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Farey fractions with prime denominators
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D. E. Welch (Cheltenham)

1. Introduction. The following problem was suggested by my super-
visor Professor Huxley for the submission of my PhD thesis, [5].

Let F(Q) be the Farey sequence of order Q and α a real number in the
interval (0, 1). If we travel from α along the real line in either direction, how
many Farey fractions do we need to pass to ensure that we have passed one
which has prime denominator?

2. The theorem. Let NQ(α, β) be the number of fractions of F(Q)
in the interval [α, β] (if α ≤ β) or [β, α] (if β ≤ α). Then the problem is
equivalent to obtaining an upper bound to

min
p≤Q

NQ(α, a/p)

for p a prime. Trivially we have

min
p≤Q

NQ(α, a/p)� Q

just from the contribution of the largest prime less than Q.
We use Fogels’ reformulation of Linnik’s theorem on primes in short

segments of arithmetic progressions and a special case of Vaughan’s theorem
on the distribution of αp modulo one to obtain the following theorem.

Theorem 2.1. Let α be a real number in the interval (0, 1). Then there
exists a Farey fraction a/p such that p ∈ [Q/2, Q] is prime and

NQ(α, a/p)� Q1−1/1312 log8Q.

The proof of Theorem 2.1 depends on whether α is in the major or minor
arcs case.
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3. The minor arcs case. In the minor arcs case we can approximate
α by a Farey fraction with prime denominator using Vaughan’s result from
the ‖αp‖ problem, and then bound the number of Farey fractions that can
lie between α and our approximation with the following lemma taken from
Huxley [2].

Lemma 3.1. Let I be an interval of length ∆. Then∑
a/q∈F(Q)∩I

1 ≤ ∆Q2 + 1.

Vaughan’s result on the distribution of αp modulo one (see [3]) is a
corollary of the following theorem which we will require.

Theorem 3.2. Suppose that (a, q) = 1, |α−a/q| ≤ 1/q2, H ≥ 1, N ≥ 1.
Let

S =
∑
h≤H

∣∣∣∑
n≤N

Λ(n)e(αhn)
∣∣∣,

where Λ is von Mangoldt’s function, and e(x) = exp(2πix). Then

S � HN log8HN

(
1
q1/2

+
1

N1/4
+
(

q

HN

)1/2

+
(

1
H2N

)1/5)
.

We use Theorem 3.2 to prove the following corollary.

Corollary 3.3. Suppose α is a real number in (0, 1), Q is a large pos-
itive integer and a/q is a convergent to the continued fraction expansion for
α with q in the range

log16Q

δ2
� q � δQ

log16Q
,

where
log8Q

Q1/4
� δ <

1
2
.

Then there is a prime p ∈ [Q/2, Q] for which ‖αp‖ � δ.

Proof. Let %(t) = [t] − t + 1/2 be the rounding error function, which is
well known to have Fourier expansion

%(t) =
∑

1≤|h|≤H

e(ht)
2πih

+O

(
min

(
1,

1
H‖t‖

))
,(3.1)

for t not an integer. Then for δ < 1/2, the sum∑
Q/2<p≤Q

(%(αp+ δ)− %(αp− δ) + 2δ)

counts the exact number of primes in the range (Q/2, Q] for which ‖αp‖ < δ.
Following Vaughan we count powers of primes with a logarithmic weight and
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so work with the sum∑
Q/2<n≤Q
‖αn‖<δ

Λ(n) =
∑

Q/2<n≤Q
Λ(n)(%(αn+ δ)− %(αn− δ) + 2δ).(3.2)

By the prime number theorem the right hand side of (3.2) reduces to

2δQ+Σ1 +O

(
δQ

logQ

)
,(3.3)

where

Σ1 =
∑

Q/2<n≤Q
Λ(n)(%(αn+ δ)− %(αn− δ)).

