a characterization. We hope that the
examples given in this paper will stimulate further research in this direction.

Because there are no affinely rigid sets of cardinality two, there are also
no unique range sets of cardinality two in characteristic two (or in any char-
acteristic). That raised the question of whether there could be unique range
sets of cardinality p in characteristic p. In Section 3, we give examples of
unique range sets of cardinality n in all characteristics for all n ≥ 4. Non-
Archimedean Nevanlinna theory, which was recently extended to positive
characteristic by Boutabaa and Escassut in [6], still seems to be the most
useful technique available for constructing examples of unique range sets.
However, for small cardinality, it seems to be easier to use algebro-geometric
methods. Our algebro-geometric techniques remain rather ad-hoc. A more
thorough understanding of the possible rational components of plane curves
of the form P (X)− cP (Y ) = 0 in positive characteristic, where P is a poly-
nomial and c is a constant, is probably necessary before a complete geometric
characterization of unique range sets in positive characteristic can be given.

We leave open the problem of whether there exist affinely rigid finite sets
of cardinality n which are not unique range sets, and where n is a multiple,
but not a pure power, of the characteristic.

We conclude our introduction by mentioning the work of Ostrovskii,
Pakovitch, and Zaidenberg [17], where they consider the more difficult ques-
tion of unique range sets ignoring multiplicity. That is, they consider sets
S such that f−1(S) = g−1(S) implies f ≡ g. Ostrovskii, Pakovitch, and
Zaidenberg prove that a finite set of complex numbers is a unique range
set ignoring multiplicity for the set of complex polynomials of fixed degree
d ≥ 1 on the complex plane if and only if S is affinely rigid. The methods of
proof in [17] are metric based, and therefore it would be very interesting to
find an algebraic proof that generalizes their work to positive characteristic,
even in the case where the cardinality of S is prime to p.

Acknowledgements. Financial support for the second author to spend
a pleasant month in Clermont-Ferrand was generously provided by a Junior
Faculty Research Fellowship from the University of North Texas and by
l’Université Blaise Pascal (Clermont-Ferrand).

2. Affinely rigid non-unique range sets in positive character-
istic. Fundamental to everything we do in the rest of this paper is the
following proposition.

Proposition 2.1. Let K be an algebraically closed field , complete with
respect to a non-Archimedean valuation. Let S be a finite set in K, and let
P (x) =

∏
s∈S(x−s) be the smallest degree monic polynomial with coefficients

in K, whose set of roots is S. Then two functions f and g in A∗(K) share
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S counting multiplicity if and only if there exists a non-zero constant c ∈ K
such that P (f) = cP (g).

Proof. If P (f) = cP (g), then P (f) = 0 if and only if P (g) = 0, and
both functions vanish with the same multiplicity. Thus, f and g clearly
share S (counting multiplicity). Alternatively, if f and g share S counting
multiplicity, then P (f)/P (g) is a non-Archimedean analytic function on K
without zeros, hence constant. This last fact is classical following easily
from the theory of valuation (or Newton) polygons. It also follows from
Theorem 4.3.

We will use Proposition 2.1 continually throughout this paper and will
not always refer to it explicitly.

In this section we exploit the Frobenius morphism to construct examples
of sets which are affinely rigid, but not unique range sets in positive char-
acteristic.

We remark that if a set is not a unique range set for the family of
non-constant polynomials, it is also not a unique range set for the family of
non-constant non-Archimedean entire functions, so in this section it suffices
to consider polynomials.

Example 2.2. Let K be an algebraically closed field of characteristic
p > 0. Let n be an integer such that q = pn ≥ 3. Let

P (X) = Xq + (X − 1)q−1.

Let f(z) = zq−1 and g(z) = (z − 1)q−1. Then

P (f(z)) = P (g(z)).

Moreover P has q distinct zeros and the set S of zeros of P gives an example
of an affinely rigid set with q points that is not a unique range set for non-
constant polynomials with coefficients in K.

Proof. We first show P (f(z)) = P (g(z)). As it turns out, it is easier to
show

P (f(z))(zq − z) = P (g(z))(zq − z),

which still allows us to conclude P (f(z)) = P (g(z)). Indeed,

P (f(z))(zq − z) = [zq(q−1) + (zq−1 − 1)q−1](zq − z)

= zq
2 − zq(q−1)+1 + z(zq−1 − 1)q

= zq
2 − zq(q−1)+1 + zq(q−1)+1 − z = zq

2 − z.
Similarly,

P (g(z))(zq−z) = P (g(z))((z−1)q−(z−1)) = (z−1)q
2−(z−1) = zq

2−z.
Thus, P (f(z)) = P (g(z)) as claimed.
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Note that
P (X) =

Xq+1 − 1
X − 1

and hence the zeros of P are precisely the q + 1-st roots of unity, except
for 1. It remains to show that S is affinely rigid. Note that∑

s∈S
s = −1.

