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1. Let T2 denote the torus R2/Z2. For θ ∈ [0, 1] define the map (skew
shift) Tθ:

T2 → T2, (x, y) 7→ (x+ θ, y + 2x+ θ),

and the skew product fθ:

T2 × C → T2 × C, (x, y, z) 7→ (x+ θ, y + 2x+ θ, z + e(y)),

where e(y) is the usual notation for e2πiy. The diffeomorphism fθ preserves
the product measure µ = m× ν where m denotes the Haar measure on T2

and ν denotes the Lebesgue measure on C. We say that fθ is ergodic if for
every µ-measurable set A ⊂ T2 × C such that fθ(A) = A we have µ(A) = 0
or µ(Ac) = 0.

Definition 1. We define F to be the set of numbers θ ∈ [0, 1]\Q having
a continued fraction representation

θ =
1

a1 +
1

a2 + 1
...

such that
∑

n 1/an < ∞ and lim infq≥1 q
3+ε‖qθ‖ = 0 for some ε > 0. Here

and in all the text ‖·‖ stands for the closest distance of a real number to the
integers. Let pl/ql = [a1, . . . , al] = 1/(a1 +1/(a2 + · · ·+(1+1/al) . . .)), with
pl and ql relatively prime. The sequence pl/ql is called the sequence of the
best rational approximations of θ since ‖ql−1θ‖ ≤ ‖kθ‖ for every k < ql. The
sequence ql is simply called the sequence of approximation denominators

of θ.

We will elaborate on the paper by Forrest [6] to obtain the following
result:

Theorem 1. Let θ ∈ F . Then fθ is ergodic.
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The set F has zero measure due to any of the two conditions imposed
on θ. It has positive Hausdorff dimension but the condition

∑
1/an < ∞

on θ is actually very restrictive since it involves all the convergents of θ.
For instance F is contained in the complement of a residual set (this can
be checked by the ergodicity of the Gauss transformation θ 7→ {1/θ}). But
we can show using a classical general argument of Halmos, presented in
his introductory book on ergodic theory [3, proof of the second category

theorem], that the set of θ such that fθ is ergodic is a Gδ set, call it F̃ . Since

F is dense and F ⊂ F̃ , we have

Corollary 1. The set F̃ ⊂ [0, 1] of θ such that fθ is ergodic is a

residual set of positive Hausdorff dimension.

This actually hints at the possibility of bypassing the condition
∑

1/an

< ∞ in the proof of ergodicity. Proposition 3 and hence Proposition 1,
which are the only places where this condition appears, can actually be
proven without it using recent results on theta sums. This will be done in a
future publication.

2. Theorem 1 and its corollary strengthen the main result of [6] where
the density in C of the Weyl sums

n−1∑

k=0

e(k2θ + kx), n = 1, 2, . . . ,(1)

was proved for θ ∈ F and almost every x ∈ [0, 1]. Indeed, we have

Corollary 2. Let θ ∈ F̃ . Then the set

B(θ) =
{
x ∈ [0, 1] :

n−1∑

k=0

e(k2θ + kx), n = 1, 2, . . . , is dense in C

}

is a dense Gδ set of full Lebesgue measure in [0, 1].

Proof. If fθ is ergodic then for µ-a.e. u = (x, y, z) the sequence u, fθ(u),
f2

θ (u), . . . is dense in T2 ×C. This general fact can be proved by considering
a countable base {Oj}j∈N

of open balls in T2 × C and observing that the

complement of the invariant set
⋃

n∈Z
fn

θ (Oj) has zero measure, hence so

does the complement of the set D =
⋂

j∈N

⋃
n∈Z

fn
θ (Oj). But by definition

each point x ∈ D has a dense orbit under fθ. Now

fn
θ (x, y, z) =

(
Tn

θ (x, y), z +
n−1∑

k=0

e(k2θ + 2kx+ y)
)
,(2)

so that for µ-a.e. (x, y, z) the sequence z+
∑n−1

k=0 e(k
2θ+2kx+y), n = 1, 2, . . . ,

is dense in C. This density clearly does not depend on y and z, and the
measure statement of the corollary follows. Further, D is a Gδ set and since
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its complement has zero measure it follows that it is a dense Gδ. For the
same reason, B(θ) is a dense Gδ set.

