From explicit estimates for primes to explicit estimates for the Möbius function

by
Olivier Ramaré (Lille)

1. Introduction. There is a vast literature concerning explicit estimates for the summatory function of the Möbius function: we cite for instance [21], [1], [4], [3], [6], [7], [10], [11]. The paper [5] proposes a very useful annoted bibliography covering relevant items up to 1983. It has been known since the beginning of the 20th century at least (see for instance [13]) that showing that $M(x)=\sum_{n \leq x} \mu(n)$ is $o(x)$ is equivalent to showing that the Chebyshev function $\psi(x)=\sum_{n \leq x} \Lambda(n)$ is asymptotic to x. We have good explicit estimates for $\psi(x)-x$ (see for instance [19], [22] and [9]). This is due to the fact that we can use analytic tools in this problem since the residues at the poles of the Dirichlet generating series (here $\left.-\zeta^{\prime}(s) / \zeta(s)\right)$ are known. However, this situation has no counterpart in the Möbius function case. It would thus be highly valuable to deduce estimates for $M(x)$ from estimates for $\psi(x)-x$, but a precise quantitative link is missing. I proposed some years back the following conjecture:

Conjecture (Strong form of Landau's equivalence Theorem, II). There exist positive constants c_{1} and c_{2} such that

$$
|M(x)| / x \leq c_{1} \max _{c_{2} x<y \leq x / c_{2}}|\psi(y)-y| / y+c_{1} x^{-1 / 4}
$$

This conjecture is trivially true under the Riemann Hypothesis. In this connection, we note that [23] proves that in the case of Beurling's generalized integers, one can have $M_{\mathcal{P}}(x)=o(x)$ without having $\psi(x) \sim x$. This reference has been kindly shown to me by Harold Diamond whom I warmly thank here.

We have not been able to prove such a strong estimate, but we are still able to derive an estimate for $M(x)$ from estimates for $\psi(x)-x$. Our process can be seen as a generalization of the initial idea of [21], also used in [10].

[^0]We describe it in Section 3, after a combinatorial preparation. Here is our main theorem.

THEOREM 1.1. For $D \geq 1078853$, we have

$$
\left|\sum_{d \leq D} \mu(d)\right| \leq \frac{0.0130 \log D-0.118}{(\log D)^{2}} D
$$

The last result of this shape is from [10] and has 0.10917 (starting from $D=695$) instead of 0.0130 .

Following an idea of [11] which we recall in the last section, we deduce from the above the following estimate.

Corollary 1.2. For $D \geq 60$ 298, we have

$$
\left|\sum_{d \leq D} \mu(d) / d\right| \leq \frac{0.0260 \log D-0.118}{(\log D)^{2}} .
$$

The last result of this shape is from [11] and has 0.2185 (starting from $x=33$) instead of 0.0260 . Here are two results that are easier to remember:

Corollary 1.3. For $D \geq 60$ 200, we have

$$
\left|\sum_{d \leq D} \mu(d) / d\right| \leq \frac{\log D-4}{40(\log D)^{2}}
$$

If we replace the -4 by 0 , the resulting bound is valid from 24270 onward.
Corollary 1.4. For $D \geq 50000$, we have

$$
\left|\sum_{d \leq D} \mu(d) / d\right| \leq \frac{3 \log D-10}{100(\log D)^{2}}
$$

If we replace the -10 by 0 , the resulting bound is valid from 11815 onward.
We will meet another problem in between, which is to relate quantitatively the error term $\psi(x)-x$ with the error term concerning the approximation of $\tilde{\psi}(x)=\sum_{n \leq x} \Lambda(n) / n$ by $\log x-\gamma$. This problem is surprisingly difficult but [16] offers a good enough solution.