Suppose S is invariant by an affine transformation σ(z) = az + b. Then we
would also have

−1 =
∑

s∈S
σ(s) = qb+ a

∑

s∈S
s = −a.

Note qb = 0, since we are in characteristic p. Hence a = 1. It remains to
show that b = 0, and note that thus far we have not used the hypothesis
q ≥ 3.

For every s in S, we know s+ b is also in S and so (s+ b)q+1 = 1. Thus,

1 = (s+ b)q+1 = (s+ b)(sq + bq) = sq+1 + sqb+ sbq + bq+1.

Of course sq+1 = 1, so b(sq + sbq−1 + bq) = 0, and if b 6= 0, we conclude that

bq + sbq−1 + sq = 0.(1)

Adding this equation over all s ∈ S, and using the fact that
∑

s∈S s = −1,
we get

0 = qbq + bq−1
∑

s∈S
s+

∑

s∈S
sq = −bq−1 +

(∑

s∈S
s
)q

= −bq−1 + (−1)q.

Thus, bq−1 = (−1)q = −1. Hence, we can simplify equation (1) to

b = sq − s.(2)
We now consider two cases:
Case p ≥ 3. Add equation (2) over all s in S except for −1 to conclude

that
(q − 1)b =

∑

s6=−1

sq −
∑

s6=−1

s =
( ∑

s6=−1

s
)q
−
∑

s6=−1

s = 0− 0 = 0,

and thus b = 0.
Case p = 2. Write S = {ζ, ζ2, . . . , ζ2n}. Then equation (2) becomes

b = ζ2n+1−j + ζj for all j,

noting that ζ2nj = ζ2n+1−j since ζ2n+1 = 1. Adding these equations for
j = 1, . . . , 2n−1, we get

2n−1b =
2n∑

j=1

ζj = 1.

This implies n = b = 1, but since n ≥ 2 by hypothesis, we conclude that
b = 0.
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As first remarked by Voloch [20], Example 2.2 is typical for three-point
sets in characteristic three. Namely, there are no unique range sets of car-
dinality three. We first give Voloch’s geometric proof, and then we give
another proof by “brute force,” which has the advantage of giving concrete
examples.

Theorem 2.3. Let K be a field of characteristic three. Then there are no
three-element unique range sets for the family of non-constant polynomials
with coefficients in K.

Voloch’s proof. Let S = {s1, s2, s3} and P (x) = (x− s1)(x− s2)(x− s3).
Then

G(x, y) =
P (x)− P (y)

x− y
defines a quadric curve in P2. Because P (x)− P (y) has only a single point
at infinity in characteristic 3, the same is true of the quadric defined by G.
Hence, G is parameterized by quadratic polynomials. This results in two
different quadratic polynomials f and g such that P (f) = P (g), which of
course means f and g share S.

Brute force proof. Again, let S = {s1, s2, s3}, and let

P (x) = (x− s1)(x− s2)(x− s3) = x3 + a2x
2 + a1x+ a0.

We consider two cases.
Case a2 = 0. In this case a1 6= 0, or otherwise, P does not have distinct

roots (in characteristic three). Choose an element b in K such that b2 + a1

= 0. Then

P (z + b) = z3 + b3 + a1(z + b) + a0 = P (z) + b(b2 + a1) = P (z).

Hence, S is not a unique range set.
Case a2 6= 0. In this case, replacing x by x+ a1/a2 eliminates the linear

term from P . Transforming S by an affine transformation does not change
whether or not it is a unique range set, so we may assume, without loss of
generality that a1 = 0. In this case, let

f(z) = a2(z2 − 1) and g(z) = a2(z2 + z).

Then
P (f(z)) = a3

2(z6 + z4 + z2) + a0 = P (g(z)),

and again, S is not a unique range set.

We conclude this section by remarking that it would be interesting to
construct examples similar to Example 2.2 for multiples of p which are not
pure powers of p, or to prove that no such example exists.
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3. Examples of unique range sets. As we said in the introduction,
finite unique range sets whose cardinality is prime to the characteristic have
been completely characterized. We saw in the last section that the same
characterization does not hold for sets with cardinality a power of the char-
acteristic and that no unique range sets of cardinality three exist in char-
acteristic three. In this section we give examples of unique range sets of
cardinality ≥ 4 in every characteristic.

Throughout this section, K will be an algebraically closed field complete
with respect to a non-Archimedean absolute value and A∗(K) will be the
non-constant non-Archimedean entire functions on K.

