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Sums of one prime and two prime squares

by

Hongze Li (Shanghai)

1. Introduction. Let
A = {n : n ∈ N, n ≡ 1 (mod 2), n 6≡ 2 (mod 3)},
C = {n : n ∈ N, n ≡ 3 (mod 24), n 6≡ 0 (mod 5)}.

In 1938 Hua [3] proved that almost all n ∈ A are representable as sums of
two squares of primes and a kth power of a prime for odd k, and almost
all n ∈ C are representable as sums of two squares of primes and a kth
power of a prime for even k. The natural question then becomes: how good
a bound can we get on the possible exceptional sets? Let Ek(N) denote the
number of exceptions up to N for the problem with kth power of a prime.
Hua’s result actually shows that Ek(N) � N(logN)−A for some positive
constant A. Later Schwarz [6] refined Hua’s result to show that

Ek(N)� N(logN)−A for any A > 0.

In 1993 Leung and Liu [4] improved this to Ek(N) � N1−δ for some fixed
δ > 0.

For the special case k = 1,

n = p1 + p2
2 + p2

3.(1.1)

In 2004 Wang [7] proved that E1(N) � N13/30+ε. In 2006 Wang and
Meng [8] improved it to E1(N) � N5/12+ε. In this note we shall prove
the following result.

Theorem. Let ε > 0 be given. Then for all large N we have

E1(N)� N5/14+ε.

The improvement is due to the application of a sieve method. The basic
idea is to show that the argument of [2] used for four squares of primes can
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be adapted to work for a prime and two squares of primes to give the same
size exceptional set. We can therefore quote much from the proof in [2],
sketching the necessary changes.

2. Outline and preliminary results. To prove the Theorem, it suf-
fices to estimate the number of exceptional integers in the set B :=
A ∩ (N/2, N ]. Here N is our main parameter, which we assume to be “suf-
ficiently large”. We write

P = N1/7−ε, Q = NP−1L−100, M = NL−9, L = logN.(2.1)

We use c and ε to denote an absolute constant and a sufficiently small
positive number, not necessarily the same at each occurrence.

Let

M =
⋃

1≤q≤P

⋃
1≤a≤q
(a,q)=1

[
a

q
− 1
qQ

,
a

q
+

1
qQ

]
.(2.2)

These are the major arcs, and so the minor arcs m are given by

m =
[

1
Q
, 1 +

1
Q

]
\M.(2.3)

Let us begin with∑
p1+p22+m2=n

M<p1,p22,m
2≤N

(log p1)(log p2)ρ(m) =
1�

0

f(α)g(α)h(α)e(−αn) dα,(2.4)

in which e(x) = exp(2πix) and

(2.5)

f(α) =
∑

M<p≤N
(log p) e(αp), g(α) =

∑
M<p2≤N

(log p) e(αp2),

h(α) =
∑

M<m2≤N

ρ(m)e(αm2).

Here ρ(m) satisfy

ρ(m) ≤
{

1 if m is prime,
0 otherwise,

and
∑
m≤X

ρ(m)� XL−1(2.6)

for N1/4 ≤ X ≤ N1/2. This means that ρ is a non-trivial lower bound for
the characteristic function of the set of primes in [M1/2, N1/2].

The new idea introduced in Section 3 of [2], and which we use here, is as
follows. The maximum saving we can make for g(α) on the minor arcs with
our current knowledge is N1/16, but this can be increased to N1/14 for h(α).
The final exponent for the exceptional set is then 1

2 − 2 · 1
14 = 5

14 using an
argument of Wooley that motivates (4.3)–(4.6) below.
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Let θ(m,α) be the function which is 1 except when there exist integers
a and q such that

|qα−a|<Q−1, (a, q) = 1, q≤P, (m, q) is divisible by a prime p≥N1/14,

in which case θ(m,α) = 0. Define

k(α) =
∑

M<m2≤N

ρ(m)θ(m,α)e(αm2), l(α) = h(α)− k(α).(2.7)

It is easy to see that, for α ∈ m, h(α) = k(α) and

l(α)� N3/7(2.8)

for all α.
For a positive integer k and χ mod q, define

Ck(χ, a) =
q∑

h=1

χ(h)e(ahk/q), Ck(q, a) = Ck(χ0, a).(2.9)

Here χ0 is the principal character modulo q.
If χ1, χ2, χ3 are characters modulo q, then let

(2.10) B(n, q;χ1, χ2, χ3)

=
1

φ3(q)

q∑
a=1

(a,q)=1

C1(χ1, a)C2(χ2, a)C2(χ3, a)e(−an/q),

and

A(q) = B(n, q;χ0, χ0, χ0), S(n,X) =
∑
q≤X

A(q).(2.11)

Lemma 1 (Lemma 7.1 of [8]). For n ∈ A, we have

S(n,X)� 1.

Lemma 2 (Lemma 3.1 of [8]). Let χj (mod rj) with j = 1, 2, 3 be prim-
itive characters, r0 = [r1, r2, r3], and χ0 the principal character modulo q.
Then ∑

q≤x
r0|q

|B(n, q;χ1χ0, χ2χ0, χ3χ0)| � r
−1/2+ε
0 (log x)10.