We will see that in proving the density of the Weyl sums (1) for almost
every x when θ ∈ F , Forrest actually went a long way towards proving the
ergodicity of fθ. Yet, he left this question unsolved and put it as an open
problem even for a single value of θ. In a sense, we will finish his work here.

Finally, we recall that prior to [6], Forrest had already proved in [5] the
transitivity of fθ under the sole hypothesis lim infq≥1 q

3/2‖qθ‖ < ∞. From
the transitivity of fθ, the density of the Weyl sums follows for a dense Gδ

set of x ∈ [0, 1]. Although Tθ is uniquely ergodic, the cocycles
∑n−1

k=0 e(k
2θ+

2kx+ y) behave differently for different points (x, y) ∈ T2 as shown by the
following remark:

Remark 1. While it is not clear whether 0 could be in B(θ) for some
choice of θ (1), it does follow from an argument by Besicovitch [2] that for
any θ there always exists an x such that x /∈ B(θ).

3. The question of whether the set of θ for which fθ is ergodic (or even
transitive) has full measure (or contains all irrationals!) is still open and we
do not have much to say about this, as explained in the following list of
remarks:

Remark 2. It does not seem to be known whether there exists a class of
irrational numbers θ for which the Weyl sums could fail to be dense for all x.
In [6] it is claimed erroneously (2) that the estimate |∑n−1

k=0 e(k
2θ + kx)| ≥

cθ
√
n (uniformly in x ∈ [0, 1]) was proved in [4] for constant type numbers

θ (numbers with bounded partial quotients, or equivalently numbers that
satisfy lim infq≥1 q‖qθ‖ > 0). If this however turns out to be true, it would
obviously preclude, if θ is of constant type, the density of the Weyl sums for
any choice of x.

Remarkably, if true, the latter estimate turns out to be paradoxically
helpful in showing ergodicity of the Weyl sums without the restrictive hy-
pothesis

∑
1/an <∞. Indeed, an elegant proof of ergodicity of fθ for some

class of θ (included those satisfying lim infq≥1 q
5‖qθ‖ = 0) was given in [7],

and is based on the alleged uniform lower bound on the Weyl sums for
constant type numbers θ.

(1) The claim made by Forrest that it follows from [4] that 0 /∈ B(θ) for any irrational
θ probably stems from his misinterpretation of the formula a(0, n) = Ω(

√
n) which is used

in [4] (cf. § 4 below) as the negation of a(0, n) = o(
√

n) and not as
√

n = O(|a(0, n)|) like
Forrest might have understood it. It is clear from the formulae for a(0, n) in the case of θ
rational that one can construct an irrational θ for which there exists a sequence qn → ∞
such that a(0, qn) → 0.

(2) For the same reason as in the preceding footnote.
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Remark 3. While a property of the rational approximations of θ, at
least like the one used in [5], namely lim inf q3/2‖qθ‖ = 0, seems necessary
to study the density of the Weyl sums using the dynamics of fθ, the con-
dition

∑
n≥1 1/an < ∞ could be removed as in [7] from the proof if for

any irrational θ, the measure of the sets where |∑n
k=0 e(k

2θ + kx)| is small
can be controlled. It would be helpful for example if one knew that for any
constant C > 0,

lim
q→∞

sup
1≤p≤q−1

λ
{
x :

∣∣∣
q−1∑

k=0

e(k2p/q + kx)
∣∣∣ ≤ C

}
= 0.

Remark 4. If we denote by f
(l)
θ for l ≥ 1 the skew product f

(l)
θ (x, y, z) =

(x + θ, y + 2x + θ, z + e(ly)), then the same proof of ergodicity for θ ∈ F
of f

(1)
θ implies the ergodicity of every f

(l)
θ . But the set of θ ∈ [0, 1] with the

latter property is invariant under multiplication by l on the circle so it has
measure either 0 or 1.

To compare with our problem, note that twist maps of the type Td×Rk 7→
Td × Rk, (x, z) 7→ (x+ α, z + ϕ(x)), with a smooth function ϕ having zero
average and that is not a trigonometric polynomial are always ergodic for a
dense Gδ set of α ∈ Td (of zero Hausdorff dimension however) and not er-
godic for a set of α of full measure which consists of the Diophantine vectors,
that is, vectors for which there exists N such that lim infq≥1 q

N‖qα‖ > 0.

