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Corrigendum to Theorem 5 of the paper
“Asymptotic density of A C N and density
of the ratio set R(A)”

(Acta Arith. 87 (1998), 67-78)
by

OTO STRAUCH (Bratislava) and JANOS T. TOTH (Ostrava)

In the proof of Theorem 5 in [2], step 3 is incorrect. We want to thank
S. V. Konyagin who has pointed it out. The wrong Theorem 5 asserts that

for every increasing sequence of positive integers xz,, n = 1,2,..., with a
positive lower asymptotic density, if there exists an interval (u, v) containing
no limit points of the ratio sequence ., /x,, m,n=1,2,..., where u, v are

limit points, then there are infinitely many such intervals. In the new form
of Theorem 5 we replace intervals (u, v) containing no limit points of z., /z,
with intervals having some zero asymptotic density of x,,/x, and we refor-
mulate it in terms of distribution functions of x,,/x,. We prove that if there
exists an interval (u,v), containing no limit points of z,,/z,, then every
distribution function of x,,/x, has infinitely many intervals with constant
values, assuming positive lower asymptotic density of z,,. For an illustra-
tion, we give two examples. In Example 1, x,,/x,, has only one such interval
(u,v), and in Example 2 it has infinitely many, and in both cases every
distribution function of x,,/x, has infinitely many intervals with constant
values. Finally, we discuss via Examples 1 and 2 a possibility of adding a
proposition contained in the incorrect step 3 as an assumption of Theorem 5.

To do this we need the following concept used in [3] (see [1] for a general
account).

A function g : [0, 1] — [0, 1] will be called a distribution function (abbre-
viated d.f.) if g(0) = 0, g(1) = 1, and g is nondecreasing. We will identify
any two distribution functions coinciding a.e. on [0,1]. A point 8 € [0, 1]
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is called a point of increase (or a point of the spectrum) of the d.f. g(x) if
either g(x) > g(f) for every > B or g(z) < g(8) for every x < 3, x € [0, 1].
Now, for x,, we define the sequence of blocks

Ty Ty Tn,
, < i/ Tn
F(X,2) = #{i<n:z;/x, <z}
n

for x € [0,1) and F(X,,1) = 1. A d.f. g is a d.f. of the block sequence X,
if there exists a sequence of positive integers n; < no < ... such that

klim F(X,,,z) =g(x)

and consider a step d.f.

a.e. on [0, 1]. The set of all d.f. of the sequence of blocks X, is denoted by
G(X,). Finally, denote the counting function by A(t) = #{n € N: z,, <t}
and define the lower asymptotic density d and upper asymptotic density d

of z,, b
Y A(t) - A(t)

d =liminf —= =liminf —, d =limsup —= = limsup —.
t—oo n—oo Iy t—00 n—oo Ln

A corrected form of Theorem 5 of [2] is as follows:

THEOREM. Assume that d > 0. If there exists an interval (u,v) C [0, 1]
such that every g € G(X,,) has a constant value on (u,v) (maybe different),
then every g € G(X,,) has infinitely many intervals with constant values
such that g increases at their endpoints.

Proof. Since
x
T < TTy & x; < <:U—>:cn,
x
we have
n Tm,
1 F(Xp,z)=—F| X,,,x—
0 () = 2o (Ko 22 )

for every m < nand z € [0, 1). Using the Helly selection principle, we can se-
lect a subsequence (my, ny) of the sequence (m, n) such that F(X,,) — g(x)
and F(X,,,) — g(z) as k — oo; furthermore x,,, /z,, — § and ni/m; — «,
but o may be infinity. Assuming § > 0 and g(5 — 0) > 0, we have o < oo
and

(2) g(x) = ag(xf) a.e.on [0,1].
Thus, if g(z) has a constant value on (u,v), then g(x) must be constant on

the interval (uf,v(3). Furthermore, if d > 0, then for every g € G(X,,) we
have

(3) (d/d)z < g(x) < (d/d)x
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for every x €0, 1]. Thus, there exists a sequence i € (0,1) such that 5 \,0
and g(z) increases at [, g(Bkx) > 0, k = 1,2,... For such 3 and g(x),
applying the Helly principle, we can find sequences oy and gx(z) € G(X,,)
such that

gr(z) = arg(zfk)
a.e. on [0, 1]. Every gi(x) has a constant value on the interval (u,v), hence,
g(z) must be constant on the intervals (uf,v0;) for k =1,2,...