Notation. We write $R(x)=\psi(x)-x$ and $r(x)=\tilde{\psi}(x)-\log x+\gamma$, where we recall that

$$
\begin{equation*}
\tilde{\psi}(x)=\sum_{n \leq x} \Lambda(n) / n \tag{1.1}
\end{equation*}
$$

We shall use square brackets to denote the integer part and curly parentheses to denote the fractional part, so that $D=[D]+\{D\}$. But since this notation is used seldom, we shall also use square brackets in their usual function.
2. A combinatorial tool. In this section we prove a certain formal identity. Let F be a function and $Z=-F^{\prime} / F$ the opposite of its logarithmic derivative. We look at

$$
F[1 / F]^{(k)}=P_{k}
$$

It is immediate to compute the first values and we find that

$$
\begin{equation*}
P_{0}=F, \quad P_{1}=Z, \quad P_{2}=Z^{\prime}+Z^{2}, \quad P_{3}=Z^{\prime \prime}+3 Z Z^{\prime}+Z^{3} \tag{2.1}
\end{equation*}
$$

In general, the following recursion formula holds:

$$
\begin{equation*}
P_{k}=F\left(P_{k-1} / F\right)^{\prime}=P_{k-1}^{\prime}+Z P_{k-1} \tag{2.2}
\end{equation*}
$$

Here is the result this leads to:
Theorem 2.1. We have

$$
F[1 / F]^{(k)}=\sum_{\sum_{i \geq 1} i k_{i}=k} \frac{k!}{k_{1}!k_{2}!\cdots(1!)^{k_{1}}(2!)^{k_{2}} \cdots} \prod_{k_{i}} Z^{(i-1) k_{i}}
$$

We can prove it by using the recursion formula given above. We now present a different argument. Let us expand $1 / F(s+X)$ in a Taylor series around $X=0$:

$$
\frac{1}{F(s+X)}=\sum_{k \geq 0}[1 / F(s)]^{(k)} \frac{X^{k}}{k!}
$$

We do the same for $-F^{\prime}(s+X) / F(s+X)$:

$$
\frac{-F^{\prime}(s+X)}{F(s+X)}=\sum_{k \geq 0}[Z(s)]^{(k)} \frac{X^{k}}{k!}
$$

Integrating formally this expression, we get

$$
-\log (F(s+X) / F(s))=\sum_{k \geq 1}[Z(s)]^{(k-1)} \frac{X^{k}}{k!}
$$

where the constant term is chosen so that the constant term is indeed 0 . We then apply the exponential formula

$$
\exp \left(\sum_{k \geq 1} x_{k} X^{k} / k!\right)=\sum_{m \geq 0} Y_{m}\left(x_{1}, x_{2}, \ldots\right) \frac{X^{m}}{m!}
$$

where the $Y_{m}\left(x_{1}, x_{2}, \ldots\right)$ are the complete exponential Bell polynomials whose expression yields the theorem above.
3. The general argument. Let us specialize $F=\zeta$ in Theorem 2.1. The left hand side therein has a simple pole at $s=1$ with residue being k ! times the k th Taylor coefficient of $1 / \zeta(s)$ at $s=1$. Let us denote by \mathfrak{R}_{k} this
residue. By a routine argument, we get

$$
\begin{equation*}
\sum_{\ell \leq L} \mathbb{1} \star\left(\mu \log ^{k}\right)(\ell)=\Re_{k} L+o(L) . \tag{3.1}
\end{equation*}
$$

Note that, thanks to Theorem 2.1, the error term is quantified in terms of the error term in the approximations of both $\psi(x)-x$ and $\tilde{\psi}(x)-\log x+\gamma$. Getting this error term in fact requires using a good enough error term for both these quantities (see for instance [12]). We then continue

$$
\begin{equation*}
\sum_{\ell \leq L} \mu(\ell) \log ^{k} \ell=\sum_{d \leq L} \mu(d)\left(\Re_{k} \frac{L}{d}+o(L / d)\right), \tag{3.2}
\end{equation*}
$$

which ensures that $\sum_{\ell \leq L} \mu(\ell) \log ^{k} \ell$ is $o(L \log L)$.
The case $k=2$ is most enlightening. In this case, our method consists in writing

$$
\begin{equation*}
\sum_{\ell \leq L} \mu(\ell) \log ^{2} \ell=\sum_{d \ell \leq L} \mu(\ell)(\Lambda \star \Lambda(d)-\Lambda(d) \log d) . \tag{3.3}
\end{equation*}
$$

It turns out that the main term of the summatory function of $\Lambda \log$ (namely $L \log L$) cancels the one of $\Lambda \star \Lambda$. This requires the prime number theorem. In deriving the prime number theorem from Selberg's formula $\mu \star \log ^{2}=$ $\Lambda \log +\Lambda \star \Lambda$, it is a well known difficulty to show that both summands indeed contribute and this is another show-up of the parity principle. We modify (3.3) as follows:

$$
\begin{equation*}
2 \gamma+\sum_{\ell \leq L} \mu(\ell) \log ^{2} \ell=\sum_{d \ell \leq L} \mu(\ell)(\Lambda \star \Lambda(d)-\Lambda(d) \log d+2 \gamma) . \tag{3.4}
\end{equation*}
$$

The case $k=1$ is classical, but it is interesting to note that this is the starting point of [21].