Lemma 3 (Theorem 1.1 of [1]). Let `∈N, R, T,X ≥ 1 and κ := 1/logX.
Then there is an absolute positive constant c such that∑
r∼R
`|r

∑
χ (mod r)

∗ T�

−T

∣∣∣∣ ∑
X≤n≤2X

Λ(n)χ(n)
nκ+iτ

∣∣∣∣ dτ � (`−1R2TX11/20+X)(logRTX)c,

where
∑∗

χ (mod r) means summation over the primitive characters modulo r.
The implied constant is absolute.
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3. The major arcs. Let

f∗(α) =
C1(q, a)
φ(q)

∑
M<m≤N

e(βm),(3.1)

g∗(α) =
C2(q, a)
φ(q)

∑
M<m2≤N

e(βm2),(3.2)

k∗(α) =
C2(q, a)
φ(q)

∑
M<m2≤N

%(m)e(βm2),(3.3)

where %(m) is defined in (4.3) of [2]. We now consider
�

M

f(α)g(α)k(α)e(−αn) dα−
�

M

f∗(α)g∗(α)k∗(α)e(−αn) dα,(3.4)

which we think of as the error term over M.
Define

W1(χ, β) =
∑

M<p≤N
(log p)χ(p)e(βp)−D(χ)

∑
M<m≤N

e(βm),

W2(χ, β) =
∑

M<p2≤N

(log p)χ(p)e(βp2)−D(χ)
∑

M<m2≤N

e(βm2),

W ](χ, β) =
∑

M<m2≤N

ρ(m)χ(m)e(βm2)−D(χ)
∑

M<m2≤N

%(m)e(βm2),

where D(χ) is 1 or 0 according as χ is principal or not.
Similar to (4.1) of [2], we can write the f(α), g(α) and k(α) as

(3.5) f

(
a

q
+β
)

=
C1(q, a)
φ(q)

∑
M<m≤N

e(βm)+
1

φ(q)

∑
χmod q

C1(χ, a)W1(χ, β),

(3.6) g

(
a

q
+ β

)
=
C2(q, a)
φ(q)

∑
M<m2≤N

e(βm2) +
1

φ(q)

∑
χmod q

C2(χ, a)W2(χ, β),

(3.7) k

(
a

q
+ β

)
=
C2(q, a)
φ(q)

∑
M<m2≤N

%(m)e(βm2) +
1

φ(q)

∑
χmod q

C2(χ, a)W ](χ, β).

So we can use (3.5)–(3.7) to express the difference in (3.4) as a linear com-
bination of error terms involving f∗(α), g∗(α) and k∗(α), and W1(χ, β),
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W2(χ, β) and W ](χ, β). In these error terms, the most troublesome is

(3.8)
∑
q≤P

∑
χ1 mod q

∑
χ2 mod q

∑
χ3 mod q

B(n, q;χ1, χ2, χ3)J(n, q, χ1, χ2, χ3).

Here B(n, q;χ1, χ2, χ3) is defined in (2.10), and

J(n, q, χ1, χ2, χ3) =
1/qQ�

−1/qQ

W ](χ3, β)W1(χ1, β)W2(χ2, β)e(−βn) dβ.

Suppose χ∗j mod rj , rj | q, is the primitive character inducing χj . If χ mod q,
q ≤ P , is induced by a primitive character χ∗ mod r, r | q, we have

Wj(χ, β) = Wj(χ∗, β), j = 1, 2,(3.9)

W ](χ, β) = W ](χ∗, β) +O(r−2N13/28),(3.10)

where the error term comes from the integers in the set

{m2 ∈ [M,N ] : (m, q) > 1, (m, r) = 1, ρ(m) 6= 0}.
When r ≤ PN−3/28 < N1/28, this set contains � N1/2−3/28 � r−2N13/28

integers; when r > PN−3/28, it is empty.
By Cauchy’s inequality,

J(n, q, χ1, χ2, χ3)� (W ](χ∗3) + r−2
3 N13/28)W1(χ∗1)W2(χ∗2),(3.11)

where for a character χ mod r,

W ](χ) = max
|β|≤1/rQ

|W ](χ, β)|,

Wj(χ) =
( 1/rQ�

−1/rQ

|Wj(χ, β)|2 dβ
)1/2

, j = 1, 2.
(3.12)

By (3.11), the quantity (3.8) is

(3.13) �
∑
r1≤P

∑
χ1

∗ ∑
r2≤P

∑
χ2

∗ ∑
r3≤P

∑
χ3

∗
(W ](χ3) + r−2

3 N13/28)

×W1(χ1)W2(χ2)B(n, χ1, χ2, χ3).