First we recall some notation. We let (m,n) denote the greatest common
divisor of two integers m and n. For a prime number p, we let |n|p denote the
p-adic absolute value of an integer n. That is, if pe is the largest power of p
dividing n, then we let |n|p = p−e. Our main theorem is then the following:

Theorem 3.1. Let K have characteristic p ≥ 0. Let

P (x) = xn − axm + 1

with n > m. Assume that a 6= 0 in K is such that

mm(n−m)n−man 6= nn

and
mm(n−m)n−man 6= nn(1− ζ)p

d(n−m)

for every integer d ≥ 0, and for every ζ ∈ K such that

ζn−m = (−1)n−m.

Assume further that m and n satisfy EITHER conditions (A1) through (A3)
OR (B1) through (B2) below.

(A1) n > m > 1,
(A2) |(n,m)|p = 1,
(A3) n|n|p does not divide m,
(B1) n− 2 ≥ m ≥ 5,
(B2) (n,m) = 1.

Then the set S of zeros of P in K has n elements and is a unique range set
for A∗(K).

Remark. For d sufficiently large,

(1− ζ)p
d

= 1− ζ,
and so the condition that

mm(n−m)n−man 6= nn(1− ζ)p
d(n−m)

hold for all d ≥ 0 simply means a needs to be chosen so that it does not
satisfy a finite number of algebraic equations. Hence, over an infinite field,
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and in particular over algebraically closed fields, one can always find such
an a.

We postpone the proof of Theorem 3.1 until the next section in order
to state some corollaries of the main theorem that give examples of unique
range sets of all cardinalities ≥ 6 in all characteristics.

Corollary 3.2. Let K be as in Theorem 3.1 and let

P (x) = xn − axn−1 + 1.

Assume that n > 2 and not a power of p, the characteristic of K. Assume
that a 6= 0 is such that

(n− 1)n−1an 6= nn and (n− 1)n−1an 6= 2nn.

Then S, the set of zeros of P , has n elements and is a unique range set for
A∗(K).

Remark. If the characteristic of K is 2 and n is even, then the condition
(n − 1)n−1an 6= 2nn is always satisfied for a 6= 0. If n is odd, then this
condition is never satisfied and the corollary does not apply. But in this
case, Theorem 1.2 does apply.

Proof. Apply Theorem 3.1 with n = n and m = n − 1. Clearly n|n|p
divides n and is > 1, since n is not a power of p. Thus, since n and n−1 are
relatively prime, conditions (A1) through (A3) of the theorem are satisfied.
Since n−m = 1, the conditions on a become

(n− 1)n−1an 6= nn and (n− 1)n−1an 6= nn2p
d(n−m)

for all integers d ≥ 0. But, since 2p
d

= 2 for all d ≥ 0, we can forget about
the pd in the exponent.

Corollary 3.3. Let K be as in Theorem 3.1 with characteristic p ≥ 3.
Let n = pr ≥ 7 for r a positive integer , and let

P (x) = xn − axn−2 + 1.

Assume that a 6= 0 is such that

4(n− 2)n−2an 6= nn and (n− 2)n−2an 6= nn.

Then S, the set of zeros of P , has n elements and is a unique range set for
A∗(K).

Proof. Conditions (B1) and (B2) are satisfied.

Corollary 3.4. Let K be as in Theorem 3.1 with characteristic 2. Let
n = 2r ≥ 8 for r a positive integer , and let

P (x) = xn − axn−3 + 1.

Assume a 6= 0. Then S, the set of zeros of P , has n elements and is a unique
range set for A∗(K).
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Proof. Again, conditions (B1) and (B2) are satisfied, and the conditions
on a in the theorem are trivial in this case.

Neither Theorem 1.2 nor Theorem 3.1 covers the case of four-element
sets in characteristic two or five-element sets in characteristic five. We now
give specific examples in each of these two cases. Our method here is algebro-
geometric. Namely, consider a monic polynomial P (x) whose zeros are our
set S and distinct, and we consider the algebraic curves defined by

Fc(x, y) = P (x)− cP (y) = 0

for c 6= 0. Then, if f and g are two non-Archimedean analytic functions that
share S, then by Proposition 2.1, f and g must be solutions to the equa-
tion Fc = 0 for some non-zero constant c. By Berkovich’s non-Archimedean
Picard theorem [3], this equation will have no solutions in non-constant
non-Archimedean analytic functions provided Fc has no rational compo-
nents. Of course when c = 1, F1 will have the rational component x−y = 0,
corresponding to f = g. But, if there are no other rational components, then
S will be a unique range set. Thus, we simply choose polynomials P (x) so
that the curves Fc have singularities which are easy to analyze (which is
somewhat easier said than done).

In addition to the Berkovich theorem mentioned above, we use some
basic facts about the geometry of plane curves. These are the following.
A non-singular plane curve of degree d has genus g given by

g =
(d− 1)(d− 2)

2
.

