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The Galois group of X? +aX®+a
by

B. BENSEBAA, A. MOVAHHEDI and A. SALINIER (Limoges)

1. Introduction. Let p be an odd prime number and s < p a positive
integer. In this paper we study the absolute Galois group G of a trinomial
o(X) = XP +aX®+ a, a € Z, supposed to be irreducible over the field Q
of rational numbers. This Galois group was previously studied in [8, 9, 11]
when s = 1 and the p-adic valuation v,(a) of the integer a is < 1. When
s = vp(a) = 1, the Galois group G is isomorphic either to the symmetric
group S, or to the affine group Aff(IF,). When s = 1 and v,(a) = 0, then
G ~ S, if the discriminant D of ¢(X) is not a square; otherwise, G is
isomorphic either to the alternating group A, or to the projective special
linear group PSLy(2¢). The latter is, of course, only possible when p — 1 is
a power of 2.

Here we deal with the Galois group of ¢(X) under very general circum-
stances. In fact, the only case we do not cover is where we simultaneously
have

p ’ a: p+vp<a)7 svp(a) < pa ng(p - 17 Svp(a)) > 1

With a few minor exceptions, we prove that if the Galois group is not solvable
then it is simply S, or A,.

Let N be the splitting field of p(X) over Q. By using Newton polygons,
we determine the inertia groups of ramified primes in N/Q. For a prime
£ # p which ramifies in N, the inertia group is cyclic of order p. For p > 3,
the prime p ramifies in N precisely when p divides a. To determine the
inertia group of p, we argue according to whether p divides v,(a) or not.
The ramification of p in N is wild if p does not divide v,(a) (Lemma 2.1)
where the approach is similar to that of the cases already treated in the
literature.
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Assume now that vy(a) = kp with an integer £ > 1. Then the ramification
of pin N can be tame or wild. We manage to compute the corresponding
inertia group in each case (Proposition 2.5) using the results of a previous
paper on the factorization of a polynomial over a local field [4].

Once we know the different inertia groups in N/Q, we determine G using

the list of possible Galois groups over Q of prime degree trinomials given by
Feit [7].

Acknowledgements. It is a pleasure to thank Alain Kraus for corre-
spondence concerning the elliptic curve occurring in Section 3.

2. Inertia groups. Let p be an odd prime number and ¢(X) = XP 4+
aX® 4+ a be a trinomial with 0 # a € Z, 1 < s < p — 1, supposed to be
irreducible over Q. We denote by a := a1,a2,...,q; the different roots
of ¢ in an algebraic closure of Q. Let K := Q(«) be the field obtained
by adjoining the root « to the field Q, and N := Q(«, a2, ..., ) be the
normal closure of K over Q. We consider the Galois group G of N over Q
as a transitive group of permutations of the roots of ¢. The discriminant D
of ¢ is [15, Theorem 2]

D = (=1)P=D/2gp=1 [P _|_( — 5Pt s%af).
We set ¢ := min(p, svp(a)) and b := a/p**@, so that

(1) = (- )p 1)/2pp— p(p 1)vp(a)+6D
where
(2) Dy = ppfé + (p — 8)?*888b8psvp(a)75

2.1. Inertia above p. Here we will determine the inertia group of a p-adic
place g of N. From the expression of D, we deduce that if p does not divide a,
then the place p is unramified over p. For the rest of this section, we suppose
that p divides @ and we argue according to whether p divides v,(a) or not.

First suppose that p does not divide v, (a):

LeEMMA 2.1. Ifp|a and p does not divide vy(a), then the prime number
p s totally ramified in K = Q(«).

Proof. The (Qp, X)-polygon [4] of ¢(X) has a unique side S joining the
point (0,0) to (p,vp(a)). As vp(a) and p are coprime, we see by [4, Theorem
1.5] that the ramification index of the local extension Q,(a)/Q, is equal
top. =

PROPOSITION 2.2. Assume p|a and p does not divide vy(a). Further
assume that ged(p—1, svy(a)) =1 if svy(a) < p. Then the inertia group of p
(in fact of a prime of N above p) in N/Q is isomorphic to the affine group
Aff(F,).
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Proof. Consider the polynomial

p—1
¢<X) _ w(a(a’fX—’_l)) — Xp—l +ZaiXp—1—i
i=1

in Q(«)[X] where the coefficient a; is given by

(p) ifl1<i<p-—s-—1,
)

D S a . ;
fp—s<i<p-—1.
(i>+<i+sp)a“ B

Introduce a prime element 7 of Q,(c). The 7-adic valuations vr(a;) of
the coefficients a; are given by

on(ai) = P fl1<i<p—s-—1,
— min(p, svp(a)) ifp—s<i<p-—1,

a; =

since vy (a) = vp(a) and vy (x) = pvy(z) for any rational by Lemma 2.1.