We estimate Σ1 using (3.1), which gives

Σ1 =
∑

Q/2<n≤Q
Λ(n)

( ∑
1≤|h|≤H

e(h(αn+ δ))− e(h(αn− δ))
2πih

)
+O(|Σ2|),

where

Σ2 =
1
H

∑
n≤Q

Λ(n) min
(
H,

1
‖αn+ δ‖

)
(3.4)

≤ logQ
H

(
1 +

Q

q

)
(3H + 4q logH),

by Lemmas 8a and 8b of Chapter 1 of Vinogradov [4]. We choose H = δ−1,
so that the right hand side of (3.4) is

≤ 3
(

1 +
Q

q

)
logQ.(3.5)

Now

Σ1 +O

(
Q logQ

q

)
=

∑
q/2<n≤Q

( ∑
1≤|h|≤H

Λ(n)e(αhn)
2πih

(e(hδ)− e(−hδ))
)

=
∑

q/2<n≤Q

( ∑
1≤|h|≤H

Λ(n)e(αhn)
2πih

δ�

−δ
2πihe(ht) dt

)

� δ
∑
h≤H

∣∣∣ ∑
Q/2<n≤Q

Λ(n)e(αhn)
∣∣∣

� δHQ log8(HQ)
(

1
q1/2

+
1

Q1/4
+
(

q

HQ

)1/2

+
(

1
H2Q

)1/5)
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by Theorem 3.2. Thus we have

Σ1 � Q log8Q

(
1
q1/2

+
1

Q1/4
+
(
δq

Q

)1/2

+
(
δ2

Q

)1/5)
,

which we require to be � δQ which yields the conditions on q and δ stated
in Corollary 3.3 and the result follows.

4. The major arcs case. In the major arcs case, denominators of
nearby Farey fractions form short segments of arithmetic progressions within
which we require a prime number near α. We use the following theorem due
to Fogels [1].

Theorem 4.1. There exist constants θ ∈ (0, 1) and c > 1/θ such that
for q large enough and any x > qc the interval (x, x+ xθ) contains a prime
p ≡ l mod q as long as (q, l) = 1.

Fogels outlines the proof of Theorem 4.1 as an application of his Linnik
type zero density theorem which extends the range of zeros of Dirichlet
L-functions previously considered by Linnik and others. Fogels does not
provide admissible values for θ and c presumably due to the complicated
nature of the proof of his zero density theorem. Since then there have been
many developments in the proof of Linnik’s theorem which make calculation
of the constants involved a great deal simpler. Welch [5] proves Theorem 4.1
with c = 328 and θ = 655/656.

We begin the major arcs case by extending the result on ‖αp‖ to a
larger range for α. However, when the difference between denominators in
the convergents of α becomes too large we must resort to counting Farey
fractions directly without recourse to approximations of α involving prime
denominators.

4.1. The major arcs case 1. We prove the following lemma.

Lemma 4.2. Suppose that α is a real number in the interval (0, 1) with
two successive convergents in its continued fraction expansion ar/qr and
ar+1/qr+1, where

qr �
log16Q

δ2
,(4.1)

δQ

log16Q
� qr+1 < Q.(4.2)

Then there is a prime number p ∈ (q/2, Q] for which ‖αp‖ � δ.

Proof. For simplicity we shall assume that r is even; the proof when r is
odd follows similarly.
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Since ar/qr and ar+1/qr+1 are succesive convergents of α, we have
ar
qr
< α <

ar+1

qr+1
.

Farey fractions of F(Q) in the interval (ar/qr, ar+1/qr+1) are of the form
arx+ ar+1y

qrx+ qr+1y
,

where (x, y) = 1, and qrx+ qr+1y ≤ Q. If we now fix y = y0 so that

Q/2 ≤ qr+1y0 < Q,(4.3)

and allow x to vary subject to the constraints (x, y0) = 1 and qrx+ qr+1y0

≤ Q, we have a short arithmetic progression within which we require a prime.
Inequality (4.3) will ensure that the prime is of the correct size. However,
as x increases we could be moving too far away from α to ensure a sufficient
approximation. Thus we wish to bound x in such a way that∣∣∣∣α− arx+ ar+1y0

qrx+ qr+1y0

∣∣∣∣� δ

Q
,(4.4)

so that we can satisfy the inequality ‖αp‖ � δ.
We first consider the case where

arx+ ar+1y0

qrx+ qr+1y0
∈
(
ar
qr
, α

)
.

