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1. Introduction. One of the basic question in Diophantine approxima-
tion is how well real numbers can be approximated by rationals. The theory
of rational approximation of real numbers was transposed to function fields
after the pioneering works of Maillet [15] in 1906 and Gill [10] in 1930. In
the present work, we are interested in the way algebraic Laurent series with
coefficients in a finite field can be approximated by rational functions.

Given a field K, we let K(T ), K[[T−1]] and K((T−1)) denote, respectively,
the field of rational functions, the ring of formal series and the field of Laurent
series over the field K. We also consider the absolute value defined on K(T )
by

|P/Q| = |T |degP−degQ

for (P,Q) ∈ K[T ]2, where |T | is a fixed real number larger than 1. The field
of Laurent series in 1/T , usually denoted by K((T−1)), should be seen as a
completion of the field K(T ) for this absolute value. Thus, if f is a nonzero
element of K((T−1)) defined by

f(T ) = ai0T
−i0 + ai0+1T

−i0−1 + · · · ,
where i0 ∈ Z, ai ∈ K, ai0 6= 0, we have |f | = |T |−i0 . We also say that a
Laurent series is algebraic if it is algebraic over the field K(T ) of rational
functions. The degree of an algebraic Laurent series f in K((1/T )) is defined
as [K(T )(f) : K(T )], the degree of the field extension generated by f .

We recall that the irrationality exponent of a given Laurent series f ,
denoted by µ(f), is the supremum of the real numbers τ for which the
inequality ∣∣∣∣f − P

Q

∣∣∣∣ < 1

|Q|τ
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has infinitely many solutions (P,Q) ∈ K[T ]2, Q 6= 0. Thus, µ(f) measures
the quality of the best rational approximations to f .

Throughout this paper, p denotes a prime number and q is a power of p.
Our aim is to study the irrationality exponent of algebraic Laurent series in
the field Fq((1/T )).

In 1949, Mahler [14] observed that the analogue of Liouville’s fundamen-
tal inequality holds true for algebraic Laurent series over a field of positive
characteristic.

Theorem 1.1 (Mahler, 1949). Let K be a field of positive characteristic
and f ∈ K((T−1)) be an algebraic Laurent series over K(T ) of degree d > 1.
Then there exists a positive real number C such that∣∣∣∣f − P

Q

∣∣∣∣ ≥ C

|Q|d

for all (P,Q) ∈ K[T ]2 with Q 6= 0.

In other words, Mahler’s theorem tells us that the irrationality exponent
of an algebraic irrational Laurent series is at most equal to its degree.

In the case of real numbers, Liouville’s theorem was superseded by the
works of Thue [24], Siegel [21], Dyson [8] and others, leading to the famous
Roth theorem [19], which states that the irrationality exponent of an irra-
tional algebraic real number is equal to 2. In 1960, Uchiyama obtained an
analogue of Roth’s theorem [25] for the case of Laurent series with coefficients
in a field of characteristic 0.

When the base field has positive characteristic, it is well-known that
there is no direct analogue of Roth’s theorem. In fact, the Liouville–Mahler
theorem turns out to be optimal. In order to see this, it is sufficient to
consider the element fq ∈ Fq((T−1)) defined by fq(T ) =

∑
i≥0 T

−qi . It is
not difficult to see that fq is an algebraic Laurent series of degree q (since
it satisfies the equation f q − f + T−1 = 0) while the irrationality exponent
of f is equal to q. Note that these examples are sometimes referred to as
Mahler’s algebraic Laurent series. In the same direction, Osgood [16] and
Baum and Sweet [5] gave examples of algebraic Laurent series of various
degrees for which Liouville’s bound is the best possible. For a special class
of algebraic Laurent series, the bound given by Liouville for the irrational
exponent was improved by Osgood [16, 17]. In 1976, he proved an analog
of Thue’s theorem for algebraic Laurent series which are not solutions of a
rational Riccati differential equation. In 1996, de Mathan and Lasjaunias [13]
proved that the analogue of Thue’s theorem actually holds for every algebraic
Laurent series in K((T−1)), K being an arbitrary field of characteristic p,
which satisfies no equation of the form f = (Afp

s
+B)/(Cfp

s
+D), where

A,B,C,D ∈ K[T ], not all zero, and s ∈ N∗. Laurent series satisfying such
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an equation are called hyperquadratic and were studied by many authors
[12, 20, 22, 26]. Note that every hyperquadratic Laurent series also satisfies
a Riccati differential equation.

Apart from the results obtained by Mahler, Lasjaunias–de Mathan or
Osgood, we do not know other general methods of bounding from above
the irrationality exponent of algebraic Laurent series over Fq(T ). It is worth
mentioning that the situation for function fields totally differs from the one
of real numbers. For instance Schmidt [20] and Thakur [22] independently
proved that the set of irrationality exponents of algebraic Laurent series
contains all rational real numbers greater than or equal to 2.

The aim of this paper is to introduce a new approach in order to bound
from above the irrationality exponent of an algebraic Laurent series, which
is based on the use of the Laurent series expansion. As a starting point, we
use a theorem of Christol [6] which characterizes in terms of automata the
algebraic Laurent series with coefficients in a finite field. More precisely, we
recall that f(T ) =

∑
i≥0 aiT

−i ∈ Fq[[T−1]] is algebraic if and only if the
sequence (ai)i≥0 is generated by a p-automaton. Furthermore, we recall that
by a classical result of Eilenberg [9] the so-called p-kernel of a p-automatic
sequence is always finite (see Section 3.1).

Our main result is the following explicit general upper bound for the
irrationality exponent of algebraic Laurent series in Fp((1/T )).

Theorem 1.2. Let f(T ) =
∑

i≥−k aiT
−i be an algebraic Laurent series

with coefficients in a finite field of characteristic p. Let s be the cardinality
of the p-kernel of a = (ai)i≥0 and e be the number of states of the minimal
automaton generating a (in direct reading). Then the irrationality exponent
µ(f) satisfies

(1) µ(f) ≤ ps+1e.

The approach we use to prove Theorem 1.2 already appears in a different
framework in [1, 2, 3]. It is essentially based on repetitive patterns occur-
ring in automatic sequences. More precisely, each algebraic formal series
f(T ) =

∑
i≥0 aiT

−i is identified with a p-automatic sequence a := (ai)i≥0
over Fq. Then we use a theorem of Cobham which characterizes p-automatic
sequences in terms of p-uniform morphisms of free monoids (see Section 2.2).
As a consequence of this result and of the pigeonhole principle, we are able to
find infinitely many pairs of finite words (Un, Vn) and a number ω > 1 such
that UnV ω

n is a prefix of a for every positive integer n. Hence, there exists
an infinite sequence of pairs (Pn, Qn) of polynomials such that the Laurent
series expansion of the rational function Pn/Qn is the (ultimately periodic)
sequence cn := UnV

∞
n . The sequence of rational functions Pn/Qn provides

good rational approximations to f since the words a and cn have the com-
mon prefix UnV ω

n . Furthermore, the lengths of Un and Vn are respectively of
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the form kpn and `pn. Using such approximations we are able to prove the
following result (see Theorem 3.7):

k + ω`

k + `
≤ µ(f) ≤ ps+1(k + `)

(ω − 1)`
.