For completeness we provide

Proof of (2). First, we prove

(4) lim F(Xnk,x?> = g(zp).

k—oo &

Setting, for abbreviation, 0y = x,,, /Ty, and substituting u = 25 we find
1

0< S (F(Xnkvxﬂk) - g(xﬂk))2d:v

0
1 B 1 1
= — [ (F(Xp,u) = g(u)? du < — | (F(Xp,, u) — g(u))® du — 0,
Br Bk 3
which leads to F(X,,,z0) — g(zfr) — 0 as k — oo (here, necessarily,
B > 0). Furthermore,
1
V(P (X0, 28) — 9(28))* da
0
1

=V (F(Xo,, 28k) — 9(xBr) + g(xB) — 9(x8))” du
0
1 1
< 2( [ (F (X w6) — g(2By) da + { (9(wBh) — g(x6))* d).
0 0
Since g(z) is continuous a.e. on [0,1], g(zfk) — g(z3) — 0 a.e. and ap-
plying the Lebesgue dominant convergence theorem, we have Sé(g(xﬁk) —
g(zB))?dz — 0, which gives (4) and implies (2). Further, o < oo follows
from (1) and g(8 —0) > 0.
Proof of (3). Since
#i<n:zi/z, <z} =#{i=1,2,...:z; < zx,},
we have
F(X,,x)n  A(zx,)

= for every x € [0,1].
Ty, Ty,
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Whenever g € G(X,,), there exists nj such that F/(X,,,x) — g(x) a.e. and
Nk /Tn, — di. Then for some do(x) with limg_, A(zxy,)/(22y,) = d2(x)
we get

ae on [0,1]. Using the fact that d < dy < d and d < dy < d, we have
(g(x)/x)d < d and (g(z)/x)d > d a.e. If d > 0, these inequalities are valid
for every x € (0,1]. m

Further properties of G(X,,) can be found in [3], e.g. if d > 0, then each
g € G(X,,) is everywhere continuous on [0, 1].

The basic idea of the following type of sequences x,, is also due to Konya-
gin.

ExXAMPLE 1. Let kg < k1 < ko < ... be an increasing sequence of
positive integers, ng and mg be two integers and =, § and a be real numbers
satisfying

(i) ks — ks—1 — 00 as s — 00,
(i) 0<vy<d,a>1,ng<mgand 1/a™ < /4.

(In what follows, we will abbreviate the interval (yA,0\) as (y,0)\.) Let x,
be an increasing sequence of all integer points lying in the intervals

(7, 8)akemomotine 0 < j < (koyr — kg)mo, s =0,2,4, ...,
(77 5)aksm0n0+jm07 0 < .7 < <k8+1 - ks)n(b s = 17 37 57 vy

i.e. we have a sequence of intervals of the form (v, §)(a™)* and (v, §)(a™0)7,
where these forms alternate on common (v, §)(a™™o)ks.

Complement of limit points. Let X be the complement in [0, 1] of the
limit points of x,,/x,. Define

6 v b v
to0 = (- 5)e 1000 = (55

Bln.) = 10n0) 0 722 U0
1 I(mg)  I(mg)  I(mg)
U (amo)d I(mg) U amo ~ (amo)2 ~ (qmo)3 ),
Blma.j) = 1(mo) 1 7t <(fiﬁr§?>_1
! I(ng)  I(no) | I(no)
(amo)i <I(n0) U qno U (am0)? U (am0)? U.. )
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Then
(5) X = (N Bo.i)) 0 () Bmo.d).
=0 Jj=0

Thus, in all cases X D I(ng) and assuming additionally

(iii) 1 < ng < mg, ged(ng, mp) = 1,

1 0% 2
) g < (%)
2 2
¥ a™ (v a™°
L < 2 L <
v) <5> — amo’ (6) ~ a2no’

2 no mok/no}+1 2 mo k
L () () g (a™) _
(Vl) <g) S (amﬂ)k+1 ) <g) S(ano)[mok/no]+17 k—l,...,no—Q,

we have
(6) X = I(no) # 0.

The assumptions (i)—(vi) hold for ks = s*, vy =1,6 =2, a =2, ng = 3
and mg = 4. Here X = (1/22,1/2).

Proof of (5) and (6). We briefly mention the following steps.