4. In [4], Hardy and Littlewood studied the growth of |∑n−1
k=0 e(k

2θ+kx)|
for different values of θ ∈ [0, 1]. Using the notation un = Ω(vn) for positive
sequences un and vn to mean the negation of un = o(vn), the principal
bounds they obtained were

Theorem ([4, Theorems 2.14, 2.141, 2.18, 2.181, 2.22, 2.221]). For any

irrational θ ∈ [0, 1],

∣∣∣
n−1∑

k=0

e(k2θ + kx)
∣∣∣ = o(n), uniformly for all values of x.

If the partial quotients an in the continued fraction expansion of θ are

bounded then

∣∣∣
n−1∑

k=0

e(k2θ + kx)
∣∣∣ = O(

√
n), uniformly for all values of x.

These are optimal bounds. Indeed , for any irrational θ ∈ [0, 1] we have

∣∣∣
n−1∑

k=0

e(k2θ)
∣∣∣ = Ω(

√
n),



Ergodicity of the Weyl sums cocycle 309

and for every sequence ϕn > 0 tending to 0 as n→ ∞, it is possible to find

irrationals θ such that

∣∣∣
n−1∑

k=0

e(k2θ)
∣∣∣ = Ω(nϕn).

With the dynamical approach adopted in this paper, the first of these
equations follows immediately from two classical and elementary facts in
ergodic theory (see e.g. [8]): first, that Tθ is uniquely ergodic as soon as θ is
irrational; and second, that this implies that the function Φ(x, y) = e(y), of
zero average, has its Birkhoff means (1/n)

∑n−1
k=0 e(k

2θ+2kx+ y) uniformly
converging to zero.

It would be nice if an additional qualitative ergodic property of Tθ could
be displayed in the case of irrationals θ with bounded partial quotients
that would explain the second bound in the above theorem of Hardy and
Littlewood.

5. We now proceed to the proof of Theorem 1. In the following, θ will
be a fixed irrational number in F . For every n ∈ N and (x, y) ∈ T2, let

a(x, y, n) =
n−1∑

k=0

e(k2θ + 2kx+ y), b(x, n) =
n−1∑

k=0

e(kx).

Definition 2. We say that l ∈ C is an essential value for the cocycle a
above Tθ if for any measurable set E ⊂ T2 such that m(E) > 0 and for any
ν > 0, there exists n ∈ N such that

m(E ∩ T−n
θ E ∩ {(x, y) : |a(x, y, n) − l| ≤ ν}) > 0.

We say that l ≥ 0 is an essential value for the modulus of a if for any
measurable set E ⊂ T2 such that m(E) > 0 and for any ν > 0, there exists
n ∈ N such that

m(E ∩ T−n
θ E ∩ {(x, y) : | |a(x, y, n)| − l| ≤ ν}) > 0.

Since |a(x, y, n)| does not depend on y we simply denote it by |a(x, n)|.
A very useful general criterion for ergodicity established by K. Schmidt

in [9] states that fθ is ergodic if and only if any l ∈ C is an essential value
for a (above Tθ), but due to the symmetries of the system we have the
following sufficient criterion for ergodicity that we took from [7]:

Lemma 1. If 1/2 (or any other strictly positive number) is an essential

value for the modulus of a then fθ is ergodic.

Proof. The proof is in two parts. First, we show that a has a nonzero
essential value. Indeed, otherwise by [9, Lemma 3.8] (the proof of this lemma
can also be found in [1, Lemma 8.4.3]), for any compact set K ⊂ C that
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does not contain 0, there exists a measurable set B ⊂ T2 such that for every
n ∈ N,

B ∩ T−n
θ B ∩ {(x, y) : a(x, y, n) ∈ K} = ∅,

which clearly contradicts the assumption of the lemma.