In practice, it may happen that we can choose Un and Vn such that a and
cn have the same first (k + ω`)pn digits, while the ((k + ω`)pn + 1)th digits
are different. In this case, the upper bound we obtain for the irrationality
exponent may be much better and in particular does not depend anymore on
the cardinality of the p-kernel. Furthermore, in the case where we can prove
that (Pn, Qn) = 1 for all n large enough, we obtain a significant improvement
on the upper bound

k + ω`

k + `
≤ µ(fa) ≤ max

(
k + ω`

k + `
, 1 +

p(k + `)

(ω − 1)`

)
;

as will also be explained in Remark 3.8, that sometimes leads to the exact
value µ(f). Note that when working with similar constructions involving
real numbers, it is well-known that this coprimality assumption is usually
difficult to check (see [3]).

In the second part of this paper, we introduce a new approach in order
to overcome this difficulty. We provide an algorithm that allows us to check,
in finite time, whether the polynomials Pn and Qn, associated with an alge-
braic Laurent series f , are relatively prime for all n large enough. In order to
do this, we observe that the rational approximations we obtain have a very
specific form: the roots of Qn can only be 0 or `th roots of unity (see Section
3.4). Then we have to develop a calculus allowing one to compute the poly-
nomials Pn(T ). In order to do this, we introduce some matrices associated
with p-morphisms. These matrices generalize the so-called incidence matrix
of the underlying morphism (see Section 4) and their study could also be of
independent interest.

In the last part of this paper, we illustrate the relevance of our approach
with a few examples. We give several algebraic Laurent series for which we are
able to compute the exact value of the irrationality exponent. In particular,
we prove the following result.

Theorem 1.3. Let f be a root of the following equation over F2(T ):

X4 +X +
T

T 4 + 1
= 0.

Then µ(f) = 3.

2. Terminology and basic notions. A word is a finite or infinite
sequence of symbols (or letters) belonging to a nonempty set A, called the
alphabet. We usually denote words by juxtaposition of their symbols.
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Given an alphabet A, we let A∗ :=
⋃∞
m=0Am denote the set of finite

words over A. Let V := a0a1 · · · am−1 ∈ A∗; then the integer m is the length
of V and is denoted by |V |. A word of length 0 is an empty word, usually
denoted by ε. We also let Am denote the set of all finite words of length m
and by AN the set of all infinite words over A. We typically use the uppercase
italic letters U, V,W to represent elements of A∗, and bold lowercase letters
a,b, c to represent infinite words.

For any nonnegative integer n, we write Un := UU · · ·U (n-fold con-
catenation of the word U). More generally, for any positive real number ω
we let Uω denote the word U bωcU ′, where U ′ is the prefix of U of length
d(ω − bωc)|U |e. Here, bζc and dζe denote, respectively, the integer part and
the upper integer part of the real number ζ. We also write U∞ := UU · · · ,
that is, U concatenated (with itself) infinitely many times.

An infinite word a is periodic if there exists a finite word V such that
a = V∞. An infinite word is ultimately periodic if there exist two finite words
U and V such that a = UV∞.

Throughout this paper, we set Am := {0, 1, . . . ,m− 1} for m ≥ 1, which
will serve as a generic alphabet.

2.1. Automatic sequences and Christol’s theorem. Let k ≥ 2 be
an integer. An infinite sequence a = (ai)i≥0 is k-automatic if, roughly speak-
ing, there exists a finite automaton which produces the term ai as output,
when the input is the k-ary expansion of i.

For a formal definition of an automatic sequence, let us define a k-
deterministic finite automaton with output or, briefly, k-DFAO. This is a
5-tuple

M = (Q, δ, q0, ∆, ϕ)

where Q is a finite set of states, δ : Q×Ak → Q is the transition function,
q0 is the initial state, ∆ is the output alphabet and ϕ : Q→ ∆ is the output
function. For a finite word W = wrwr−1 · · ·w0 ∈ Ark, we let [W ]k denote the
number

∑r
i=0wik

i.
We now say that a sequence a = (ai)i≥0 is k-automatic if there exists

a k-DFAO such that ai = ϕ(δ(q0, w)) for all i ≥ 0 and all words W with
[W ]k = i.

A classical example of automatic sequence is the so-called Thue–Morse
sequence: t = (ti)i≥0 = 01101001100 · · · , which counts the number of 1’s
(mod 2) in the base-2 representation of i. It is generated by the automaton
depicted in Fig. 1. More references on automatic sequences can be found in
the monograph [4].



302 A. Firicel

q0/0 q1/1

0 0

1

1

Fig. 1. Automaton generating the Thue–Morse sequence

If we now consider the Laurent series ft(T ) =
∑

i≥0 tiT
−i as an element

of F2((T
−1)), one can check that ft satisfies the algebraic equation

(T + 1)3f2t (T ) + T (T + 1)ft(T ) + 1 = 0.

Hence, ft is an algebraic Laurent series over F2(T ) whose sequence of co-
efficients is a 2-automatic sequence. Actually, this is not an isolated case.
Indeed, the famous theorem of Christol [6] precisely describes the algebraic
Laurent series over Fq(T ):

Theorem 2.1 (Christol, 1979). Let fa(T ) =
∑

i≥−i0 aiT
−i be a Laurent

series with coefficients in a finite field of characteristic p. Then fa is algebraic
over Fq(T ) if and only if the sequence a = (ai)i≥0 is p-automatic.

We also mention that a well-known result of Eilenberg states that a
sequence is p-automatic if and only if it is q-automatic for any power q of p.

2.2. Morphisms and Cobham’s theorem. Let A (respectively B)
be a finite alphabet and let A∗ (respectively B∗) be the corresponding free
monoid. Amorphism is a map σ fromA∗ to B∗ such that σ(UV ) = σ(U)σ(V )
for all U, V ∈ A∗. Since concatenation is preserved, it is then possible to
define a morphism defined on A.

Let k be a positive integer. A morphism σ is said to be k-uniform if
|σ(a)| = k for any a ∈ A. A k-uniform morphism will also be called a
k-morphism. If k = 1, then σ is simply called a coding.

If A = B we can iterate the application of σ. Hence, if a ∈ A, then
σ0(a) = a and σi(a) = σ(σi−1(a)) for every i ≥ 1. Let σ : A → A∗ be a
morphism. The set A∗ ∪ AN is endowed with its natural topology.