1. For terms x,, € (7, d)aF=m0m0+im0 n — 0o, we have two possibilities:
(a) s even — o0, j fixed,;
(b) s even — o0, j — oc.
Similarly, for x,, € (v, §)a*smomotimo we have
(c) s odd — o0, j fixed;
(d) s odd — oo, j — oo.
By direct computation we find that B(ng,j) is the complement of the

limit points of x,,/x, having z, of type (a), B(my, j) of type (c), B(my,0)
of type (b) and B(ng,0) of type (d).

2. Define
A(ng) = I(no) U éfzo))l u...u (afo(;lngz—z Y (afo(;lngz—l’
I(my) I(my) 1(mo)

A(mo) = I(mo) U

(amo)l e (amo)’n072 (amg)’ngfl '
Since A(no) and A(myo) lie in I = (6/(ya™°™0),~/d) we have

B(no,0) N B(mog, 0) = (A(no) N A(mo)) U w

U A(ng) N A(mo) U A(ng) N A(mo)

a2m0 no a3m0n0

U...
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3. Assumptions (iii) and (vi) imply
I(no)

(a’no)mo—l :

A(ng) N A(mo) = I(’I’Lo) U

4. Applying (v) we have
Q"o A(no) A (A(no) N A(mo) U A(no) N A(m0)>

as™Mono asmono a(sfl)mono
I(no) I(no)
- (ano)mo—lasmong a(s—l)mono ’

which gives
B(no,O) N B(mo,O) N B(mg,no — 1) = I(no) ]

Distribution functions. Here we assume only (i) and (ii). Define

1 5 1 5
I = | — I —
(o, 1) t7+(1—t)5(ano’7>’ (mo,1) t7+(1—t)5<amo’7>’

1
I(t) = ————=(v,9).
0= =)
The set G(X,,) of all d.f. of X, has the structure
G(X") = {gno,j,t(x> :J=0,1,..., te [07 1]}
U{gmo,jt(z) :7=0,1,..., t €[0,1]},
where the d.f. gn, ;+(«) has constant values on the intervals

I(no,t) I(no,t) I(mg,t) I(mo,t) I(mo,t)

a7 @) (@7 (@) () (@) ()2

I(”Ovt)a

while on the complement intervals in [0, 1]

y Ity I(t) I(t)
") <t7+ (1- t)5’1)’ am’ (am)?" 7 (am0)d’
I(t) I(t)
(@) (am,) " (@™0)7 (@m,)?’

it has a constant derivative

(8) g;zo,j,t(x) =1/d,
where d < d < d and
§—n 1 1 1 1
d= 1—1¢ - . - .
m+(1—t)5< R (a”0)3<a"0—1 am0—1>>
Here 5 ) 5
—_ _ _ no
d= v d = o-7 _¢@
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These assertions characterize the d.f. gn, ;+(x). Similarly we define d.f.
Gmo 5.t (%), exchanging ng with mg in the intervals and derivatives defined

above.

Proof of (8). 1.1f F(X,,,x) — g(z) for some n — oo, then we can select
a subsequence of n such that n/x,, — d and, for some ¢ € [0, 1],

Tp = (ty+ (1 —
=(tv+(1-

t)(;)aksmono-f-jno + O(aksmono-f-jno )7

t)(;)aksmono-f-jmo + O(aksmono-"—jmo)’

s even — 00,

s odd — oo,

and vice versa for any ¢ € [0, 1] and any z,, of these forms we have n/x,, —
d > 0, which implies F(X,,,z) — g(x) for some d.f. g(z), since we have

AF(Xp,z)

Ax (i+

1/n
1)/,

— /T,

Ln
n

on intervals (7). For such z,, the complement of (7) contains no , /.
2. We directly compute the limit d for cases (a)—(d) specified in step 1

of the above proof. =

ExaMPLE 2. In Example 1 we put ks = s for s =0,1,2,...

sequence of all integer points lying in the intervals
(7:0)(a™)?, (v, 8)(a™)",...,
(v,8)(@™)"™, (v,8)(@™)"*, ..
(7,8)(a™)*™, (7, 6)(
(7,8)(a™)*™, (7,6)(a

Complement of limit points. Define

no 2m0+1
a?) ye

m0)3n0+17 .

n0)3m0—1

,l.e .z, is a

(3, 8) (™)™,
L 8) (@),
- (,0)(a

)

U U ),

oSy,

B(no,j)—I(ng)U oo UUW
1 A(no) ~ A(mo)
U (ano )] (A( ) amono a2m0no a3m0no
I(mo) I(mo)
B(mo, ) —I(mO)U 4mo W
1 A(mo)  A(no)
U (amo)j <A(n0) U amono a2m0n0 a3m0n0
Then
mof]. ’nof].