4. Some known estimates and straightforward consequences.

Lemma 4.1 ([18). $\max _{t \geq 1} \psi(t) / t=\psi(113) / 113 \leq 1.04$.
Concerning small values, we quote from [17] the following result:

$$
\begin{equation*}
|\psi(x)-x| \leq \sqrt{x} \quad\left(8 \leq x \leq 10^{10}\right) . \tag{4.1}
\end{equation*}
$$

If we change \sqrt{x} to $\sqrt{2 x}$, this is valid from $x=1$ onwards. Furthermore

$$
\begin{equation*}
|\psi(x)-x| \leq 0.8 \sqrt{x} \quad\left(1500 \leq x \leq 10^{10}\right) . \tag{4.2}
\end{equation*}
$$

Lemma 4.2.

$$
|\psi(x)-x| \leq 0.0065 x / \log x \quad(x \geq 1514928) .
$$

Proof. By [8, Théorème 1.3] improving on [22, Theorem 7], we have

$$
\begin{equation*}
|\psi(x)-x| \leq 0.0065 x / \log x \quad(x \geq \exp (22)) . \tag{4.3}
\end{equation*}
$$

We readily extend this estimate to $x \geq 3430190$ by using (4.2). We then use the function WalkPsi from the script IntR.gp (with the proper model function).

Lemma 4.3. For $x \geq 7105$ 266, we have

$$
|\psi(x)-x| / x \leq 0.000213 .
$$

Proof. We start with the estimate from [20, (4.1)]

$$
\begin{equation*}
|\psi(x)-x| / x \leq 0.000213 \quad\left(x \geq 10^{10}\right) \tag{4.4}
\end{equation*}
$$

We extend it to $x \geq 14500000$ by using (4.2). We complete the proof by using the following Pari/Gp script (see [15]):

```
{CalculeLambdas(Taille)=
    my(pk, Lambdas);
    Lambdas = vector(Taille);
    forprime(p = 2,Taille,
        pk = p;
        while(pk <= Taille, Lambdas[pk] = p; pk*=p));
    return(Lambdas);}
{model(n)=n}
{WalkPsi(zmin, zmax)=
    my(res = 0.0, mo, maxi, psiaux = 0.0, Lambdas);
    Lambdas = CalculeLambdas(zmax);
    for(y = 2, zmin,
        if(Lambdas[y]!=0, psiaux += log(Lambdas[y]),));
    maxi = abs(psiaux-zmin)/model(zmin);
    for(y = zmin+1, zmax,
        mo = 1/model(y);
        maxi = max(maxi, abs(psiaux-y)*mo);
        if(Lambdas[y]!=0, psiaux += log(Lambdas[y]),);
        maxi = max(maxi, abs(psiaux-y)*mo));
    print("|psi(x)-x|/model(x) <= ", maxi, " pour ",
        zmin, " <= x <= ", zmax);
    return(maxi);}
```

Lemma 4.4. For $x \geq 32054$, we have

$$
|\psi(x)-x| / x \leq 0.003
$$

Proof. The preceding lemma proves this for $x \geq 7105$ 266. By using 4.2), we extend it to $x \geq 102500$. We complete the proof by using the same script as in the proof of Lemma 4.3 .