Roughly, two words are close if they have a long common prefix. We can
thus extend the action of a morphism by continuity to A∗∪AN. Then a word
a ∈ AN is a fixed point of a morphism σ if σ(a) = a.

A morphism σ is prolongable on a ∈ A if σ(a) = aX for some X ∈
A+ := A∗\{ε} such that σk(X) 6= ε for any k ∈ N. If σ is prolongable then
the sequence (σi(a))i≥0 converges to the infinite word

σ∞(a) = lim
i→∞

σi(a) = aXσ(X)σ2(X)σ3(X) . . . .

With this notation, we can now cite an important theorem of Cob-
ham, which gives a characterization of k-automatic sequences in terms of
k-uniform morphisms.
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Theorem 2.2 (Cobham, 1972). Let k ≥ 2. Then a sequence a = (ai)i≥0
is k-automatic if and only if it is the image, under a coding, of a fixed point
of a k-uniform morphism.

3. Proof of Theorem 1.2. Theorem 1.2 is an easy consequence of the
more precise result established in Theorem 3.7. In order to prove Theorem
3.7, we first establish an approximation lemma, which is the analog of a
classical result in Diophantine approximation (Lemma 3.2). Then we show
how to construct, starting with an arbitrary algebraic Laurent series f with
coefficients in a finite field, an infinite sequence of rational approximations of
f satisfying the assumptions of our approximation lemma. We thus deduce
the expected upper bound for the irrationality exponent of f .

All along this section, we provide comments and remarks allowing one to
improve in most cases this general upper bound (see in particular Remark
3.8 and Section 3.4).

3.1. Maximal repetitions in automatic sequences. Before stating
our approximation lemma, we first recall a useful result, which will allow
us later to control repetitive patterns occurring as prefixes of automatic
sequences. The proof of the following lemma can be found in [2, Lemma 5.1,
p. 1356]. Before stating it, we recall that the kernel Kk(a) of a k-automatic
sequence a = (ai)i≥0 is defined as the set of all subsequences of the form
(akni+l)i≥0, where n ≥ 0 and 0 ≤ l < kn. Furthermore, we recall that by a
result of Eilenberg a sequence a is k-automatic if and only if Kk(a) is finite.

Lemma 3.1. Let a be a non-ultimately periodic k-automatic sequence
defined on an alphabet A. Let U ∈ A∗, V ∈ A∗ \ {ε} and ω ∈ Q be such that
UV ω is a prefix of a. Let s be the cardinality of the k-kernel of a. Then

|UV ω|
|UV |

< ks.

3.2. An approximation lemma. We start with the following result
which is, in fact, an analog of Lemma 4.1 in [3] for Laurent series with
coefficients in a finite field. We also recall the proof, since it is not very long
and it may be of independent interest.

Lemma 3.2. Let f(T ) be a Laurent series with coefficients in Fq. Let δ, ρ
and θ be real numbers such that 0 < δ ≤ ρ and θ ≥ 1. Assume that there
exists a sequence (Pn/Qn)n≥1 of rational fractions with coefficients in Fq and
some positive constants c0, c1 and c2 such that

|Qn| < |Qn+1| ≤ c0|Qn|θ,(i)

c1/|Qn|1+ρ ≤ |f − Pn/Qn| ≤ c2/|Qn|1+δ.(ii)
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Then the irrationality exponent µ(f) satisfies

(2) 1 + δ ≤ µ(f) ≤ θ(1 + ρ)/δ.

Furthermore, if there is N ∈ N∗ such that (Pn, Qn) = 1 for any n ≥ N , then

1 + δ ≤ µ(f) ≤ max(1 + ρ, 1 + θ/δ).

In this case, if ρ = δ and θ ≤ δ2, then µ(f) = 1 + δ.

Proof. The left-hand inequality of (2) is clear. We therefore turn to the
other inequality. Let P/Q ∈ Fq(T ) be such that |Q| is large enough. Then
there exists a unique integer n = n(Q) ≥ 2 such that

(3) |Qn−1| < (2c2|Q|)1/δ ≤ |Qn|.

If P/Q 6= Pn/Qn then ∣∣∣∣PQ − Pn
Qn

∣∣∣∣ ≥ 1

|QQn|
,

and using (3) and (ii) we get∣∣∣∣f − Pn
Qn

∣∣∣∣ ≤ c2
|Qn|1+δ

=
c2

|Qn| |Qn|δ
≤ 1

2|Q| |Qn|
.

By the triangle inequality, we have∣∣∣∣f − P

Q

∣∣∣∣ ≥ ∣∣∣∣PQ − Pn
Qn

∣∣∣∣− ∣∣∣∣f − Pn
Qn

∣∣∣∣.
Now (i) together with (3) implies that |Qn| ≤ c0|Qn−1|θ < c0(2c2|Q|)θ/δ.
Thus, ∣∣∣∣f − P

Q

∣∣∣∣ ≥ 1

2|Q| |Qn|
≥ 1

2|Q|c0(2c2|Q|)θ/δ
≥ c3

|Q|θ(1+ρ)/δ

since 1 + θ/ρ ≤ θ + θ/ρ (because θ ≥ 1), with c3 := 1/(2c0(2c2)
θ/δ).

On the other hand, if P/Q = Pn/Qn, then∣∣∣∣f − P

Q

∣∣∣∣ = ∣∣∣∣f − Pn
Qn

∣∣∣∣ ≥ c1
|Qn|1+ρ

≥ c1

(c0(2c2|Q|)θ/ρ)1+ρ
=

c4

|Q|θ(1+ρ)/δ
,

where c4 = c1/(c
1+ρ
0 (2c2)

θ(1+ρ)/δ).
The case where (Pn, Qn) = 1 is treated in a similar way and we refer the

reader to [3, Lemma 4, p. 10]. The proof consists, as previously, of two cases,
but when Pn/Qn = P/Q and P/Q is reduced, then Qn = Q; this permits
one to obtain an improved upper bound.

Note that the second part of Lemma 3.2 is also known as Voloch’s Lemma;
for more details, we refer the reader to the original paper of [26], and to
Thakur’s monograph [23, p. 314].
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3.3. Construction of rational approximations via Christol’s the-
orem. Let

f(T ) :=
∑
i≥0

aiT
−i ∈ Fq[[T−1]]

be an irrational algebraic Laurent series over Fq(T ).
We recall that, by Christol’s theorem, the sequence a := (ai)i≥0 is p-

automatic. (In all that follows, we will only work with p- or pr-automatic
sequences, r ≥ 1. The letter k will denote the length of some finite words.)
According to Cobham’s theorem, there exist m ≥ 1, a p-morphism

σ : Am → A∗m
and a coding

ϕ : Am → Fq

such that a = ϕ(σ∞(a)) where a ∈ Am.
In all that follows, we let fa(T ) =

∑
i≥0 aiT

−i denote the Laurent series
associated with the infinite word a = (ai)i≥0.