(9) X=( [ Blro,j)) N
§=0

(N BOmo.).
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For ng = my this gives (cf. [2, Ex. 1])

g Lno)
X_H @y

Assuming (i)—(vi) we have
I(ng) U I(no) U I(no)

(10) X = I(no) @)

ang’rLo a4m0no a6m0no
Ua”°< IQ(nO) y Hro) ; 1(no) u)
a mono a4mon0 aGmono

Proof of (9) and (10). Similarly to proof of (5) and (6) in Example 1,
but the step 4 can only be used for odd s, since here B(mg,ng— 1) contains
only a™° A(ng)/aZitDmono g

Distribution functions. As in Example 1,

1 1) 1 0
f0) = g () 000 = g ()

1
BRI

The set G(X,,) of all d.f. of X,, has the structure
G(X,) ={gnejt(x):7=0,1,...,mo—1, t € [0,1]}
U {gmg,j,t(x) : j =0,1,...,n9g—1, t € [0, 1]},

where the d.f. g,, j+(z) has constant values on the intervals

1(t)

I(no,t), % o %
I(mo,t) I(mo,t) I(mo,t) I(no,t)
(am)J " (am0)igmo’ " (am0)i(amo)no—1 " (a™0)3(@mono)’
I(no,t) I(’I’Lo,t) I(mo,t)
(am0)i(@momo)gno E (ano)j(amono)(ano)WO*l ’ (amo)d (a2m0n0) R

while on the complement intervals in [0, 1]

( g 1>’ 1) 1) I1(#)

A0 ) @ @) (an)
1(t) 1(t) I(t)
(@ (@) (e (™ famepamonn’
I(t) I(t) 1(t)
(am0)igmono(gno) ’ (am0)igmomo(gno)2 R (am0)ig2momo T

it has a constant derivative
(11) Ino.ji(®) = 1/d,
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_l’_
1 1 a'momno 1 1
x|1—-t+ - - - .
ar —1 (a™)i qmomo +1\a —1 qa™ —1

S0 1 amono 1 1

= 4 \aw—1 a@amomo+1\agw—-1 aw—1))

P 1 a™mono 1 1

== <1+amo—1+amono+1<ano—1_amo—1>>'
These assertions characterize d.f. gn, ;+(x). Similarly we define d.f.

Gmo,j.t(x), exchanging ng with mg in the intervals and derivatives defined
above.

Here

Proof of (11). As the proof of (8) in Example 1. m

Concluding remarks. Theorem 5 in [2] can also be amended by adding
the assertion of the incorrect step 3 to the assumptions of this theorem. This
gives the following second correct form: Assume that there exists a sequence
of positive integers g(n) such that lim, .. Z4(n)/Tn = A and 0 < X < 1
and let d > 0. If there exists an interval (u,v) containing no limit points
of T, /xy, then there are infinitely many such intervals, e.g. (u,v)\, j =
0,1,2,... All possible limits A form a cyclic group.

By this theorem, for z,, in Example 1, there exists no such A\. We can see
this directly, since such A must be a common term of the following sequences:

1 1 1 1 1 1
aTO’ (ano)Q?--.7 (ano)j’ (ano)j(amo)7 (ano)j(amo)Z’ (a”O)j(amo)S”"’
j=0,1,2,...

1 1 1 1 1 .
amo’ <a,mo)27'-.7 (amo)j’ (amo)j(ano)7 (amo)j(an0)27 (amc))j(ano)B""’
j=0,1,2,...

For j = 0 we see that A must have a form 1/a*™0™ but for j = 1 there
exists no i such that 1/a*™om0 = 1/g"0(a™0)!. Here we use only (i)—(iv).
In Example 2 we can construct A directly: For
Tn = [(ty 4 (1 = t)§)a?monotino] - s =0 1,..., j=0,1,...,mp — 1,

we take .0,y = [(ty + (1 — t)§)as=2monotino] and similarly for 2s + 1.
Thus A = 1/a?mom0,
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