Next, assume that l 6= 0 is an essential value for a. For y0 ∈ T denote by
Sy0

the map of T2 onto itself given by Sy0
(x, y) = (x, y+ y0). Then the fact

that for a measurable set B with m(B) > 0 we have an n ∈ N such that

m(Sy0
B ∩ T−n

θ (Sy0
B) ∩ {(x, y) : |a(x, y, n) − l| ≤ ν}) > 0,

implies for the same n that

m(B ∩ T−n
θ B ∩ {(x, y) : |a(x, y, n) − le(−y0)| ≤ ν}) > 0,

which shows that the whole circle of radius |l| is included in the set of
essential values of a. Since the set of essential values of a complex cocycle
above an ergodic map is a closed subgroup of C (cf. [9, Lemma 3.3]), it
follows that for the cocycle a it is equal to C and hence fθ is ergodic.

6. The general strategy for controlling |a(x, n)| = |∑n−1
k=0 e(k

2θ + 2kx)|
starts by showing that given any infinite subsequence of approximation
denominators of θ, and in particular along a subsequence that satisfies
q3+ε
n ‖qnθ‖ → 0, we have |a(x, qn)| → ∞ for a typical value of x. This

implies that |a(x,mqn)|, when m is not too large, can be approximated by
|a(x, qn)| |b(2qnx,m)| andm is then chosen to bring this product close to 1/2.
Typically, when 2qnx behaves like a badly approximated number, |b(2qnx, l)|,
l = 1, . . . ,m, contains an O(1/m1−ε)-dense set in [0, 1] (here ε > 0 is an ar-
bitrarily small number). If we prove that |a(x, qn)| is typically bounded by

q
1/2+ε
n then the mn we need to modulate the product |a(x, qn)| |b(2qnx,m)|

is not larger than q
1/2+2ε
n and the condition q3+ε

n ‖qnθ‖ → 0 then appears to
be the exact condition that allows the approximation formula to hold up to
this value of m.

Finally, to show that 1/2 is actually an essential value for the modu-
lus of a we compute a bound on the derivative with respect to x of the
product |a(x, qn)| |b(2qnx,mn)| and show that, under the same assumption
q3+ε
n ‖qnθ‖ → 0, the interval In containing x where the product is close to

1/2 is sufficiently large so that Rmnqn

θ (In) is almost equal to In. This and
the fact that |a(x, y, l)| does not depend on y will allow us to conclude.

In this scheme, the first step is the most delicate. It was proved by
Forrest in [6] who based his proof on the following approximate functional
equation, established by Hardy and Littlewood in [4, Theorems 2.128, 2.17]:
for 0 < θ, x < 1 and k ≥ 1,

√
θ |a(θ/2, x/2, k)| = |a({1/θ}/2, {−x/θ}/2, [kθ])| +O(1)(3)
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where {·} and [·] denote the fractional and integer parts of a number and
where the constant involved in the O(1) notation is absolute. Under an
additional assumption on θ it is possible to apply a dynamical approach
where θ is viewed as a parameter and obtain by induction from the above
functional equation a lower estimate on the Weyl sums. The upshot of this
approach is the following key ingredient of [6] as well as for us here:

Proposition 1 ([6, Proposition 4.3]). Suppose θ ∈ [0, 1] \ Q has a con-

tinued fraction representation [a1, a2, . . .] such that
∑

n 1/an < ∞. Then,
given any δ > 0 and any infinite subset Q of the set of approximation de-

nominators of θ, for Lebesgue almost every x ∈ [0, 1], there exists a sequence

qn ∈ Q such that δ/2 ≤ ‖2qnx‖ ≤ δ and limn→∞ |a(x, qn)| = ∞.

For the convenience of the reader and to keep this note as self-contained
as possible (modulo the functional equation (3) that is taken for granted),
we include in an appendix the scheme of the proof of the above proposition,
given in [6].

7. To proceed we need the following construction similar to the one
made in [6]. Let θ ∈ F . Then there exists a sequence qn of approximation
denominators of θ such that:

7.a. q3+ε
n ‖qnθ‖ → 0.

7.b. For almost every x ∈ [0, 1] there is a sequence Un → ∞ and infinitely
many n such that δ/2 ≤ ‖2qnx‖ ≤ δ and |a(x, qn)| ≥ Un (this is
exactly Proposition 1).

7.c. For almost every x ∈ [0, 1], there is an n1 such that for n ≥ n1, we

have |a(x, qn)| ≤ q
1/2+ε/10
n .