If a plane curve is cut out by a homogeneous form F (X,Y,Z) the singular
points of F are given by the simultaneous vanishing of F and its three first
partial derivatives. A singular point s is called an ordinary double point if
we can find local coordinates u and v around s such that

F = uv + higher order terms.

We also need the fact that an irreducible plane curve of degree d with a
single ordinary double point singularity has (geometric) genus

g =
(d− 1)(d− 2)

2
− 1.

In general, each ordinary double point drops the genus by one. For back-
ground on the geometry of plane curves, see for instance [12].

Example 3.5. Let K have characteristic 2. Let P (x) = x4 + x3 + x.
Then S = {z ∈ K : P (z) = 0} contains 4 points and is a unique range set
for A∗(K).

Proof. We first show that S has four elements. Factoring P , we see

P (x) = x(x3 + x2 + 1).
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Because x3 +x2 + 1 is irreducible over the field of two elements, it has three
distinct roots in K, none of which are zero. Hence, S has four elements.

To check that S is a unique range set, and recalling that we are working
in characteristic 2, it suffices to check that the homogeneous form

Fc(X,Y,Z) = X4 +X3Z +XZ3 + c(Y 4 + Y 3Z + Y Z3)

has no rational components when c 6= 0, 1 and only has the linear rational
component X + Y when c = 1.

We first consider the case c = 1. Then

F1(X,Y,Z) = X4 + Y 4 +X3Z + Y 3Z +XZ3 + Y Z3

= (X + Y )4 + (X + Y )(X2 +XY + Y 2)Z + (X + Y )Z3

= (X + Y )[(X + Y )3 + (X2 +XY + Y 2)Z + Z3].

We consider the form

G(X,Y,Z) = (X + Y )3 + (X2 +XY + Y 2)Z + Z3.

The partial derivatives are
∂G

∂X
= (X + Y )2 + Y Z,

∂G

∂Y
= (X + Y )2 +XZ,

∂G

∂Z
= X2 +XY + Y 2 + Z2.

Singular points are determined by the simultaneous vanishing of all three
partials. For the first two partials to vanish, we must have XZ = Y Z, so
either Z = 0 or X = Y . But, if Z = 0, we also need X + Y = 0, and we
again have X = Y . But, in this case, Y Z = XZ = 0. If Z = 0, for the third
partial to vanish, we need XY = 0, and so all three variables would need
to vanish, which is not allowed. If X = Y = 0, but Z 6= 0, then G does not
vanish, and so the curve defined by G is non-singular. Since G has degree
three, it has genus 1, and we are done in the case c = 1.

In the case c 6= 0, 1, we have the following three partial derivatives for
Fc:

∂Fc
∂X

= Z(X2 + Z2),

∂Fc
∂Y

= cZ(Y 2 + Z2),

∂Fc
∂Z

= X(X2 + Z2) + cY (Y 2 + Z2).

If Z = 0, then the first two partials vanish. For the third partial to also
vanish along with Fc, we need

X3 + cY 3 = 0 and X4 + cY 4 = 0.(3)
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Let b be the element of K such that b4 = c. Then X = bY . Thus,

(bY )3 + cY 3 = (b3 + c)Y 3 = 0.

If Y = 0, then so does X, and since we are in the case of Z = 0, this is not
allowed. Hence, b3 + c = 0. Multiplying by b, we get

0 = b4 + cb = c+ cb = c(1 + b),

so either c = 0 or b = 1. The case c = 0 is not allowed, and if b = 1, so does
c, which is also not allowed.

Thus, we have Z 6= 0. In this case, the vanishing of the first two partials
implies X = Y = Z. Plugging this into Fc, we get

0 = Z4 + Z4 + Z4 + cZ4 + cZ4 + cZ4 = (1 + c)Z4.

This is impossible unless c = 1 or Z = 0.

Example 3.6. Let K have characteristic 5. Let

P (x) = x5 + x4 + x2 + x+ 1.

Then S = {z ∈ K : P (z) = 0} contains 5 points and is a unique range set
for A∗(K).

Proof. To see that P has distinct roots, we compute

P ′(x) = −x3 + 2x+ 1 = −(x+ 1)(x+ 2)2,

and we see P and P ′ have no common roots, and hence the roots of P are
distinct.

Let c 6= 0 be a non-zero constant in K, and let

Fc(X,Y,Z) = X5 − cY 5 + Z(X4 − cY 4) + Z3(X2 − cY 2)

+Z4(X − cY ) + (1− c)Z5,

which is the projectivization of P (x)−cP (y). As noted before, to check that
S is a unique range set, it suffices to check that Fc has no rational component
when c 6= 1 and only has the rational component X − Y = 0 when c = 1.

We begin with F1. Let

G(X,Y,Z) = F1(X,Y,Z)/(X − Y )

= (X − Y )4 + Z(X3 +X2Y +XY 2 + Y 3) + Z3(X + Y ) + Z4.

