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Sums of one prime and two prime squares
by

HoNGZE L1 (Shanghai)

1. Introduction. Let
A={n:neN n=1 (mod 2), n # 2 (mod 3)},
C={n:neN,n=3(mod 24),n #0 (mod 5)}.
In 1938 Hua [3] proved that almost all n € A are representable as sums of
two squares of primes and a kth power of a prime for odd k, and almost
all n € C are representable as sums of two squares of primes and a kth
power of a prime for even k. The natural question then becomes: how good
a bound can we get on the possible exceptional sets? Let Fx(N) denote the
number of exceptions up to N for the problem with kth power of a prime.
Hua’s result actually shows that Ej(N) < N(log N)~4 for some positive
constant A. Later Schwarz [6] refined Hua’s result to show that

Ex(N) < N(log N)™*  for any A > 0.
In 1993 Leung and Liu [4] improved this to Ej(N) < N'79 for some fixed
d > 0.
For the special case k =1,
(1.1) n = p1+ p3 + pi.

In 2004 Wang [7] proved that Fy(N) < N3/30+¢ In 2006 Wang and
Meng [8] improved it to Ej(N) <« N°/12+¢ In this note we shall prove
the following result.

THEOREM. Let € > 0 be given. Then for all large N we have
E1(N) « N5/t
The improvement is due to the application of a sieve method. The basic

idea is to show that the argument of [2] used for four squares of primes can
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be adapted to work for a prime and two squares of primes to give the same
size exceptional set. We can therefore quote much from the proof in [2],
sketching the necessary changes.

2. Outline and preliminary results. To prove the Theorem, it suf-
fices to estimate the number of exceptional integers in the set B :=
AN (N/2,N]. Here N is our main parameter, which we assume to be “suf-
ficiently large”. We write

(21) P=NY"<  Q=NP'£7' M=NL£ L=logN.

We use ¢ and € to denote an absolute constant and a sufficiently small
positive number, not necessarily the same at each occurrence.
Let

(22) -U U [q qu qu}

1<g<P 1<a<q
(a,9)=1

These are the major arcs, and so the minor arcs m are given by

(2.3) m= [él—k }\Dﬁ

Let us begin with
1
24) S (ogp)(logpa)p(m) = | F(a)g(a)h(a)e(—an) da,
p1+p3+mi=n 0
M<p1,p2,m2<N

in which e(x) = exp(2miz) and

flay=">_ (logp)e(ap), g(a)= > (logp)e(ap®),

M<p<N M<p2<N

h(a) = Z p(m)e(am?).

M<m?2<N
Here p(m) satisfy

1 if m is prime

) —1
(2.6)  p(m) < {0 otherwise, and Y p(m)> XL
m<X
for N1/4 < X < N2, This means that p is a non-trivial lower bound for
the characteristic function of the set of primes in [M1/2, N1/2],

The new idea introduced in Section 3 of [2], and which we use here, is as
follows. The maximum saving we can make for g(a) on the minor arcs with
our current knowledge is N'/16, but this can be increased to N/ for h(a).
The final exponent for the exceptional set is then % -2 ﬁ = % using an
argument of Wooley that motivates (4.3)—(4.6) below.
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Let 6(m, «) be the function which is 1 except when there exist integers
a and ¢ such that

lga—a|<Q7Y, (a,q)=1, ¢< P, (m,q) is divisible by a prime p > N/14,

in which case 6(m, «) = 0. Define

(2.7) k(o) = Z p(m)B(m, a)e(am?), I(a) = h(a) — k(a).
M<m?<N

It is easy to see that, for « € m, h(a) = k(a) and

(2.8) I(a) < N3/7

for all a.
For a positive integer k and x mod ¢, define

(2.9) ZX e(ah®/q),  Crlg,a) = Ci(xo,a).

Here xq is the prlnc1pal character modulo gq.
If x1, x2, x3 are characters modulo ¢, then let

(2.10) B(mq;)a,xQ,x:a)

q
Z C1(x1,a)Ca(x2, a)Ca(xs, a)e(—an/q),
a:l
a,q)=1

and
q<X
LEMMA 1 (Lemma 7.1 of [8]). Forn € A, we have

S(n,X)> 1.