We also give the following definition for a polynomial associated with a
finite word.

Definition 3.3. Let U = a0a1 · · · ak−1 be a finite word over a finite field.
We associate with U the polynomial PU (T ) :=

∑k−1
j=0 ak−1−jT

j . If U = ε, we
set PU (T ) = 0.

For example, if we consider the word U = 1020310 ∈ A5 then

PU (T ) = T 6 + 2T 4 + 3T 2 + T

is a polynomial with coefficients in F5.
Using this notation, we have the following two lemmas.

Lemma 3.4. Let U, V be two finite words such that |U | = k ∈ N and
|V | = ` ∈ N and let a := UV∞. Then

fa(T ) =
PU (T )(T

` − 1) + PV (T )

T k−1(T ` − 1)
.

If k = 0, we have

fa(T ) =
TPV (T )

T ` − 1
.

Proof. Let U := a0a1 · · · ak−1 and V := b0b1 · · · b`−1. Writing the associ-
ated Laurent series with a := UV∞, we have

fa(T ) = (a0+a1T
−1+· · ·+ak−1T−(k−1))+(b0T

−k+· · ·+b`−1T−(k+l−1))+· · ·
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and then factorizing T−(k−1), T−k, T−(k+`), T−(k+2`), . . . and using the defi-
nition of PU (T ) and PV (T ) (see Def. 3.3), we obtain

fa(T ) = T−(k−1)PU (T ) + T−k(b0 + b1T
−1 + · · ·+ b`−1T

−(`−1))

+ T−(k+`)(b0 + · · ·+ b`−1T
−(`−1)) + · · ·

= T−(k−1)PU (T ) + T−(k+`−1)PV (T )(1 + T−` + T−2` + T−3` + · · · )

=
PU (T )(T

` − 1) + PV (T )

T k−1(T ` − 1)
.

The second identity of the lemma immediately follows by replacing k = 0 in
the identity given above.

Lemma 3.5. Let a = (ai)i≥0 and b = (bi)i≥0 be infinite sequences over
a finite alphabet, satisfying ai = bi for 0 ≤ i ≤ L− 1, where L ∈ N∗. Then

|fa − fb| ≤ 1/|T |L,
with equality when aL 6= bL.

Proof. This follows immediately from the definition of an ultrametric
norm.

We now construct a sequence (Pn/Qn)n≥0 of rational fractions satisfying
the assumptions of Lemma 3.2. The approach we use appears in [2] and is
essentially based on the repetitive patterns occurring in automatic sequences.

The sequence a being p-automatic, the p-kernel is finite. We let e denote
the number of states of the minimal automaton generating a (in direct read-
ing) and s the cardinality of the p-kernel. Consider a prefix P of σ∞(a) of
length e+1. Observe that e is greater than or equal to the cardinality of the
internal alphabet of a, that is, Am. It follows, from the pigeonhole principle
that there exists a letter b ∈ Am occurring at least twice in P . This means
that there exist two (possibly empty) words U ′ and V ′ and a letter b (both
defined over Am) such that

P := U ′bV ′b.

Now, if we set U := U ′, V := bV ′, |U | := k, |V | := `, ω := 1 + 1/`, then
UV ω is a prefix of σ∞(a).

Let n ∈ N, Un := ϕ(σn(U)) and Vn = ϕ(σn(V )). Since
a = ϕ(σ∞(a))

it follows that, for any n ∈ N, UnV ω
n is a prefix of a. Notice also that

|Un| = |U |pn and |Vn| = |V |pn and the sequence (|Vn|)n≥1 is increasing.
If k > 0, then, for any n ≥ 1, we set

(4) Qn(T ) = T kp
n−1(T `p

n − 1).

(If k = 0, then we set Qn(T ) = T `p
n − 1 for any n ≥ 1.)
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Let cn denote the infinite word UnV∞n . There exists Pn(T ) ∈ Fq[T ] such
that

fcn(T ) =
Pn(T )

Qn(T )
.

More precisely, by Lemma 3.4, the polynomial Pn(T ) may be defined by

(5) Pn(T ) = PUn(T )(T
`pn − 1) + PVn(T ) for k > 0

(and Pn(T ) = TPVn(T ) for k = 0).
Since a and cn have the common prefix UnV ω

n , Lemma 3.5 yields

(6)
∣∣∣∣fa − Pn

Qn

∣∣∣∣ ≤ c2

|Qn|
k+ω`
k+`

,

where c2 = |T |
k+`
k+ω` .

Furthermore, if a and cn have the common prefix UnV
ω
n and their

((k + ω`)pn + 1)th letters are different, then, by Lemma 3.5, inequality (6)
becomes an equality. On the other hand, we also have the following result,
which is an easy consequence of Lemma 3.1.

Lemma 3.6. Let s be the cardinality of the p-kernel of the sequence a :=
(ai)i≥0. Then ∣∣∣∣fa − Pn

Qn

∣∣∣∣ ≥ 1

|Qn|ps
.

Proof. Using Lemma 3.1 we obtain

|UnV ω
n | < ps|UnVn|.

This implies that a and cn cannot have the same first ps|UnVn| digits. Hence∣∣∣∣fa − Pn
Qn

∣∣∣∣ ≥ 1

|T |(|Un|+|Vn|)ps
=

1

(|T | |Qn|)ps
≥ c1
|Qn|ps

,

where c1 := 1/|T |ps .

This shows that (Pn/Qn)n≥1 satisfies the assumptions of Lemma 3.2 with
θ = p, ρ = ps − 1 and δ = (ω − 1)`/(k + `). With this notation, we obtain
the following theorem.

Theorem 3.7. Let fa(T ) =
∑

i≥0 aiT
−i ∈ Fq[[T−1]] be an irrational

algebraic Laurent series over Fq(T ). Let k, l, ω, s be the parameters of fa
defined above. Then the irrationality exponent µ(fa) satisfies

(7)
k + ω`

k + `
≤ µ(fa) ≤

ps+1(k + `)

(ω − 1)`
.
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Remark 3.8. If, for every n, a and cn have the same first (k + ω`)pn

digits, while their ((k + ω`)pn + 1)th digits are different, then∣∣∣∣fa − Pn
Qn

∣∣∣∣ = c2
|Qn|1+δ

.

Thus, inequality (7) does not depend on s (the cardinality of the p-kernel)
anymore. More precisely, in this case, Pn and Qn satisfy Lemma 3.2 with
θ = p, ρ = δ = (ω − 1)`/(k + `) and we have

k + ω`

k + `
≤ µ(fa) ≤

p(k + ω`)

(ω − 1)`
.