We quote from [16] the following lemma.
Lemma 4.5. When $x \geq 23$, we have

$$
\tilde{\psi}(x)=\log x-\gamma+\mathcal{O}^{*}\left(\frac{0.0067}{\log x}\right)
$$

Let us turn our attention to the summatory function of the Möbius function. In [6], we find the bound

$$
\begin{equation*}
|M(x)| \leq 0.571 \sqrt{x} \quad\left(33 \leq x \leq 10^{12}\right) . \tag{4.5}
\end{equation*}
$$

In [7], we find

$$
\begin{equation*}
|M(x)| \leq x / 2360 \quad(x \geq 617973) \tag{4.6}
\end{equation*}
$$

(see also [4) which [2] (published also in [3]) improves to

$$
\begin{equation*}
|M(x)| \leq x / 4345 \quad(x \geq 2160535) . \tag{4.7}
\end{equation*}
$$

Bounds for squarefree numbers

Lemma 4.6. For $D \geq 1$ we have

$$
\sum_{d \leq D} \mu^{2}(d)=\frac{6}{\pi^{2}} D+\mathcal{O}^{*}(0.7 \sqrt{D}) .
$$

For $D \geq 10$, we can replace 0.7 by 0.5 .
Proof. [1] (see also [2]) proves that

$$
\sum_{d \leq D} \mu^{2}(d)=\frac{6}{\pi^{2}} D+\mathcal{O}^{*}(0.1333 \sqrt{D}) \quad(D \geq 1664)
$$

and we use direct inspection using Pari/Gp to conclude.
Lemma 4.7. Let $D / K \geq 1$. Let f be a non-negative non-decreasing C^{1} function. Then

$$
\sum_{D / L<d \leq D / K} \mu^{2}(d) f(D / d) \leq 1.31 f(L)+\frac{6 D}{\pi^{2}} \int_{K}^{L} \frac{f(t) d t}{t^{2}}+0.35 \sqrt{D} \int_{K}^{L} \frac{f(t) d t}{t^{3 / 2}} .
$$

Proof. We use a simple integration by parts to write

$$
\begin{aligned}
\sum_{D / L<d \leq D / K} \mu^{2}(d) f(D / d)=\sum_{D / L<d \leq D / K} \mu^{2}(d)\left(f(K)+\int_{K}^{D / d} f^{\prime}(t) d t\right) \\
=\sum_{D / L<d \leq D / K} \mu^{2}(d) f(K)+\int_{K}^{L}\left(\sum_{D / L<d \leq D / t} \mu^{2}(d)\right) f^{\prime}(t) d t
\end{aligned}
$$

We then employ Lemma 4.6 to get the bound

$$
\frac{6 D}{\pi^{2} K} f(K)+\int_{K}^{L} \frac{6 D}{\pi^{2} t} f^{\prime}(t) d t+0.7 \sqrt{\frac{D}{K}} f(K)+0.7 \int_{K}^{L} \sqrt{\frac{D}{t}} f^{\prime}(t) d t
$$

Two integrations by parts give the expression

$$
\frac{6}{\pi^{2}} f(L)+\int_{K}^{L} \frac{6 D}{\pi^{2} t^{2}} f(t) d t+0.7 f(L)+0.35 \sqrt{D} \int_{K}^{L} \frac{f(t) d t}{t^{3 / 2}} .
$$

The lemma follows readily.
5. A preliminary estimate on primes. Our aim here is to evaluate

$$
\begin{equation*}
R_{4}(D)=\sum_{d_{1} \leq \sqrt{D}} \Lambda\left(d_{1}\right) R\left(D / d_{1}\right) \tag{5.1}
\end{equation*}
$$

This remainder term is crucial in the final analysis and will be numerically one of the dominant terms.

Lemma 5.1. When $D \geq 1$, and $\sqrt{D} \geq T \geq 1$, we have

$$
\sum_{d \leq T} \frac{\Lambda(d)}{d \log (D / d)} \leq 1.04 \log \frac{\log D}{\log (D / T)}+\frac{1.04}{\log D}
$$

Proof. Let $f(t)=1 /(t \log (D / t))$. By a classical summation by parts we have

$$
\begin{aligned}
\sum_{d \leq T} \Lambda(d) f(d) & =\sum_{d \leq T} \Lambda(d) f(T)-\sum_{d \leq T} \Lambda(d) \int_{d}^{T} f^{\prime}(t) d t \\
& \leq \frac{1.04}{\log (D / T)}-1.04 \int_{1}^{T} t f^{\prime}(t) d t \\
& \leq \frac{1.04}{\log (D / T)}-1.04[t f(t)]_{1}^{T}+1.04 \int_{1}^{T} f(t) d t \\
& \leq \frac{1.04}{\log D}+1.04 \int_{D / T}^{D} \frac{d t}{t \log t} \leq \frac{1.04}{\log D}+1.04 \log \frac{\log D}{\log (D / T)}
\end{aligned}
$$

as required.
Lemma 5.2. We have $\left|R_{4}(D)\right| / D \leq 0.0065$ when $D \geq 10^{10}$. When $D \geq$ 1300000000 , we have $\left|R_{4}(D)\right| / D \leq 0.0073$.