This is because
T1
0 |a(x, qn)|2 dx = qn implies λ{x : |a(x, qn)| ≥ q

1/2+ε/10
n }

≤ 1/q
ε/5
n ; but 7.a implies that qn+1 ≥ q3n, hence

∑
1/q

ε/5
n < ∞ and 7.c

follows by the Borel–Cantelli lemma.

7.d. For almost every x ∈ [0, 1], there is an n2 such that for n ≥ n2, the

set {|b(2qnx,m)| : 0 ≤ m ≤ q
1/2+ε/4
n } is 1/(q

1/2+ε/8
n ‖2qnx‖)-dense in

[0, 1].

To prove this we defineHn := q
1/2+ε/4
n . We let Aε

k ⊂ [0, 1] be the subset of
irrationals such that for each α ∈ Aε

k, and all m ≥ k, there exists a continued

fraction approximation p/q for α such that q ∈ [m1−ε/10,m]. Since the set of

numbers α for which there exists C > 0 such that qn+1(α) ≤ qn(α)1+ε/10 is of
full measure, we clearly have λ(

⋃
k A

ε
k) = 1 and we set λ(Aε

k) = 1−υ(k). We
can assume that the sequence qn in 7.a can be chosen so that

∑
n υ(Hn) <∞.

Since λ{x ∈ [0, 1] : 2qnx mod [1] ∈ Aε
Hn

} = λ(Aε
Hn

) = 1 − υ(Hn) we deduce
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that for almost every x ∈ [0, 1], there exists n2 such that for n ≥ n2 we have
2qnx mod [1] ∈ Aε

Hn

, from which 7.d follows easily.

8. Note that a simple computation (see [6, Lemma A.4]) shows that for
some constant C and for any x ∈ [0, 1], l,m ∈ N, we have

|a(x,ml) − a(x, l)b(2lx,m)| ≤ C|a(x, l)|m3l‖lθ‖,
which in the case of qn satisfying 7.a and m ≤ q

1/2+ε/4
n yields

|a(x,mqn) − a(x, qn)b(2qnx,m)| ≤ C|a(x, qn)|q−1/2−ε/4
n ,

and finally, if in addition |a(x, qn)| ≤ 2q
1/2+ε/10
n , then

|a(x,mqn) − a(x, qn)b(2qnx,m)| ≤ Cq−ε/8
n .(4)

It is in the above equations that the restrictive assumption lim inf q3+ε‖qθ‖
= 0 is really crucial.

On the other hand, we have

b(2qnx,m) = ei2π(m−1)qnx sin(2πmqnx)/sin(2πqnx).

Hence for δ/4 ≤ ‖2qnx‖ ≤ 2δ we have

|b(2qnx,m)| ≤ 1/δ and |Dx(b(2qnx,m))| ≤ 4πmqn/δ,

where Dx denotes the derivative with respect to x. Also, we clearly have
|a(x, qn)| ≤ qn and |Dx(a(x, qn))| ≤ 2πq2n. From these observations we con-

clude that for n sufficiently large, for any m ≤ q
1/2+ε/4
n and δ/4 ≤ ‖2qnx‖ ≤

2δ, we have

|Dx[a(x, qn)b(2qnx,m)]| ≤ 5π

δ
q2+1/2+ε/4
n .(5)

We deduce from 7.a to 7.d the following:

Proposition 2. Let θ ∈ F . For almost every x ∈ [0, 1] there exists an

infinite sequence of integers Mn and a sequence ǫn → 0 such that

(i) ‖Mnθ‖ ≤ q
−(2+1/2+3ε/4)
n ;

(ii) for every x̃ ∈ [x− q
−(2+1/2+ε/2)
n , x+ q

−(2+1/2+ε/2)
n ], we have

| |a(x̃,Mn)| − 1/2| ≤ ǫn;

(iii) ‖M2
nθ + 2Mnx‖ ≤ ǫn.

Proof. Take a sequence qn satisfying 7.a. Pick an x that satisfies 7.b,
7.c and 7.d. Up to taking a subsequence of qn we have δ/2 ≤ ‖2qnx‖ ≤ δ

and |a(x, qn)| → ∞. From 7.c and 7.d, we find mn ≤ q
1/2+ε/4
n such that

|a(x, qn)b(2qnx,mn)| → 1/2. Since (4) is satisfied by x and mn, (ii) follows
for the particular value x̃ = x if we take Mn := mnqn.