We compute the three first partial derivatives

∂G

∂X
= −(X − Y )3 + Z(3X2 + 2XY + Y 2) + Z3,

∂G

∂Y
= (X − Y )3 + Z(3Y 2 + 2XY +X2) + Z3,

∂G

∂Z
= X3 +X2Y +XY 2 + Y 3 + 3Z2(X + Y )− Z3.
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Singular points occur when all three partials vanish together with G. If
Z = 0, the vanishing of G implies X = Y . Then the vanishing of ∂G/∂Z
implies −X3 = 0, and so X = Y = 0, which is not allowed. Thus Z 6= 0. In
this case, we may assume Z = 1, X = x, and Y = y. Then our equations
become

0 = G = (x− y)4 + x3 + x2y + xy2 + y3 + x+ y + 1,

0 =
∂G

∂X
= −(x− y)3 + 3x2 + 2xy + y2 + 1,

0 =
∂G

∂Y
= (x− y)3 + 3y2 + 2xy + x2 + 1,

0 =
∂G

∂Z
= x3 + x2y + xy2 + y3 + 3x+ 3y − 1.

Adding the first two partials, we get

0 = −(x2 + xy + y2) + 2 or x2 + xy + y2 = 2.(4)

Thus,

x3 + x2y + xy2 = x(x2 + xy + y2) = 2x,

y3 + y2x+ yx2 = y(x2 + xy + y2) = 2y.

Using these in the equation ∂G/∂Z = 0, we find

0 = 2x+ y3 + 3x+ 3y − 1 = y3 − 2y − 1,(5)

0 = 2y + x3 + 3x+ 3y − 1 = x3 − 2x− 1.(6)

Plugging into G = 0, we find

0 = (x− y)4 + x3 + x2y + xy2 + y3 + x+ y + 1

= (x− y)4 + (1 + 2x) + x2y + xy2 + (1 + 2y) + x+ y + 1

= (x− y)4 + x2y + xy2 − 2x− 2y − 2

= (x− y)4 + x(x2 + xy + y2)− x3 − 2x− 2y − 2

= (x− y)4 + 2x− (1 + 2x)− 2x− 2y − 2

= (x− y)4 − 2(x+ y) + 2

= x4 + x3y + x2y2 + xy3 + y4 − 2(x+ y − 1)

= (x+ y)x3 + x2y2 + (x+ y)y3 − 2(x+ y − 1)

= (x+ y)(1 + 2x) + x2y2 + (x+ y)(1 + 2y)− 2(x+ y − 1)

= 2(x+ y)2 + x2y2 + 2 = 2(x2 + y2) + 2.

In other words,
x2 + y2 = −1.(7)

Combining (7) and (4), we get xy = −2. Plugging in y = −2/x into (6) and
x = −2/y into (5), we find

x3 + x2 + 2 = 0 and y3 + y2 + 2 = 0.(8)
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Subtracting (5) and (6), we get

x2 + 2x− 2 = 0 and y2 + 2y − 2 = 0.

Adding these equations, we find

x2 + y2 + 2(x+ y) + 1 = 0.

Combining with (7), we see that y = −x, and so using (7) once more, we
get x2 = y2 = 2. Plugging this into (8), we get x = y = 0, and thus G = 0
is non-singular and has genus 3 because it has degree 4.

Now we treat the case Fc for c 6= 0, 1. Again, we compute the three first
partials:

∂Fc
∂X

= −ZX3 + 2XZ3 + Z4 = −Z(X + Z)(X + 2Z)2,

∂Fc
∂Y

= c(ZY 3 − 2Y Z3 − Z4) = cZ(Y + Z)(Y + 2Z)2,

∂Fc
∂Z

= X4 − cY 4 + 2Z2(cY 2 −X2) + Z3(cY −X).

If Z = 0, then from ∂Fc/∂Z = 0, we have X4 − cY 4 = 0. On the other
hand, from Fc = 0, we have X5 − cY 5 = 0. Thus, using the same trick as
in Example 3.5 (e.g., equation (3)), we see that this is impossible and there
are no singular points with Z = 0. If Z 6= 0, we can again assume Z = 1,
and we are working with the following four equations:

0 = Fc = x5 − cy5 + x4 − cy4 + x2 − cy2 + x− cy + 1− c,
0 =

∂Fc
∂X

= −x3 + 2x+ 1 = −(x+ 1)(x+ 2)2,

0 =
∂Fc
∂Y

= c(y3 − 2y − 1) = c(y + 1)(y + 2)2,

0 =
∂Fc
∂Z

= x4 − 2x2 − x− c(y4 − 2y2 − y) = −x∂Fc
∂X

+ cy
∂Fc
∂Y

.