We have the following inequality:∣∣∣∣α− arx+ ar+1y0

qrx+ qr+1y0

∣∣∣∣ ≤ ∣∣∣∣ar+1

qr+1
− arx+ ar+1y0

qrx+ qr+1y0

∣∣∣∣ ≤ x

qr+1(qrx+ qr+1y0)

≤ 2x
qr+1Q

� x log16Q

δQ2
,

by (4.2). In order to satisfy (4.4) we require the following bound on x:

x� δ2Q

log16Q
.(4.5)

Now suppose that
arx+ ar+1y0

qrx+ qr+1y0
∈
(
α,
ar+1

qr+1

)
.

Then we have∣∣∣∣α− arx+ ar+1y0

qrx+ qr+1y0

∣∣∣∣ ≤ ∣∣∣∣α− ar+1

qr+1

∣∣∣∣ ≤ 1
q2r+1

� log32Q

δ2Q2
,

by (4.2). Therefore in order to satisfy (4.4) we also require(
log32Q

Q

)1/3

� δ.(4.6)
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So the denominators of our subsequence of the Farey sequence form an
arithmetic progression l mod qr of length L, where

L � δ2Q

log16Q
,

by (4.5). Theorem 4.1 states that this arithmetic progression will contain
a prime number if q328

r ≤ Q and L � Q655/656. Both conditions imply the
following lower bound for δ:

δ � log8Q

Q1/1312
,

which is consistent with the inequality (4.6) and thus completes the proof
of Lemma 4.2.

4.2. The major arcs case 2. We need now to consider the case where
either qr+1 ≥ Q or there is no qr+1, i.e. α = as/qs for some s ≤ r. This
is where estimates of ‖αp‖ are of no advantage since there are not enough
Farey fractions near α. We prove the following lemma.

Lemma 4.3. If α, a real number in (0, 1), has a convergent ar/qr such
that it is the best approximation to α in F(Q) and

qr �
log16Q

δ2
,

then the interval (α, β) or (β, α) contains a Farey fraction a/p of F(Q),
where p is a prime number and

NQ(α, β)� δQ

for

δ � log8Q

Q1/1312
.(4.7)

Proof. Instead of looking at Farey fractions between ar/qr and ar+1/qr+1

as we did in the previous section, we now concentrate on Farey fractions
between ar/qr and ar−1/qr−1. Consider the sequence of rationals

f(x) =
arx+ ar−1

qrx+ qr−1
,

which is tending towards the nearest fraction of F(Q) to ar+1/qr+1. We look
to the interval (f(x0), f(X)) for our Farey fraction with prime denominator,
where

Q/2 ≤ qrx0 + qr−1 ≤ 3Q/4 and qrX + qr−1 ≤ Q.
The distance between these two rationals is given by∣∣∣∣arX+ar−1

qrX+qr−1
− arx0+ar−1

qrx0+qr−1

∣∣∣∣= |X − x0|
(qrX + qr−1)(qrx0 + qr−1)

� |X−x0|
Q2

� δ

Q
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for X � δQ, from which it follows that

NQ(f(x0), f(X))� δQ.(4.8)

However, we require an estimate for NQ(α, f(x0)):

NQ(α, f(x0)) = NQ(α, f(X)) +NQ(f(X), f(x0)),

where

NQ(α, f(X)) = NQ(ar+1/qr+1, f(X)) +NQ(α, ar+1/qr+1)
= NQ(ar+1/qr+1, f(X)),

since NQ(α, ar+1/qr+1) = 0. We have∣∣∣∣ar+1

qr+1
−f(X)

∣∣∣∣= ∣∣∣∣ar+1

qr+1
− arX + ar−1

qrX + qr−1

∣∣∣∣= ∣∣∣∣X + ar+1qr−1 + ar−1qr+1

qr+1(qrX + qr−1)

∣∣∣∣(4.9)

� X

Q2
� δ

Q
,

and so (4.8) and (4.9) give

NQ(α, f(x0))� δQ.

The fact that there is a Farey fraction with prime denominator in the in-
terval (f(x0), f(X)) follows from the major arcs case 1 by considering the
arithmetic progression qrx+ qr−1.

5. Proof of the theorem. Theorem 2.1 now follows from Lemma 4.3
and by using Lemma 3.1 in conjunction with Corollary 3.3 and Lemma 4.2.
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