So the (Qp(a), X)-polygon [4] of ¥(X) has a unique side S joining (0,0)
to (p—1, min(p, svp(a))). By hypothesis, the integers p—1 and min(p, sv,(a))
are coprime. Hence by [4, Theorem 1.5] the ramification index of the local
extension Qp(a, a2)/Qp(a) is equal to p — 1. So the inertia group of p in
N/Q, is a transitive solvable permutation group of prime degree p with
order at least p(p — 1). The proposition follows by [6, Section 3.5]. m

Assume now that p divides v,(a) > 0: let v,(a) = kp for an integer k > 1
and b := a/p*P. Consider in Q[X] the polynomial

k
X
D(X) = % — XP 4 bpFs X 4+ b.
D 14

By the Taylor formula, we can write
p—1

(3) (X)) = (X +0P+> (X +b) " +ap
i=1

where the coefficient a; is given by

(?)(b)i f1<i<p—s—1,

a; = P\, 2vi s ks( p\its—p+l < i<y —

()ewr= (o Jemrers ity ms<i<pon
—bP 4 (—=1)5pFsbstl 4 b if i = p.

We discuss several cases according to the p-adic valuation of bP~1 —
(—1)*p**b* — 1.
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LEMMA 2.3. Assume that v,(bP~1 —(—1)*p**b* —1) = 1. Then p is totally
ramified in K = Q(«).

Proof. As vp((f)(—b)i) =1foralli=1,...,p— 1, the (Qp, X +b)-
polygon [4] of ¥(X) has a unique side S joining (0,0) to (p,1). By [4, The-
orem 1.5] the ramification index of the local extension Q,(c)/Q, is equal
top. =

LEMMA 2.4. Assume that v,(bP~" — (—1)*p**b* — 1) > 1. Then the prime
decomposition of p in K = Q(a) is p = plfflpg in each of the following two
cases:

(i) k=s=1and b # —1 (mod p);
(i) ks> 1.

If neither of the above two conditions holds, then p = p@f—Qa in K, where py
s a prime ideal of K.

Proof. The coefficient a,—; of the Taylor expansion (3) is a,—; =
p(BP~1 — (—1)%sb*p**~1). So vy(ap—_1) = 1 precisely when (i) or (ii) holds.

Now, in both cases (i) and (ii), the (Qp, X + b)-polygon [4] of ¢ (X)
has two sides: S; joining (0,0) to (p — 1,1) and Sy joining (p — 1,1) to
(p, vp(bP~1 — (=1)*spFsb*~1)). The corresponding associated polynomials,
being linear, are irreducible. We conclude by [4, Theorem 1.8].

If neither (i) nor (ii) holds, then k = s = 1 and vp(ap—1) > 1. As s = 1,
we necessarily have vp(ap—2) = 1, so that the (Qp, X + b)-polygon [4] of
¥ (X) has two or three sides, the first of which, S;, joins (0,0) to (p —2,1).
The associated polynomial of Sy being linear, once again we conclude by [4,
Theorem 1.8]. m

As the following example shows, when k = s = 1, the (Q,, X +b)-polygon
of ¥(X) may have one, two or three sides according to the choice of b:

e if b= —1+ 2p, then v,(b"~ 1 + pb — 1) = 1, hence a unique side;

e if b =1+ p, then v,(P~L +pb—1) > 2 and b # —1 (mod p), hence
two sides;

o ifb=—14+p—p>+ @pg’ for p > 3, then v, (=1 +pb—1) > 4 and
v, (P72 4+ 1) = 1, hence three sides.

We are now going to look at the inertia at p in the extension N/K.

PROPOSITION 2.5. Assume p|vp(a) > 1. Let vy(a) = kp for an integer

kE>1andb:=a/p.