LEMMA 2 (Lemma 3.1 of [8]). Let x; (mod r;j) with j =1,2,3 be prim-
itive characters, ro = [ri,72,73], and xo the principal character modulo q.

Then

1/2+s(10g 33)10

> IB(n,¢; x1x0, X2x0, X3X0)| < 7
q<x
rolg

LEMMA 3 (Theorem 1.1 of [1]). Let £€N, R,T,X >1 and r:=1/log X .
Then there is an absolute positive constant ¢ such that

Z Z* § Z A(n)x(n)

nm—HT

dr < (TPR2TX M/ 4 X)) (log RTX)C,

r~R x (modr) —-T' X<n<2X
Lr
where Z (mod ) I€aNs summation over the primitive characters modulo 7.

The 1mphed Constant is absolute.
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3. The major arcs. Let

(3.1) fra) = SLD 5~ gy

¢a) 5y

* _ § e m2
* o CZ(Q7G’) E /‘ me m2

where p(m) is defined in (4.3) of [2]. We now consider

(34) | fl@)g(@)k(@)e(-an)da — | f*(a)g*(a)k*(a)e(—an) da,

m m
which we think of as the error term over 91.
Define
Wilx,8) = > (logp)x(p)e(Bp) —D(x) > e(Bm),
M<p<N M<m<N
Walx,8) = > (logp)x(p)e(Bp®) = D(x) Y e(Bm?),
M<p?<N M<m?2<N

Wix.B8) = Y. pm)x(m)e(Bm®) —D(x) > o(m)e(Bm?),

M<m?2<N M<m?2<N

where D(x) is 1 or 0 according as x is principal or not.
Similar to (4.1) of [2], we can write the f(«a), g(a) and k() as

g o Cl((La) e(Bm L a
(3.5) f<q+ﬁ> - Giae) M;ﬂ (Bm)+ ¢(q)xm20dqol<x, Wi (. ),
(3.6) g<“+5>

q

 Calg.a) o L )

- ¢(q) M<;<N (/8 )+¢(Q) XmZOquQ(Xv )WQ(X7,3)7
(3.7) k<a+ﬂ>

q

= QD) S e(an®) +—— 3 ol )W (x, ).
#(q) MR ¢(q)xm0dq ) )

So we can use (3.5)—(3.7) to express the difference in (3.4) as a linear com-
bination of error terms involving f*(a), ¢*(«) and k*(«), and Wi(x, ),
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Wa(x, 8) and Wt(x, 8). In these error terms, the most troublesome is

B8) > D> > > Bngixi,x2x3)J (14 x1, X2, X3)-

g<P x1modgq x2 modq x3 modg
Here B(n,q; x1, x2, x3) is defined in (2.10), and

1/q@Q
J(”‘an X17X27X3) - S Wﬁ(X37ﬁ)WI(X175)WQ(X2aﬁ)e(_ﬁn) dﬁ
-1/qQ

Suppose X}'f mod rj, ;| ¢, is the primitive character inducing x;. If x mod ¢,
q < P, is induced by a primitive character x* mod r, r| g, we have
(3.9) Wi B) = Wi 8), 5=1,2,
(3.10) WH(x, B) = WHX", ) + O(r2N19/%%),
where the error term comes from the integers in the set
{m? € [M,N]: (m,q) > 1, (m,r) =1, p(m) # 0}

When r < PN—3/28 < N1/28, this set contains < N1/2-3/28 « p—213/28
integers; when 7 > PN~%/28 it is empty.

By Cauchy’s inequality,

(311) J(”? q, X1, X2, X3) < (Wﬁ(Xi’g) + 7"3_2N13/28)W1 (XT)WQ(X§)7

where for a character y mod r,

wh — max |W* , B3|,
() |mgl/rQl (x; 8)

(3.12) 1/rQ

w0 =( | Witaas)

~1/rQ
By (3.11), the quantity (3.8) is
313) < Y NN SN S (W) + iy 2N
ri<P x1 r<P X2 rm3<P X3
x Wi(x1)Wa(x2)B(n, x1, X2, X3)-

Here ZT]_ Z;J denotes summation over the primitive characters to moduli
r; < P, and

1/2
. j=1,2.