Moreover, if there exists N such that (Pn, Qn) = 1 for any n ≥ N , then

k + ω`

k + `
≤ µ(fa) ≤ max

(
k + ω`

k + `
, 1 +

p(k + `)

(ω − 1)`

)
.

If U = ε, that is, k = 0, then

ω ≤ µ(fa) ≤ p
ω

ω − 1
.

(Notice that this inequality makes sense because ω < p + 1; otherwise, the
infinite sequence a would be periodic and fa rational.) Furthermore, if ω−1
≥ √p and (Pn, Qn) = 1, then µ(fa) = ω. All this explains why, in many cases,
the general upper bound we obtained in Theorem 1.2 can be significantly
improved.

Proof of Theorem 1.2. By construction, ω = 1 + 1/` and k + ` ≤ e. By
Theorem 3.7, it follows immediately that µ(fa) ≤ ps+1e.

3.4. An equivalent condition for coprimality of Pn and Qn. We
have seen in Remark 3.8 that, in the case where the numerator Pn and
the denominator Qn of our rational approximations are relatively prime,
the bound for the irrationality exponent obtained in Theorem 1.2 can be
significantly improved. This serves as a motivation for this section, which is
devoted to the coprimality of Pn and Qn.

First, let us recall the following result, which is an easy consequence of
the fact that the greatest common divisor of two polynomials, defined over
a field K, also belongs to K.

Lemma 3.9. Let P,Q ∈ Fq[T ]. Then (P,Q) = 1 over Fq[T ] if and only
if (P,Q) = 1 over Fp[T ].

We recall that Fp is the classical notation for an algebraic closure of Fp.
Let k > 0, n ∈ N∗ and Qn(T ) = T kp

n−1(T `p
n−1) ∈ Fq[T ]. Since we work

in characteristic p, we have

Qn(T ) = T kp
n−1(T ` − 1)p

n
.
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Now, let P be an arbitrary polynomial with coefficients in Fq. Then (P,Qn)
= 1 if and only if (P (T ), T ) = 1 and (P (T ), T ` − 1) = 1. In other words,
(P,Qn) = 1 if and only if P (0) 6= 0 and P (a) 6= 0 for all a ∈ Fp such that
a` = 1.

Therefore, we easily obtain the following lemma, which will simplify the
study of the coprimality of polynomials Pn and Qn, by using some properties
of PUn and PVn . (We recall that Un = ϕ(σn(U)) and Vn = ϕ(σn(V )), where
U and V are introduced in Section 3.3.)

Lemma 3.10. Let n ∈ N∗ and Pn, Qn defined in (5) and (4). Then
(Pn, Qn) = 1 over Fq(T ) if and only if

(i) PUn(0) 6= PVn(0),
(ii) for any a ∈ Fp such that a` = 1, PVn(a) 6= 0.

Remark 3.11. If k = 0, then Qn = T `p
n − 1 = (T ` − 1)p

n . In this case,
(Pn, Qn) = 1 over Fq(T ) if and only if for any a ∈ Fp such that a` = 1,
PVn(a) 6= 0.

4. Matrices associated with morphisms. The purpose of this section
is to give an approach which will allow one to compute the polynomials
PUn(T ) and PVn(T ), described in the previous section. In particular, we show
that, if α ∈ Fp, the sequences (PUn(α))n≥1 and (PVn(α))n≥1 are ultimately
periodic. Lemma 3.10 implies that we have to test the coprimality of Pn and
Qn only for a finite number of indices n.

Let U = a0a1 · · · ak−1 be a finite word on Am and let i ∈ Am. We let
PU (i) denote the set of positions of i in the word U ; we write simply Pi if
there is no doubt about U .

Definition 4.1. We associate with U the row vector vU (T ) =
(βU,j(T ))0≤j≤m−1 with coefficients in Fp[T ] where, for any j ∈ Am, βU,j
is defined by

(8) βU,j(T ) =

{∑
l∈Pj

T l if j occurs in U ,
0 otherwise.

Example 4.2. Consider U = 1020310 ∈ A∗5. Then P0 = {0, 3, 5}, P1 =
{1, 6}, P2 = {4}, P3 = {2} and P4 = ∅. The vector associated with U is

vU (T ) = (1 + T 3 + T 5, T + T 6, T 4, T 2, 0).

We also recall that PU (T ) = T 6+2T 4+3T 2+T (see Definition 3.3) and we
observe that
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PU (T ) = vU (T )


0

1

2

3

4

 .

Definition 4.3. Let σ : Am → A∗m be a morphism. We associate with
σ the m×m matrix Mσ(T ) with coefficients in Fp[T ] defined by

Mσ(T ) = (βσ(i),j(T ))0≤i,j≤m−1.

Example 4.4. Let σ : A3 → A∗3, σ(0) = 010, σ(1) = 2101 and σ(2) =
00211. Then

Mσ(T ) =

 T 2 + 1 T 0

T T 2 + 1 T 3

T 4 + T 3 T + 1 T 2

 .

It is not difficult to see that such matrices have some interesting general
properties as claimed in the following remarks.

Remark 4.5. The matrix Mσ(1) is the reduction modulo p of the so-
called incidence matrix associated with the morphism σ. This matrix has
some nice properties and has been the subject of extensive studies (see for
instance [18]).

Remark 4.6. If σ1 and σ2 are two p-morphisms over Am then

Mσ1◦σ2(T ) =Mσ2(T
p)Mσ1(T ).

Now, our main goal is to prove that, if α ∈ Fp, the sequences (PUn(α))n≥1
and (PVn(α))n≥1 are ultimately periodic. This will be the subject of Propo-
sition 4.14. In order to prove it, we will need the following auxiliary results.

Lemma 4.7. Let σ : Am → A∗m be a p-morphism and U = a0 · · · ak−1
∈ A∗m. For any n ∈ N we denote Un = σn(U) = σn(a0) · · ·σn(ak−1). Then

PUn(T ) = vU (T
pn)Rn(T ),

where, for any n ∈ N,

Rn(T ) =


Pσn(0)(T )

Pσn(1)(T )
...

Pσn(m−1)(T )

 .
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Proof. Since Un = σn(a0) · · ·σn(ak−1) and σ is a p-morphism, we infer
that

Pσn(U)(T ) = Pσn(a0)(T )T
(k−1)pn + Pσn(a1)(T )T

(k−2)pn + · · ·+ Pσn(ak−1)(T ).

Hence there exists a vector Sn(T )=(s0(T
pn), s1(T

pn), . . . , sm−1(T
pn)), where

si(T ), 0 ≤ i ≤ m − 1, are some polynomials with coefficients 0 or 1, such
that

Pσn(U)(T ) = Sn(T )


Pσn(0)(T )

Pσn(1)(T )
...