(1) If vp(bP~1 — (=1)*p**b* — 1) = 1, then the inertia group of p (in fact
of a prime of N above p) in N/Q is isomorphic to Aff(F,) except
when k =s =1 and b= —1 (mod p), in which case it is isomorphic
to the subgroup of index 2 of Aff(IF,).
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(2) If instead v, (bP~1 —(—1)°p*b* —1) > 1, then the inertia group of p in
N/Q is cyclic; it is generated by a (p—1)-cycle except when k = s =1
and b = —1 (mod p), in which case it is generated either by a (p—2)-
cycle or by a product of a transposition and a disjoint (p — 2)-cycle.

Proof. (1) We fix a p-adic prime p of N. Let p = p N K. We denote by
N, the completion of N at p and by K, the closure of K in N,. By Lemma
2.3, we know that p = pP.

We let D(M/N) be the different of a local extension M /N. By the tran-
sitivity of the different, we have

D(Ny/Qp) = D(Ng/Kp) - D(Kp/Qp).
The discriminant of the polynomial ¢ (X) is given by
D(@D) _ (_1)(p—1)/2bs—1[ppbp—s + Ss(p o S)p—sbppksp]’
so the p-adic valuation of D(¢) is equal to p except when k = s = 1 and
b= —1 (mod p).
We first treat the case where v,(D(v)) = p. Since p is wildly ramified

in K by Lemma 2.3, so is the p-adic valuation of the discriminant of K:
vp(Dr) = p. Thus we also have vy(D(K,/Q,)) = p and

D(I,/Qp) = (9°/7) = ¢°

where the integer e is the ramification index of the extension N/Q,. On
the other hand, since N,/K, is tamely ramified,

D(N@/Kp) = @e/pfl'

Now let (G;)i>0 denote the ramification groups of the Galois extension
N,/Qp. We then have [14, chapitre IV, §2]

D(N,/Q,) = prizo(Card(Gi)—1) _ e=1+A(p-1)

where G, is the last non-trivial ramification group.

Taking all these equalities into account, we obtain e = Ap(p —1). As any
maximal solvable transitive permutation group of degree p is isomorphic to
Aff(F,), we necessarily have A =1 and e = p(p — 1).

Suppose now that k =s =1 and b= —1 (mod p). Then

P(X) = SO(II;)Q = X? +bpX +b.
Let 8 = a/p be a root of 1(X). As noticed in the proof of Lemma 2.3, the
polynomial ¢(X — b) is Eisenstein with respect to the prime p: in particular
its root 3 4 b is a prime element of the local field K, = Q,(c). Since p
divides b+ 1, the same holds for 5 —1 = (6+b) — (b+1). Now if we rewrite
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the equality ¥(3) =0 as

gKﬁ—l) —p8),

we see that (8 being a unit of K since its norm b is a unit of Q)
vp(BP !+ b) = 1.
So the (Ky, X — 3)-polygon [4] of

S FAX—B)+p(B +)

has a unique side S joining (0,0) to (p—1, p+1). As the associated polynomial
of S is a binomial of degree 2 = ged(p — 1,p + 1), it is separable modulo p.
Accordingly, by [4, Theorem 1.5], the ramification index of Qp(c, a2)/Qp(x)
is (p — 1)/2. Since ¢ remains irreducible over Q,, the decomposition group
of p in N/Q is a subgroup of Aff(F,). As a non-trivial element of Aff(F,)
does not fix two points [1, §15], we have N, = Qp(c, a2). Hence the inertia
group of p in N/Q is of order p(p — 1)/2. It is therefore isomorphic to the
unique subgroup of Aff(F,) of index 2.

(2) By Lemma 2.4, the ramification of p in K/Q is tame, more precisely,
p = pP~lp’ or p = pP~2a. Thus the ramification of p in N/Q is tame, so
that the inertia group is cyclic. This decomposition of p corresponds to a
factorization of the polynomial p(X) over Q,:

p(X) = g(X)h(X)

with g(X) being irreducible over Q,, of degree deg g = p —1 in the first case
and deg g = p — 2 in the second. The first case occurs precisely when (i) or
(ii) of Lemma 2.4 holds. The local field K}, is obtained by adjoining a root of
9(X) to Qp; it is a totally ramified extension of Q,. Write I, for the inertia
group of |p in N/Q. Introduce the inertia field M in N,/Q,. The totally
ramified extension K,/Q), is linearly disjoint from the unramified extension
M/Q,, so g(X) remains irreducible over M. Hence I, = G(N,/M) acts
transitively on the roots of g(X). As I, is cyclic, it contains a cycle of order
p— 1 or p — 2 according to the degree of g(X).