Thus, setting the third partial derivative to zero is redundant. From the
vanishing of the first two partials, we see we only have two possibilities for
x and two possibilities for y. Namely, x = −1 or x = −2, and y = −1 or
y = −2. Note that P (−1) = 1 and P (−2) = 2. From Fc = 0, we get

c =
P (x)
P (y)

,

and so for Fc to have singularities, we need c = 1, 2, or 1/2 = −2. We have
already dealt with the case c = 1. Now consider the case c = 2. In that case,
the only singular point is (x, y) = (−2,−1). The Taylor expansion about
this point is

F2(x, y) = 2(x+ 2)2 + (y + 1)2 + . . .
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Therefore (−2,−1) is an ordinary double point. This means F2 must be
irreducible, because if it were not irreducible, two components would have
to meet at this one singular point in at least multiplicity 4, and so it could
not be an ordinary double point. Thus, F2 is irreducible and has genus

(5− 1)(5− 2)
2

− 1 = 5.

In the case F−2, the singular point is (−1,−2) and the Taylor expansion is

F−2(x, y) = 2(x+ 1)2 − (y + 2)2 + . . . ,

and again the singularity is an ordinary double point, meaning the genus of
F−2 is again 5. For all other values of c, the genus is 6, and so we are done.

Notice that in Example 3.5, we were able to find a polynomial P such
that the form Fc had no singularities, other than those it has to have when
c = 1. Our form Fc in Example 3.6 acquires a mild singularity for certain
values of c. As the degree of the polynomial P increases, it seems difficult to
find examples that can be easily worked with where the form Fc remains non-
singular for all c 6= 1. See [21] and [14] for a further discussion of this aspect
of the theory. See also [19] where Voloch studies singularities of plane curves
of the form [P (x)− P (y)]/(x− y) in positive characteristic with another
application in mind.

4. Proof of Theorem 3.1. The main tool in the proof will be a non-
Archimedean positive characteristic analog of Nevanlinna’s Second Main
Theorem, recently proven by Boutabaa and Escassut [6]. For background on
p-adic analysis, see [2] and [11], and for a more thorough introduction to non-
Archimedean Nevanlinna theory (in characteristic zero), see, for instance,
one of the following: [4], [10], [8], [18], [15]. Note that the work of Ru [18] also
carries over to positive characteristic without change, but is not sufficient
for our application here.

We first introduce some Nevanlinna style notation and then state the
Nevanlinna theorem we will apply. As previously, K will be an algebraically
closed field complete with respect to a non-Archimedean absolute value of
characteristic p ≥ 0. Let f be a (non-Archimedean) meromorphic function
on K. For each point z0 in K denote by ωz0(f) the order of vanishing of f
at z0. That is, if f(z0) = 0, then ωz0(f) denotes the multiplicity of the zero
at z0. If f has a pole, then −ωz0(f) denotes the order of the pole. Define

ω+
z0(f) = max{0, ωz0(f)}.

For every r > 0, we define the counting function of zeros by

Z(r, f) =
∑

0<|z0|<r
ω+
z0(f) log

r

|z0|
+ ω+

0 (f) log r.
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If p > 0, let u(f) be the largest integer such that there exists a meromorphic
function g on K such that

f = gp
u(f)

.

If p = 0, by convention we let pu(f) = 1. Next, we define the truncated
counting function by

Z(r, f) =
∑

0<|z0|<r
min{1, ω+

z0(f) mod pu(f)+1} log
r

|z0|

+ min{1, ω+
0 (f) mod pu(f)+1} log r.

In characteristic zero, we simply ignore the mod pu(f)+1 part. Note that in
characteristic 0, the truncated counting function just counts the zeros of f ,
but ignores their multiplicity. In characteristic p > 0, it almost does the
same thing, but it also ignores zeros which have multiplicity a multiple of
pu(f)+1. We also consider the counting functions for poles. Namely,

N(r, f) = Z(r, 1/f) and N(r, f) = Z(r, 1/f).

Finally, we define an analog of the Nevanlinna characteristic function by

T (r, f) = max{Z(r, f), N(r, f)}.
The theory of valuation (or Newton) polygons easily implies the analog of
Nevanlinna’s first main theorem:

Theorem 4.1 (First Main Theorem). If f is a non-constant meromor-
phic function on K and a is in K, then

T (r, f) = T (r, 1/f) = T (r, f − a) +O(1).

Corollary 4.2. If P is a polynomial of degree d and f is a meromor-
phic function on K, then T (P (f), r) = dT (f, r) +O(1).

The analog of the Second Main Theorem that we will need is the following
special case of what was proven in [6].

Theorem 4.3 (Second Main Theorem [6]). Let α1, . . . , αn be n distinct
points in K and let f be a meromorphic function on K. Then

n− 1
pu(f)

T (r, f) ≤
n∑

i=1

Z(r, f − αi) +N(r, f)− log r +O(1).