Pσn(m−1)(T )


and Sn(T ) = S0(T

pn). For n = 0, the equality above becomes

PU (T ) = S0(T )


0

1
...

m− 1

 .

By Definitions 4.1 and 3.3, we deduce that S0(T ) = vU (T ). This ends the
proof.

Lemma 4.8. Let n ∈ N and let σ be a p-morphism over Am. Then

Rn+1(T ) =Mσ(T
pn)Rn(T ),

where Mσ(T ) is the matrix associated with σ as in Definition 4.3.

Proof. Let σ be defined as follows:

σ(0) = a
(0)
0 a

(0)
1 · · · a

(0)
p−1,

σ(1) = a
(1)
0 a

(1)
1 · · · a

(1)
p−1,

...

σ(m− 1) = a
(m−1)
0 a

(m−1)
1 · · · a(m−1)p−1 ,

where a(j)i ∈ Am for any i ∈ {0, 1, . . . , p−1} and j ∈ {0, 1, . . . ,m−1}. Then,
for any j ∈ {0, 1, . . . ,m− 1} and n ∈ N∗, we have

σn+1(j) = σn(σ(j)) = σn(a
(j)
0 a

(j)
1 · · · a

(j)
p−1) = σn(a

(j)
0 )σn(a

(j)
1 ) · · ·σn(a(j)p−1).

Hence

Pσn+1(j)(T ) = P
σn(a

(j)
0 )

(T )T (p−1)pn + · · ·+ P
σn(ajp−1)

(T ).
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It follows by Lemma 4.7 that
Pσn+1(0)(T )

Pσn+1(1)(T )
...

Pσn+1(m−1)(T )

 = (βσ(i),j(T
pn))0≤i,j≤m−1


Pσn(0)(T )

Pσn(1)(T )
...

Pσn(m−1)(T )

 ,

that is, Rn+1(T ) =Mσ(T
pn)Rn(T ).

Remark 4.9. In particular, if n = 0 in the previous lemma, we obtain
Pσ(0)(T )

Pσ(1)(T )
...

Pσ(m−1)(T )

 = (βσ(i),j(T ))0≤i,j≤m−1


0

1
...

m− 1

 =Mσ(T )R0(T )

for any p-morphism σ defined over Am.
Notice also that, if ϕ is a coding defined over Am, we have a similar

identity 
Pϕ(σ(0))(T )

Pϕ(σ(1))(T )
...

Pϕ(σ(m−1))(T )

 = (βϕ(σ(i)),j(T ))0≤i,j≤m−1


ϕ(0)

ϕ(1)
...

ϕ(m− 1)

 .

The following corollaries are immediate.

Corollary 4.10. Let n ∈ N∗ and let σ be a p-morphism defined on Am.
Then

Rn(T ) =Mσ(T
pn−1

)Mσ(T
pn−2

) · · ·Mσ(T )


0

1
...

m− 1

 ,

where Mσ(T ) is the matrix associated with σ as in Definition 4.3.

Corollary 4.11. Let σ be a p-morphism defined on Am. Then for any
n ∈ N∗,

Mσn(T ) =Mσ(T
pn−1

)Mσ(T
pn−2

) · · ·Mσ(T )

where Mσ(T ) is the matrix associated with σ as in Definition 4.3.

Corollary 4.12. Let a ∈ Fp. Then Mσn(a) =Mn
σ (a) for any n ∈ N .
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Proposition 4.13. Let p be a prime, q a power of p, and σ : Am → A∗m
a p-morphism. Let α ∈ Fr, where r = pt, t ∈ N∗. Then for any positive
integer k we have

(9) Mσkt(α) = (Mσt(α))k.

Proof. We argue by induction on k. Obviously, this is true for k = 1. We
suppose that (9) is satisfied for k and we prove it for k+ 1. Using Corollary
4.11 and the fact that αr = α we obtain

Mσ(k+1)t(α) =Mσ(α
pkt+t−1

) · · ·Mσ(α
pt)︸ ︷︷ ︸Mσ(α

pt−1
) · · ·Mσ(α)

=Mσ(α
pkt−1

) · · ·Mσ(α)︸ ︷︷ ︸Mσ(α
pt−1

) · · ·Mσ(α)︸ ︷︷ ︸
=Mσkt(α)Mσt(α) = (Mσt(α))k+1.

Proposition 4.14. Let p be a prime, q a power of p and U = ak−1 · · · a0
∈ A∗m. Let σ : Am → A∗m be a p-morphism and ϕ : Am → Fq a coding. Let
α ∈ Fr, where r = pt, r ∈ N∗. Then the sequence (Pϕ(σn(U))(α))n≥0 is
ultimately periodic.

Proof. First, notice that, as in Lemma 4.7, we have

Pϕ(σn(U))(T ) = vU (T
pn)


Pϕ(σn(0))(T )

Pϕ(σn(1))(T )
...

Pϕ(σn(m−1))(T )

 .

By Remark 4.9, we have
Pϕ(σn(0))(T )

Pϕ(σn(1))(T )
...

Pϕ(σn(m−1))(T )

 =Mσn(T )


ϕ(0)

ϕ(1)
...

ϕ(m− 1)

 .

Hence

Pϕ(σn(U)(α) = vU (α
pn)Mσn(α)


ϕ(0)

ϕ(1)
...

ϕ(m− 1)

 .

Clearly, the sequence (vU (α
pn))n≥0 is periodic with period less than or

equal to t since vU (αp
n+t

) = vU (α
pn) for any n ∈ N∗. We now prove that the

sequence (Mσn(α))n≥0 is ultimately periodic.
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Since α ∈ Fpt , we have αpt = α and thus, by Corollary 4.11, for any k
and n ∈ N,

Mσn+kt(α) =Mσn(α)Mσkt(α).

Therefore, by Proposition 4.13 we have, for any k ∈ N,
Mσn+kt(α) =Mσn(α)Mσkt(α) =Mσn(α)(Mσt(α))k.

Since Mσt(α) is an m×m matrix with coefficients in a finite field, there
exist distinct positive integers m0 and n0 (suppose that m0 < n0) such that
Mσt(α)m0 =Mσt(α)n0 . This implies that

Mσn+m0t(α) =Mσn(α)(Mσt(α))m0 =Mσn(α)(Mσt(α))n0 =Mσn+n0t(α),

and thus the sequence (Mσn(α))n≥0 is ultimately periodic, with pre-period
at most m0t and period at most (n0 −m0)t. Since (vU (α

pn))n≥0 is periodic
with period at most t, it follows that (Pϕ(σn(U))(α))n≥0 is ultimately periodic
(with pre-period at most m0t and period at most (n0 −m0)t

2). This ends
the proof.