Now if degg = p — 1, and o’ is another root of ¢(X), the ramifica-
tion index of Q,(a’)/Qp is p — 1 or 1, according to whether o/ is a root of
g(X) or h(X). By Abhyankar’s lemma [13, p. 236], the extension N, /K, is
unramified, so in this case I, is cyclic generated by a (p — 1)-cycle.

If instead degg = p — 2, consider a root o’ of h(X). If Qy(c/)/Q, is
unramified, arguing as in the preceding case we see that I, is cyclic generated
by a (p — 2)-cycle. If Q,(a’)/Qy is ramified, then its ramification index is
2 = degh(X), in particular the quadratic polynomial h(X) is irreducible
over Q, (hence also over the inertia field M). In this last case, again by

b=

= (X Bp pB(X -y Y
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Abhyankar’s lemma, the ramification index of N,/Qy, is 2(p —2). As I, also
acts transitively on the roots of h(X), we conclude that it is generated by a
product of a transposition and a disjoint (p — 2)-cycle. =

2.2. Inertia at non-p-adic primes. Let £ # p be a prime divisor of a.
LEMMA 2.6.

1. If p does not divide ve(a), then the prime number ¢ is totally ramified
in K =Q(a).
2. If p divides vy(a), then £ is unramified in K = Q(«).

Proof. The (Qg, X )-polygon [4] of ¢(X) has a unique side S joining (0, 0)
to (p,ve(a)). The associated polynomial of S is a binomial of the form

F(Y)=Y™+

a
fve(a)

where m = p or 1, according to whether p divides vy(a) or not. Furthermore,
F(Y) is separable modulo ¢. Thus, by [4, Theorem 1.5], the ramification
index of Qy(«)/Qy is equal to p/m. =

This lemma together with Abhyankar’s lemma immediately yields:

PROPOSITION 2.7. Let £ # p be a prime divisor of a. The inertia group
(defined up to conjugation) of ¢ in N/Q is trivial or cyclic of order p ac-
cording to whether p divides v¢(a) or not.

Let ¢ # p be a prime divisor of the number Dy given by (2).

PROPOSITION 2.8. The prime ¢| Dy (¢ # p) is ramified in K precisely
when ve(Dyo) is odd, in which case the corresponding inertia group is gener-
ated by a transposition.

Proof. Since £ does not divide a, by [10, Theorem 2] the ¢-adic valuation
of the absolute discriminant of K = Q(«) is either 0 or 1 according to the
parity of the f-adic valuation of Dy. The rest of the proof is similar to that
of Lemma 5 of [12]. m

3. Galois group. It is known that every transitive solvable permu-
tation group of prime degree p is isomorphic to a subgroup of the affine
group Aff(F,). Suppose that the Galois group G of the irreducible trinomial
o(X) = XP+aX®+ais solvable. Then, in view of Propositions 2.2 and 2.5,
G is either Aff(F,) or its unique subgroup of index 2, except possibly when
we simultaneously have (p — 1, sv,(a)) > 1 and sv,(a) < p.

Using the classification of finite simple groups, W. Feit [7, Section 4] drew
up the list of possible non-solvable Galois groups of prime degree trinomials
over Q:
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1. the projective linear group PSL3(2) of degree T;
the groups PSLy(11) or Mj; (Mathieu group) of degree 11;

3. the projective linear groups G between PSLy(2¢) and PI'Ly(2°) of

degree p =1+ 2¢ > b;
4. the symmetric group S, or the alternating group A,.
When p =7, by (1) and (2), the discriminant D of ¢(X) is
D = —ab[7" + (7 — 5)"*s%a”].

For s € {1,3,4,6}, D/a% = —1 (mod 3), while for s =2 or s = 5, D/a% =
(mod 5), so that D is never a square. Hence the first case above does not
hold.

Similarly when p = 11, we are going to check that

D = —a'[11M + (11 — s)"s%a]

N

is not a square. First observe that D/a!? is not a square modulo 8, except
when s = 2 or s = 9. When s = 2, the discriminant is not a square since it
is negative. When s = 9, assume that D is a square: there exists an integer
y such that y? = —111 — 4.9%°. Setting x := (—9a)3, this would imply
that the elliptic curve (E) of equation

y? =42 — 111
has a rational non-trivial point. By the change of coordinates defined by

y = 2-113Y + 113 and = = 112X, one sees that (E) is isomorphic to the
elliptic curve (E’) defined by the equation

Y2 +Y = X3 — 40263,

which is the curve 1089b1 in Cremona’s tables of elliptic curves [5]. In
particular, it is of conductor 1089. By Table One of [5], (E’) has rational
rank 0 and trivial torsion. So there is no non-trivial rational point in (E’),
hence none in (E). This completes the proof.