We will actually only need the theorem in the case f ′ 6≡ 0, which is the
case u(f) = 0. If f ′ 6≡ 0, the standard characteristic zero proofs (e.g., [4],
[10]) go through, and this is actually sufficient for our application to unique
range sets here.

The following corollary to Theorem 4.3 will also be useful.
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Corollary 4.4. Let f be an analytic function on K such that f ′ 6≡ 0,
and let α1, . . . , αn be distinct points in K. Then

n∑

j=1

[Z(r, f − αj)− Z(r, f − αj)] ≤ T (r, f)− log r +O(1).

Proof. From Theorem 4.1,
n∑

j=1

Z(r, f − αj) = nT (r, f) +O(1),

and from Theorem 4.3,
n∑

j=1

Z(r, f − αj)− log r +O(1) ≥ (n− 1)T (r, f)− log r +O(1).

Thus,
n∑

j=1

[Z(r, f −αj)−Z(r, f −αj)] ≤ nT (r, f) + (1−n)T (r, f)− log r+O(1).

Before going into the proof of Theorem 3.1, we state some helpful propo-
sitions.

Proposition 4.5. Let n, m, a, and P be as in Theorem 3.1. Let c 6= 1.
Then either P − c−1 or P − c has no multiple roots.

Proof. We assume both P − c−1 and P − c have a multiple root and
arrive at a contradiction. Note that because c 6= 1, zero is not a root of
either polynomial. Because m and n are not both divisible by p, we can
differentiate each polynomial and conclude that because of the double root,

mm(n−m)n−man = nn(1− c)n−m = nn(1− c−1)n−m,

and moreover, n, m, and n−m are relatively prime to p. Hence,

(1− c−1)n−m = (1− c)n−m,
and so cn−m = (−1)n−m. However, the assumption that

mm(n−m)n−man 6= nn(1− ζ)n−m

for every ζ ∈ K such that ζn−m = (−1)n−m excludes the possibility of
polynomials of the form P − ζ having multiple zeros, provided ζ 6= 1. Thus,
we conclude that c = 1, which contradicts our hypothesis.

Proposition 4.6. Let n > m > 1 be integers satisfying conditions
(A1)–(A3) of Theorem 3.1, and let h be a non-constant meromorphic func-
tion on K. Then there exists an element α ∈ K such that

ω+
α (hn − 1) > ωα(hm − 1).
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Proof. Let n = psd with d = n|n|p ≥ 2 not dividing p. By condition (A3),
d does not divide m. Therefore, there exists at least one nth root of unity ζ
which is not an mth root of unity. If there exists an α such that h(α) = ζ,
then we see immediately that this α is such that

ω+
α (hn − 1) > ωα(hm − 1),

as desired. We may now suppose h omits ζ. On the other hand, since h
is meromorphic on K, it can omit at most one value in K ∪ {∞} (by for
example Theorem 4.3). Thus, if h omits ζ it takes on every other value.

Case s > 0. Because |(n,m)|p = 1, we have (m, p) = 1, and hence xm−1
has m distinct zeros. On the other hand, 1 is a zero of order ps for xn − 1.
Let α be a point such that h(α) = 1. Then

ωα(hn − 1) = psωα(hm − 1),

as desired.
Case s = 0. In this case the group of nth roots of unity has n ≥ 3

distinct elements. The proper subgroup of elements which are both mth
and nth roots of unity has order dividing n, and hence, in addition to ζ,
there is at least one other root η such that ηn = 1, but ηm 6= 1. Letting α
be such that h(α) = η completes the proof of the proposition.

The following proposition shows us that we only need to consider func-
tions f and g such that f ′ and g′ are not identically zero.

Proposition 4.7. Let K, p, a, P , n, and m be as in Theorem 3.1. Let
f and g be in A∗(K) such that P (f) = cP (g). Then there exist functions
fs and gs in A∗(K) and elements as 6= 0 and cs 6= 0 in K such that if

Ps(x) = xn − asxm + 1,

then
Ps(fs) = csP (gs).

Moreover , as satisfies all the same conditions as a stated in Theorem 3.1,
and f ′s 6≡ 0 and g′s 6≡ 0.

Proof. By differentiating P (f) = cP (g), we find

P ′(f)f ′ = cP ′(g)g′.

By either condition (A2) or (B2), we have |(n,m)|p = 1, so P ′ is not identi-
cally zero. Thus, either f ′ and g′ are identically zero or both are not iden-
tically zero. If they are both not identically zero, we leave everything alone
and we are done.