Remark 4.15. All the properties (we have proved here) of the matrices
associated with morphisms are still true on replacing p-morphisms by pr-
morphisms for any r ∈ N∗, because, in general, the key point is that the
map x 7→ xp

r is a morphism (the rth power of the Frobenius morphism).
Thus, it only suffices to replace T p by T pr in our results proved before.

5. Examples. In Theorem 1.2 we give a general upper bound for the
irrationality exponent of algebraic Laurent series with coefficients in a finite
field. In many cases, the sequence of rational approximations (Pn/Qn)n≥0
we construct turns out to satisfy the conditions (i) and (ii) of Lemma 3.10.
This naturally gives rise to a much better estimate, as hinted in Remark
3.8. In this section, we illustrate this claim with a few examples of algebraic
Laurent series for which the irrationality exponent is exactly computed or
at least well estimated.

Example 5.1. Let us consider the following equation over F2(T ):

(10) X4 +X +
T

T 4 + 1
= 0.

This equation is related to the Mahler algebraic Laurent series, previously
mentioned. Let E1 = {α ∈ F2((T

−1)) : |α| < 1}. We first notice that (10)
has a unique solution f in E1. This can be obtained by showing that the
map

h : E1 → E1, X 7→ X4 +
T

T 4 + 1
,

is well defined and is a contracting map from E1 to E1. Then the fixed point
theorem in a complete metric space implies that the equation h(X) = X,
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which is equivalent to (10), has a unique solution in E1. Let f(T ) :=∑
i≥0 aiT

−i denote this solution (with ai = 0, since f belongs to E1).
The second step is to find the morphisms that generate the sequence

of coefficients of f , as in Cobham’s theorem. Notice that there is a general
method that allows one to obtain these morphisms when we know the alge-
braic equation. In this example, we try to describe the important steps of
this method; we will give further details later.

By inserting f in (10) and using the fact that f4(T ) =
∑

i≥0 aiT
−4i we

easily obtain the following relations between the coefficients of f :

ai+1 + ai + a4i+4 + a4i = 0,(11)
a1 = 0, a2 = 0, a3 = 1,(12)
ai+4 + ai = 0 if i 6≡ 0 [4].(13)

From (12) and (13), we get a4i+1 = 0, a4i+2 = 0 and a4i+3 = 1, for any
i ≥ 0. From (11) we deduce that

a16i+4 = a16i+8 = a16i + a4i,

a16i+12 = a16i+8 + 1 = a16i + a4i + 1.

This implies that the 4-kernel of a := (ai)i≥0 is

K4(a) = {(ai)i≥0, (a4i)i≥0, (a16i)i≥0, (0), (1)}.

Consequently, the 4-automaton generating a is as in Fig. 2.

q0/0 q1/1

0,1,2 0,3

3

1,2

Fig. 2. A 4-automaton recognizing a

Once we have the automaton, there is a general approach to obtain the
morphisms that generate an automatic sequence. More precisely, the proof
of Cobham’s theorem precisely describes this process. The reader may con-
sult the original article of Cobham [7] or the monograph [4, Theorem 6.3.2,
p. 175]. Following this approach, we find that a = σ∞(0), where σ is defined
by

σ(0) = 0001, σ(1) = 1001.

It is now possible to apply our approach described in the first part of
the paper. We will prove the following result, stated as Theorem 1.3 in the
Introduction:

µ(f) = 3.
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Notice that Mahler’s theorem implies only that µ(f) ≤ 4, and Osgood’s
Theorem or Lasjaunias and de Mathan’s Theorem cannot be applied since
this Laurent series is clearly hyperquadratic.

Proof. We are going to introduce an infinite sequence (Pn/Qn)n≥1 of ra-
tional fractions converging to f . Since a begins with 0001, we denote V = 0
and Vn = σn(V ) for any n ≥ 1. Hence a begins with VnVnVn for any non-
negative integer n.

Since |Vn| = 4n, we set Qn(T ) = T 4n − 1. In Section 3.3, we showed that
there exists a polynomial Pn(T ) ∈ F2[T ] such that

Pn(T )/Qn(T ) = fV∞n (T ).

The Laurent series expansion of Pn/Qn begins with

σn(0001)σn(0001)σn(0001)σn(0),

and we deduce that it begins with

σn(0001)σn(0001)σn(0001)0,

while the sequence a begins with

σn(0001)σn(0001)σn(0001)1.

Hence, the first 3 · 4n digits of the Laurent series expansions of Pn/Qn and
of f are the same, while the following coefficients are different. Using the
notations from Theorem 3.7 and Remark 3.8, we have k = 0, ` = 4, ω = 3
and p = 4.

According to Remark 3.8, we deduce that

3 ≤ µ(f) ≤ 6,

and if (Pn, Qn) = 1 for any n ≥ 1, then

µ(f) = 3.

It thus remains to prove that (Pn, Qn) = 1 for every positive integer n. Let
n ≥ 1. By Lemma 3.10 we have to prove that Pn(1) 6= 0, i.e., Pσn(0)(1) 6= 0.
Remark 4.9 implies that(

Pσn(0)(T )

Pσn(1)(T )

)
=Mσn(T )

(
0

1

)
.

Hence, Pσn(0)(1) 6= 0 if and only if

(1 0)Mσn(1)

(
0

1

)
6= 0,

that is, if and only if

(1 0)Mn
σ (1)

(
0

1

)
6= 0.
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Indeed, by Corollary 4.12, we have Mσn(1) =Mn
σ (1). Since

Mσ(1) =

(
1 1

0 0

)
,

we deduce that Mσn(1) =Mσ(1) and so

(1 0)

(
1 1

0 0

)(
0

1

)
6= 0.

Consequently, (Pn, Qn) = 1. This ends the proof.

Remark 5.2. Let f(T ) =
∑

i≥0 aiT
−i be a Laurent series with coeffi-

cients in a finite field Fq, where q is a power of p, and suppose that there is
P (T ) ∈ Fq[T ] such that P (f) = 0. As mentioned before, there is a general
approach that allows one to find the automaton that generates the infinite
sequence a := (ai)i≥0. This consists of the following steps. First, there exists
a polynomial Q with coefficients in Fq, of the form Q(X) =

∑
i≥0Bi(T )X

pi

with B0(T ) 6= 0 such that Q(f) = 0. This is known as Ore’s polynomial and
its existence is due to Ore’s theorem (for a proof see, for example, [4, Lemma
12.2.3, p. 355]. Hence, the first step is to find such an Ore polynomial vanish-
ing at f (this is possible by raising P to the power of p as many times as we
need). The second step is to find some recurrent relations between the terms
ai in order to find the kernel of a. This is possible thanks to the Frobenius
morphism. The third step is the construction of the automaton generating a.
Notice that a sequence is p-automatic if and only if its p-kernel is finite. The
proof of this well-known result is explicit and we refer the reader to [4, The-
orem 6.6.2, p. 18]. The last step is to find the morphisms generating a, as
described in Cobham’s theorem. In order to do this, the reader may refer to
the proof of Cobham’s theorem, which is explicit as well.