Here
∑

rj

∑∗
χj

denotes summation over the primitive characters to moduli
rj ≤ P , and

B(n, χ1, χ2, χ3) =
∑
q≤P
r0|q

|B(n, q;χ1χ0, χ2χ0, χ3χ0)|,

where r0 = [r1, r2, r3] and χ0 is the principal character modulo q.
By Lemma 2 we have

B(n, χ1, χ2, χ3)� r
−1/2+ε
0 L10,
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and by Lemma 2.4 of [5],∑
r≤R

∑
χ

∗
[r, d]−1/2+εW2(χ)� d−1/2+εLc

whenever R ≤ N1/6−ε. Thus the sum in (3.13) does not exceed

(3.14) Lc
∑
r1≤P

∑
χ1

∗ ∑
r3≤P

∑
χ3

∗
[r1, r3]−1/2+ε(W ](χ3) + r−2

3 N13/28)W1(χ1).

Following Section 6 of [5], but using Lemma 3 instead of Theorem 4.1
of [5], with a few changes, we get∑

r1≤P

∑
χ1

∗
[r1, r3]−1/2+εW1(χ1)� r

−1/2+ε
3 N1/2Lc,(3.15)

so (3.14) does not exceed

(3.16) LcN1/2
∑
r3≤P

∑
χ3

∗
(r−1/2+ε

3 W ](χ3) + r
−5/2+ε
3 N13/28)

� LcN1/2
∑
r3≤P

∑
χ3

∗
r
−1/2+ε
3 W ](χ3) +N27/28+ε.

By the argument of page 8 of [2], if ρ(m) satisfies conditions (i), (ii), (iv)
and (v) in [2], then for any fixed A > 0 we have∑

r3≤P

∑
χ3

∗
r
−1/2+ε
3 W ](χ3)� N1/2L−A−c.(3.17)

Therefore, by (3.9)–(3.17) we have

(3.18)
∑
q≤P

∑
χ1 mod q

∑
χ2 mod q

∑
χ3 mod q

B(n, q;χ1, χ2, χ3)J(n, q, χ1, χ2, χ3)

� NL−A

for any fixed A > 0.
Hence the sum in (3.8) is O(NL−A) for any fixed A > 0. Similarly, the

other error terms in (3.4) can be estimated in the same way, so the difference
in (3.4) is O(NL−A).

By the standard major arcs techniques we have�

M

f∗(α)g∗(α)k∗(α)e(−αn) dα = P0S(n, P )(1 + o(1)),(3.19)

where

NL−1 � P0 =
∑

m1+m2
2+m2

3=n

M<m1,m2
2,m

2
3≤N

%(m3)� NL−1,(3.20)

by (4.4) of [2], and S(n, P ) is defined by (2.11).
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By Lemma 1, (3.4) and (3.19)–(3.20) we obtain the following result:

Lemma 4. Suppose that ρ(m) satisfies conditions (i), (ii), (iv) and (v)
in [2]. Then for sufficiently large n ∈ A, we have

�

M

f(α)g(α)k(α)e(−αn) dα� NL−1.(3.21)

4. Proof of Theorem. Let E(N) be the set of integers n ∈ B such that

n 6= p1 + p2
2 + p2

3.(4.1)

It is sufficient to prove that

E(N)� N5/14+ε.(4.2)

Let |E(N)| denote the cardinality of E(N) and Z(α) be its generating
function:

Z(α) =
∑

n∈E(N)

e(−αn).

Then by (2.2)–(2.6) we have
1�

0

f(α)g(α)h(α)Z(α) dα ≤ 0.

By Lemma 4, it follows that�

M

f(α)g(α)k(α)Z(α) dα� |E(N)|NL−1.

Thus∣∣∣ �
M

f(α)g(α)k(α)Z(α) dα−
1�

0

f(α)g(α)h(α)Z(α) dα
∣∣∣

=
∣∣∣ �

M

f(α)g(α)(k(α)− h(α))Z(α) dα−
�

m

f(α)g(α)h(α)Z(α) dα
∣∣∣

� |E(N)|NL−1.

By Lemma 1 of [2] and (2.8) we have

|E(N)| � LN−1
( �

M

|f(α)g(α)(k(α)− h(α))Z(α)| dα(4.3)

+
�

m

|f(α)g(α)h(α)Z(α)| dα
)

� LN−1N3/7+ε/5
1�

0

|f(α)g(α)Z(α)| dα.
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Now we apply the device introduced by Wooley [9] and used by Harman
and Kumchev [2], namely by Cauchy’s inequality and Parseval’s identity we
have

1�

0

|f(α)g(α)Z(α)| dα�
( 1�

0

|f(α)|2 dα
)1/2( 1�

0

|g(α)Z(α)|2 dα
)1/2

.(4.4)

It is easy to see that
1�

0

|f(α)|2 dα =
∑

M<p≤N
(log p)2 � NL,

1�

0

|g(α)Z(α)|2 dα =
∑

p21+n1=p22+n2

M<p2i≤N,ni∈E(N)

(log p1)(log p2)

� N1/2+ε/4|E(N)|+ |E(N)|2N ε/4.

(4.5)

Therefore
1�

0

|f(α)g(α)Z(α)| dα� N3/4+ε/4|E(N)|1/2 +N1/2+ε/2|E(N)|.(4.6)

So by (4.3)–(4.6) we have

|E(N)| � N5/28+ε/2|E(N)|1/2.
From this we get

|E(N)| � N5/14+ε.

This completes the proof of the Theorem.

Acknowledgments. The author would like to thank the referee for
his/her comments.
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