For |x̃ − x| ≤ q
−(2+1/2+ε/2)
n we have δ/4 ≤ ‖2qnx̃‖ ≤ 2δ, and since

|Dx(a(x̃, qn))| ≤ 2πq2n, we deduce from 7.c that |a(x̃, qn)| ≤ 2q
1/2+ε/10
n , hence
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(4) holds for x̃ and for the same mn as above. Finally, (ii) then follows
from (5).

From 7.a we get (i) and the fact that ‖M2
nθ‖ → 0. Finally, the combina-

tion of |a(x, qn)| → ∞ and |a(x, qn)b(2qnx,mn)| → 1/2 forces |b(2qnx,mn)|
→ 0, hence ‖2Mnx‖ = ‖2mnqnx‖ → 0 and (iii) is proved.

Remark 5. It would be possible to ensure that |a(x, qn)b(2qnx,mn)|
stays close to 1/2 on larger intervals than in (ii), which would allow relaxing
the requirement (i) and hence relaxing the arithmetic condition 7.a on θ. But
this condition, as we saw, is optimal if we want to ensure (4), without which
the product |a(x, qn)b(2qnx,mn)| is no more interesting for our purposes.

9. Proof of Theorem 1. From Lemma 1 it is enough to prove that
1/2 is an essential value for the modulus of a.

We will use λ and m to denote respectively the Haar measures on the
tori T1 and T2. Fix E ⊂ T2 such that m(E) > 0. Fix then a square A =
I×J = [x1, x2]× [y1, y2], |x2−x1| = |y2−y1| = l > 0, such that m(E∩A) ≥
(9/10)m(A). We denote by mE∩A the induced measure: mE∩A(B) = m(E∩
A∩B) for any Lebesgue measurable set B ⊂ T2. We denote by π∗mE∩A the
projected measure given by π∗mE∩A(K) = mE∩A(K×T1) for any Lebesgue
measurable set K ⊂ T1. Clearly, π∗mE∩A ≤ λ, while π∗mE∩A(I) ≥ (9/10)l2,
and λ(I) = l. Hence, considering the Radon–Nikodym derivative of π∗mE∩A

with respect to λ, we find that there exists r0 > 0 and a set Ĩ ⊂ I with
λ(Ĩ) > 0 such that for any r ≤ r0 and for any x ∈ Ĩ we have π∗mE∩A([x−
r, x+ r]) ≥ (4/5)l2r, that is,

m(∆(x, r) ∩ E) ≥ 4

5
m(∆(x, r)),

where ∆(x, r) = [x− r, x+ r] × J.

Since λ(Ĩ) > 0, it is possible to take x0 ∈ Ĩ for which the statement
of Proposition 2 holds. Recall that for (x, y) ∈ T2 and p ∈ N we write
|a(x, y, p)| or |a(x, p)| since the modulus of a does not depend on y. If we

set ∆n = ∆(x0, q
−(2+1/2+ε/2)
n ), Proposition 2(ii) yields

| |a(x, y,Mn)| − 1/2| ≤ ǫn for all (x, y) ∈ ∆n.(6)

From the definition of Ĩ we have, for n sufficiently large,

m(∆n ∩ E) ≥ 4

5
m(∆n).(7)

On the other hand, (i) and (iii) imply that

lim
n→∞

m(T−Mn

θ ∆n △∆n)

m(∆n)
= 0,(8)

where △ stands for symmetric difference.
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It follows immediately from (7) and (8) (because 4/5 > 1/2) that for n
sufficiently large,

m(T−Mn

θ E ∩ E ∩∆n) > 0,

and (6) then implies that 1/2 is an essential value for the modulus of a.

Appendix: Proof of Proposition 1. We sketch the proof given in [6].
For the bound on ‖2qnx‖ note that for any strictly increasing sequence of
integers ln, the set of x such that the sequence (lnx)n∈N

is dense has full
Lebesgue measure. Hence we just have to show that for any infinite subset
Q of the set of approximation denominators of θ, for Lebesgue almost every
x ∈ [0, 1], there exists a sequence qn ∈ Q such that lim |a(x, qn)| = ∞.