Otherwise, we can find functions f1 and g1 in A∗(K) such that fp1 = f
and gp1 = g. Then consider

P1(x) = xn − a1x+ 1,
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where a1 is chosen such that ap1 = a. Then

[P1(f1)]p = P (f) = cP (g) = [c1P1(g1)]p,

where cp1 = c. Replacing f by f1, g by g1, and P by P1 we continue by
induction until both derivatives do not vanish. Continuing this process in-
ductively a finite number of times we will arrive at functions fs and gs whose
derivatives do not vanish identically.

It remains to check that

mm(n−m)n−mans 6= nn

and

mm(n−m)n−mans 6= nn(1− ζ)p
d(n−m)

for all positive d. But, if we had equality somewhere here, then we could raise
both sides to the ps power (which fixes the integer terms) and contradict
our hypothesis on a = ap

s

s .

Proof of Theorem 3.1. The conditions on a make it clear that P has
distinct roots. They also ensure that P − ζ has distinct roots for all ζ 6= 1
such that ζn−m = (−1)n−m.

If f and g are in A∗(K) and share S, then P (f) = cP (g) for some
constant c, by Proposition 2.1.

If we are in positive characteristic, we can, thanks to Proposition 4.7,
assume, without loss of generality, that f ′g′ 6≡ 0.

We will use P (f) = cP (g) to create a non-Archimedean meromorphic
function which takes on too many values with high ramification, contradict-
ing Theorem 4.3.

We now show c = 1. Suppose c 6= 1 and let

Q(x) = xn − axm + 1− 1/c.

Then

Q(g) = P (g)− c−1 = c−1(cP (g)− 1) = c−1(P (f)− 1) = c−1(fn − afm).

Similarly, let Q1(x) = P (x)− c. Then

Q1(f) = P (f)− c = c(c−1P (f)− 1) = c(P (g)− 1) = c(gn − agm).

By Proposition 4.5, at least one of the two polynomials Q of Q1 has dis-
tinct zeros. We may assume Q has distinct zeros by exchanging f and g if
necessary. Thus, write

Q(x) =
n∏

j=1

(x− ej),
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with the ej distinct. Then

fn − afm =
n∏

j=1

(f − ej).

This is the important point, because then

Z(r,Q(g))− Z(r,Q(g)) = Z(r, fn − afm)− Z(r, fn − afm)(9)

≥ (m− 1)Z(r, f).

On the other hand, using Corollary 4.4, we have

Z(r,Q(g))− Z(r,Q(g)) =
n∑

j=1

[Z(r, g − ej)− Z(r, g − ej)](10)

≤ T (r, g)− log r +O(1).

But, by Corollary 4.2,

nT (r, f) = T (r, P (f)) +O(1) = T (r, P (g)) +O(1) = nT (r, g) +O(1),

and hence
T (r, g) = T (r, f) +O(1).

Hence, combining (9) and (10), we get

(m− 1)T (r, f) = (m− 1)Z(r, f) ≤ T (r, g)− log r +O(1),

and hence m < 1, contradicting our hypothesis. Thus, c = 1.
Now, let h = f/g. Because P (f) = P (g), we have

gn−m = a
hm − 1
hn − 1

.

The remainder of the proof consists of showing h is constant and there-
fore so are f and g, which contradicts the hypothesis of the theorem. The
proof splits into two cases, depending on whether conditions (A1)–(A3) are
satisfied or conditions (B1)–(B2) are satisfied.

Case m and n satisfy (A1)–(A3). If h is not constant, then Proposi-
tion 4.6 says there exists an element α in K such that

ω+
α (hn − 1) > ωα(hm − 1).

Thus, α is a pole of gn−m, which is a contradiction. Hence h is constant,
and therefore so are f and g.

Case m and n satisfy (B1)–(B2). In this case we assume (n,m) = 1,
and so there are no non-trivial nth roots of unity which are also mth roots
of unity. Since at least one of n or m must be prime to p, there are at least
m−1 elements ζ1, . . . , ζm−1 of K which are either nth or mth roots of 1, but
not both. Suppose there exists a point α in K such that h(α) = ζj . Then

gn−m(α) = a
hm(α)− 1
hn(α)− 1

= 0.
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Note that the possibility of ∞ is excluded since g is analytic. Thus, α is a
zero of h of order at least n−m. Hence, we conclude from Theorem 4.3 that

(m− 2)T (r, h) ≤
m−1∑

j=1

Z(r, h− ζj) +N(r, h)− log r +O(1)

≤ (n−m)
m−1∑

j=1

Z(r, h− ζj) +N(r, h)− log r +O(1).

Now using Theorem 4.1, we conclude

(m− 2)T (r, h) ≤
(
m− 1
n−m + 1

)
T (r, h)− log r +O(1).

Hence,

m− 2 <
m− 1
n−m + 1.

We have assumed n − m ≥ 2, so we conclude m < 5, which contradicts
condition (B1).
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