Therefore when the Galois group G is not solvable, either it contains A,
or we have PSLy(2¢) < G < PT'Ly(2¢). Of course the latter happens in the
very special case where p is a Fermat prime p = 1 4 2¢ with e > 2. Further,
since the projective semilinear group PT'L9(2¢) consists of even permutations
[3, Lemma 3.1] the last case does not occur when D is not a square.

The above discussion immediately yields the following result.

PROPOSITION 3.1. If the Galois group G of p(X) = XP +aX®+ a is
not solvable, then it is the full symmetric group S, as soon as one of the
following conditions holds:

(i) svp(a) > p;
(i) svp(a) < p and svp(a) is odd.
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Proof. In both cases, vp(D) is odd. m

THEOREM 3.2. Let a be an integer, and p a prime number not dividing a.
Let p(X) = XP + aX?® + a be irreducible over Q and G its Galois group
over Q. Then

(i) G = S, if the discriminant of ¢(X) is not a square;
(ii) G ~ A, or PSLy(2°) if the discriminant of ¢(X) is a square. The
latter is only possible when p is a Fermat prime.

Proof. We can assume that p > 3. Suppose that G is not isomorphic
to Sp. By Proposition 2.8, the number Dy = p? + (p — s)P~®s°a® given by (2)
is a square and only the prime divisors of ¢ may ramify in K = Q(«).
The inertia group of such a ramified prime ¢|a in N/Q is cyclic of order p
(Proposition 2.7). Hence G is generated by elements of order p. On the other
hand, the extension K/Q is not normal since the trinomial ¢(X) has at most
three real roots. Therefore G is not solvable. As all the elements of order p
of PT'Ly(2¢) lie in PSLy(2¢), the proof is complete. m

We keep the notations already introduced. Combining the above Propo-
sition 3.1 with Proposition 2.2, we obtain:

THEOREM 3.3. Let a be an integer such that p | a and p does not divide
vp(a). Further assume that ged(p — 1, svp(a)) = 1 if svp(a) < p. Then the
Galois group G of p(X) is either S, or Aff(IF,).

There remains the case where v,(a) = kp with an integer £ > 1. Let
p = 14 2° > 17 be a Fermat prime. We first notice that PI'Ly(2¢) does
not contain any subgroup isomorphic to the subgroup of index 2 of Aff(FF,).
In fact, the latter contains an element of order (p — 1)/2, and this is not
even the case of the semilinear group I'Lo(2¢). Let, indeed, u be a semilinear
transformation of the vector space F3. relative to an automorphism o of Fae
and suppose that u is of order (p —1)/2 = 2¢71. Since ¢° is the identity of
Fae, we see that u® is a linear map. On the other hand, the general linear
group GL2(2¢) being of order

(22— 1)(2% - 2°),

its 2-Sylow subgroups are of order 2¢. Considering the subgroup

(62) o)

we see that these 2-Sylow subgroups are elementary abelian. Consequently,
u?® = Inge, and 2¢7! divides 2e. This contradicts the inequality 2¢ > 16.
Now the above discussion together with Proposition 2.5 yields:
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THEOREM 3.4. Let p # 17 be a prime number and a be an integer such
that vy(a) = kp for an integer k > 1. Assume that the trinomial p(X) =
XP4+aX?®+a is irreducible over Q and denote by G its Galois group over Q.
Then

(i) G is Aff(F)) or S if the discriminant of p(X) is not a square;
(ii) G ~ A, or the subgroup of index 2 of Aff(F,) if the discriminant of
o(X) is a square.

Notice that the discriminant of ¢(X) in the above theorem can be a
square only when we simultaneously have ks = 1 and b := a/p"? = —1
(mod p). Further, by Proposition 2.5 the hypothesis p # 17 can be removed
when either ks > 1 or b # —1 (mod 17). Finally, observe that once we fix
the prime p, then for only finitely many integers a can the above Galois
group G be contained in Aff(F,) [2].
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