First, it is easy to see that the set of x ∈ [0, 1] satisfying the above
condition is invariant under translation by θ; but x 7→ x + θ is ergodic,
hence it is enough to prove that the set in question has positive measure.
Next, by a simple computation, for a given k ∈ N and any sequence qn such
that qn‖qnθ‖ → 0, we obtain

2max{|a(x+ kθ, qn)|, |a(x, qn)|} ≥ ‖2qnx‖ |a(x, k)| + Ckun

where un → 0 as n→ ∞ (cf. [6, Corollary A.5]). Hence the proof is reduced
to the following

Proposition 3 ([6, Proposition 3.13]). Suppose θ ∈ [0, 1] \ Q has a

continued fraction representation [a1, a2, . . .] such that
∑

n 1/an <∞. Then

there is a ̺ > 0 such that for all C > 0, there is a k such that λ{x :
|a(x, k)| ≥ C} ≥ ̺.

To prove Proposition 3, it is convenient to define first the following func-
tion similar to the modulus of the Weyl sums:

ψ(θ, x, k) :=
∣∣∣

k−1∑

j=0

e(j2θ/2 + jx)
∣∣∣.

Then for θ > 0 and x < 1,
√
θ ψ(θ, x, k) = ψ({1/θ}, {−x/θ}, [kθ]) +O(1)(9)

where {·} and [·] denote the fractional and integer parts and the constant
in O(1) is absolute. Equation (9) is the only “hard analysis” estimate that
is needed in [6], but it is really crucial since it is at the center of the proof
of Proposition 3. It was obtained by Hardy and Littlewood [4, 2.128, 2.17]
as a generalisation of a formula of Lindelöf in the case of θ rational and its
proof is based on the calculus of residues.

We now explain how (9) is used to prove Proposition 3. Given k ∈ N,

let Sθ = {1/θ} and write S̃(θ, x) = (Sθ, {−x/θ}) and (Smθ, U
(m)
θ x) =
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S̃m(θ, x). Let σm(θ) =
√
Sm−1θ σm−1(θ) with σ0(θ) = 1, and k(m) =

[k(m− 1)Sm−1(θ)] with k(0) = k. By induction from (9) we have

σm(θ)ψ(θ, x, k) = ψ(Smθ, U
(m)
θ x, k(m)) +O(1)(10)

(the constant in O(1) is absolute and comes from O(
∑m

l=1 σm−l(S
lθ)) =

O(
∑m

l=1 2−l/2) since the hypothesis
∑

1/an < ∞ implies lim sup an ≥ 2,

which in turn shows that σj(S
pθ) ≤ C(θ)2−j/2 for any p and j).

Recall the notation b(x, k) =
∑m−1

j=0 e(jx). Since ψ(θ, x, k) = |b(x, k)| +
O(k3‖θ‖) with an absolute constant in the error term, from (10) we have

σm(θ)ψ(θ, x, k) ≥ |b(U (m)
θ x, k(m))| − C(k(m)3‖Smθ‖ + 1)(11)

for some absolute constant C. On the other hand, the condition
∑

1/an <∞
is crucial (see [6, Corollary 3.6]) in checking that for all 0 < η < 1/2 and all
m ≥ 1,

λ{x : ‖U (m)
θ x‖ < η} ≥ C̃η for some absolute constant C̃,

which by an elementary computation implies that for any C0 ≥ 1,

λ{x : |b(U (m)
θ x, [2πC0] + 1)| ≥ C0} ≥ C̃/(2[2πC0] + 2).(12)

Fix now C0 ≥ 3C where C is the constant of (11). Given any C ′ > 0 pick
m sufficiently large so that C0/(3σm(θ)) ≥ C ′ and ([2πC0] + 1)3‖Smθ‖ ≤ 1
(possible due to the arithmetical condition on θ). Let k = k(0) be such that
k(m) = [2πC0] + 1. From (11) we have

{x : ψ(θ, x, k) ≥ C ′} ⊂ {x : σm(θ)ψ(θ, x, k) ≥ C0/3}
⊂ {x : |b(U (m)

θ x, [2πC0] + 1)| ≥ C0},
and by (12) the latter set has measure greater than ̺ = C̃/(2[2πC0] + 2).
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