B(n, x1,X2,X3) = Y, |B(1,¢; x1X0: X2X0, X3X0)
q<P
rolg
where 7o = [r1,r2, 73] and xo is the principal character modulo q.
By Lemma 2 we have

—-1/2
B(n7X17X27X3) < 710 / +E‘C107
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and by Lemma 2.4 of [5],
Z Z*[T’ d]—1/2+5W2(X) < d—1/2+5£c
r<R X
whenever R < N'/6=¢. Thus the sum in (3.13) does not exceed
(314) L9 DT D lrral HEWE () 4 2N W ().
ri<P x1 r3<P X3

Following Section 6 of [5], but using Lemma 3 instead of Theorem 4.1
of [5], with a few changes, we get

(3.15) SN Tl )T () < g PREN2LE
ri<P X1

0 (3.14) does not exceed
(3.16) reN1/2 Z Z —1/2+5Wn 5) + 5/2+sN13/2s)

rg<P X3

< ECNI/Q Z Z*Tgl/Q-i-&Wﬁ(Xg) —|—N27/28+6.
r3<P X3

By the argument of page 8 of [2], if p(m) satisfies conditions (i), (ii), (iv)
and (v) in [2], then for any fixed A > 0 we have
(3.17) SN R W () < N2 A

r3<P X3
Therefore, by (3.9)-(3.17) we have

B18) > > D> D Bngxix2x3)J (1,4, X1, X2, x3)

g<P x1 mod q x2 mod q x3 mod g
< NL£H

for any fixed A > 0.

Hence the sum in (3.8) is O(NL™4) for any fixed A > 0. Similarly, the
other error terms in (3.4) can be estimated in the same way, so the difference
n (3.4) is O(NL™4).

By the standard major arcs techniques we have
(319) | f(@)g (@)k*(a)e(-an) da = Py&(n, P)(1 +o(1)),

m

where
(3.20) NL < Py = > o(m3) < NLL,

m1 +m% +m§ =n
M<mg ,m% ,m%ﬁN

by (4.4) of [2], and &(n, P) is defined by (2.11).
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By Lemma 1, (3.4) and (3.19)—(3.20) we obtain the following result:

LEMMA 4. Suppose that p(m) satisfies conditions (i), (ii), (iv) and (v)
in [2]. Then for sufficiently large n € A, we have

(3.21) | fla)g(a)k(a)e(—an)da > NLT.
m

4. Proof of Theorem. Let £(N) be the set of integers n € B such that

(4.1) n # p1+ p3 + P
It is sufficient to prove that
(4.2) E(N) <« N/14+e,

Let |E(N)| denote the cardinality of £(N) and Z(«) be its generating
function:

By Lemma 4, it follows that
| fl@)g(@)k(e)Z(a) da > |E(N)NL

m
> |E(N)|NL™L.
By Lemma 1 of [2] and (2.8) we have
(4.3) E(N)| < 5N—1( | [/ (@)g()(k(@) = h(a)) Z(a)| da

m

+ [ If(@)g(a)h(a) Z(a)| da)

m
1

< LNTIN3/THe/5 S |f(a)g(a)Z(a)| dea.
0
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Now we apply the device introduced by Wooley [9] and used by Harman
and Kumchev [2], namely by Cauchy’s inequality and Parseval’s identity we
have

1 1 12 1/2
(44 [If@g(@Z(@)da < (§If(@)f*da) " (flg(@)Z(@)P da) "
0 0 0

It is easy to see that

1
[f(@Pda= > (logp)* < NL,

0 M<p<N

1

V1g9(a)Z(@)? da = > (log p1)(log p2)
(4.5) 0 pI+ni=p3+na

M<p2<N,n;€E(N)
< NY2HEMIE(N)| + [E(N) PN/,

Therefore
1

(4.6) {If(@)g(@)Z(a)|da < NYFIHEN)VZ 4 NZF2IE(N)).
0
So by (4.3)—(4.6) we have

|5(N)| < N5/28+E/2|5(N)|1/2.

From this we get
|E(N)| <« N°/+e,

This completes the proof of the Theorem.

Acknowledgments. The author would like to thank the referee for
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