The following examples present different computations of irrationality
exponents of Laurent power series over finite fields. We do not give the
relevant algebraic equations because the computation is quite long, but, as in
the previous example (where we find the morphisms if we know the equation),
there is a general approach that allows one to compute the equation of a
Laurent series when we know the automaton generating the sequence of its
coefficients. Indeed, by knowing the morphisms we can find the automaton
(see the proof of Cobham’s theorem), and knowing the automaton allows
finding the kernel (see [4, Theorem 6.6.2, p. 185]) and the relations between
the coefficients. These relations allow one to find a polynomial that vanishes
at the given Laurent series (the reader may consult the proof of Christol’s
theorem in [6] or [4, p. 356], and also [11] where a generalisation of Christol’s
theorem is given). More precisely the polynomial that we compute from these
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relations is also an Ore polynomial. Finally, we have to factor this polynomial
and to check which irreducible factor vanishes at our algebraic Laurent series.

Example 5.3. We now consider the Laurent series

fa(T ) =
∑
i≥0

aiT
−i ∈ F2[[T

−1]],

where the sequence a := (ai)i≥0 is the image under the coding ϕ of the fixed
point of the 8-uniform morphism σ, ϕ and σ being defined as follows:

ϕ(0) = 1, σ(0) = 00000122,

ϕ(1) = 0, σ(1) = 10120011,

ϕ(2) = 1, σ(2) = 12120021.

Thus a = 11111011111 . . . .

Proposition 5.4. One has µ(fa) = 5.

Proof. Using the notations from Theorem 3.7 and Remark 3.8, we have
k = 0, ` = 1, ω = 5 and p = 8 (since σ is an 8-uniform morphism). By
applying the same method as for the previous example, we can easily prove
the proposition.

Example 5.5. We now consider the Laurent series

fa(T ) =
∑
i≥0

aiT
−i ∈ F3[[T

−1]],

where the sequence a := (ai)i≥0 is the fixed point beginning with zero of the
following 3-uniform morphism:

σ(0) = 010, σ(1) = 102, σ(2) = 122.

Thus a = 010102010 . . . .

Proposition 5.6. The irrationality exponent of fa satisfies

8/3 ≤ µ(fa) ≤ 14/5.

In this case, we are not able to compute the exact value of the irrationality
exponent but the lower bound we found shows that the degree of fa is greater
than or equal to 3. Hence our upper bound obviously improves on the one
that could be deduced from Liouville–Mahler’s theorem.

Proof of Proposition 5.6. We are going to introduce an infinite sequence
(Pn/Qn)n≥0 of rational fractions converging to fa. Since a begins with 010102,
we denote V := 010102 and for any n ≥ 1, Vn := σn(V ). Hence a begins
with

σn(010102)σn(010102)σn(0101)
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for any n ≥ 1. Now, we set Qn(T ) = T 2·3n − 1. There exists a polynomial
Pn(T ) ∈ F3[T ] such that

Pn(T )/Qn(T ) = fV∞n (T ).

The Laurent series expansion of Pn/Qn begins with

σn(010102)σn(010102)σn(0101)σn(0)

and so with
σn(010102)σn(010102)σn(0101)0,

while the sequence a begins with

σn(010102)σn(010102)σn(0101)1.

Hence, the first 16 · 3n digits of the Laurent series expansions of Pn/Qn
and fa are the same, while the following coefficients are different. Using the
notations from Theorem 3.7 and Remark 3.8, we have k = 0, ` = 6, ω = 8/2
and p = 3.

By Remark 3.8, we deduce that

8/3 ≤ µ(fa) ≤ 24/5.

Furthermore, if (Pn, Qn) = 1 for every n ≥ 1, then

8/3 ≤ µ(fa) ≤ 14/5.

Let n ≥ 1. We now prove that (Pn, Qn) = 1. By Lemma 3.10, since

Qn(T ) = (T − 1)3
n
(T + 1)3

n
,

we have to prove that, for all n ≥ 1, Pn(1) 6= 0 and Pn(−1) 6= 0.
By definition of (Pn(T ))n≥0 (see (5)) we have

Pn(1) = PVn(1) and Pn(−1) = PVn(−1).

Since Vn = σn(010102) = σn+1(01), we have

PVn(T ) = Pσn+1(0)(T )T
3n+1

+ Pσn+1(1)(T ).

Hence,

PVn(1) = Pσn+1(0)(1) + Pσn+1(1)(1),

PVn(−1) = −Pσn+1(0)(−1) + Pσn+1(1)(−1).

Remark 4.9 implies thatPσn(0)(T )

Pσn(1)(T )

Pσn(2)(T )

 =Mσn(T )

0

1

2

 .
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If we now set T = 1 (respectively T = −1), we find that Pn(1) 6= 0 (respec-
tively Pn(−1) 6= 0) if and only if

(1 1 0)Mn
σ (1)

0

1

2

 6= 0,

respectively,

(−1 1 0)Mn
σ (−1)

0

1

2

 6= 0.

The matrix associated with σ is

Mσ(T ) =

T
2 + 1 T 0

T T 2 1

0 T 2 T + 1

 .

Hence,

Mσ(1) =

2 1 0

1 1 1

0 1 2

 and Mσ(−1) =

 2 −1 0

−1 1 1

0 1 0

 .

Notice that M2
σ(±1) =M4

σ(±1), and an easy computation shows that
(PVn(1))n≥0 is 2-periodic and (PVn(−1))n≥0 is 1-periodic; more precisely,
(PVn(1))n≥0 = (12)∞ and (PVn(−1))n≥0 = (1)∞. This proves that PVn(1)
and PVn(−1) never vanish, which ends the proof.

Example 5.7. We now consider the Laurent series

fa(T ) =
∑
i≥0

aiT
−i ∈ F5[[T

−1]],

where the sequence a := (ai)i≥0 is the fixed point beginning with zero of the
following 5-uniform morphism:

σ(0) = 00043, σ(1) = 13042, σ(2) = 14201,

σ(3) = 32411, σ(4) = 00144.

Thus a = 0004300043 . . . .

Proposition 5.8. One has

µ(fa) = 17/5.

Notice that, by Mahler’s theorem, the degree of algebraicity of fa is
greater than or equal than 4.
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Proof. Using the notations from Theorem 3.7 and Remark 3.8, we have
k = 0, ` = 5, ω = 17/5 and p = 5. By applying the same method as for the
previous examples, we can easily prove the proposition.
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