The proof that follows is somewhat clumsy due to the fact that we have not been able to compute $R_{4}(D)$ for D up to 10^{10}. By inspecting the expression defining R_{4} and the proof below, the reader will see one could try to get a better bound for

$$
\sum_{D^{1 / 4}<d \leq \sqrt{D}} \Lambda(d) R(D / d)
$$

Indeed, one can compute the exact values of $R(D / d)$ and try to approximate them properly so as not to loose the sign changes in the expression. A proper model is even given by the explicit formula for $\psi(x)$. We have however tried to use the resulting polynomial, namely $x-\sum_{|\gamma| \leq G} x^{1 / 2+i \gamma} /(1 / 2+i \gamma)$ with $G=20, G=30$ and $G=200$, but the approximation was very weak. It may be better to find directly a numerical fit for $R(x)$ in this limited range. It should be noted that the function $R(x)$ is highly erratical. Such a process
would be important since the value 0.0065 that we get here decides a large part of the final value in Theorem 1.1.

Proof of Lemma 5.2. When $D \geq 1514928^{2}$, by Lemmas 4.2 and 5.1 we have

$$
\left|R_{4}(D)\right| / D \leq 0.0065 \sum_{d \leq \sqrt{D}} \frac{\Lambda(d)}{d \log (D / d)} \leq 0.0065 \cdot\left(0.73+\frac{1.04}{\log D}\right)
$$

This implies that $\left|R_{4}(D)\right| / D \leq 0.00499$ in the given range. When $10^{10} \leq$ $D \leq 1514928^{2}$, we set $T=D / 10^{10}$ and write

$$
\begin{aligned}
\left|R_{4}(D)\right| / D \leq & 0.000213 \sum_{d \leq T} \frac{\Lambda(d)}{d}+\frac{1}{D^{1 / 2}} \sum_{T<d \leq \sqrt{D}} \frac{\Lambda(d)}{\sqrt{d}} \\
\leq & 0.000213 \tilde{\psi}(T) \\
& +\frac{1}{D^{1 / 2}}\left(\frac{\psi(\sqrt{D})-\psi(T)}{D^{1 / 4}}+\frac{1}{2} \int_{T}^{\sqrt{D}} \frac{\psi(u)-\psi(T)}{u^{3 / 2}} d u\right)
\end{aligned}
$$

i.e. on using $\psi(u) \leq u+\sqrt{u}$,

$$
\left|R_{4}(D)\right| / D \leq 0.000213 \tilde{\psi}(T)
$$

$$
\begin{aligned}
& +\frac{1}{D^{1 / 2}}\left(\frac{\psi(\sqrt{D})}{D^{1 / 4}}-\frac{\psi(T)}{T^{1 / 2}}+\frac{1}{2} \int_{T}^{\sqrt{D}} \frac{\psi(u)}{u^{3 / 2}} d u\right) \\
\leq & 0.000213 \tilde{\psi}(T) \\
& +\frac{1}{D^{1 / 2}}\left(\frac{\sqrt{D}+D^{1 / 4}}{D^{1 / 4}}-\frac{T-\sqrt{T}}{T^{1 / 2}}+D^{1 / 4}-\sqrt{T}+\log \frac{\sqrt{D}}{T}\right)
\end{aligned}
$$

i.e. since $\tilde{\psi}(x) \leq \log x$ when $x \geq 1$,

$$
\begin{aligned}
\left|R_{4}(D)\right| / D \leq & 0.000213 \log T \\
& +\frac{1}{D^{1 / 2}}\left(2 D^{1 / 4}-2 \sqrt{T}+2+\log \frac{\sqrt{D}}{T}\right)
\end{aligned}
$$

We deduce that $\left|R_{4}(D)\right| / D \leq 0.0065$ when $D \geq 10^{10}$. When now $10^{9} \leq D$ $\leq 10^{10}$, we proceed as follows:

$$
\begin{aligned}
\left|R_{4}(D)\right| / D \leq & \frac{1}{D^{1 / 2}}\left(\frac{\psi(1500)}{1500^{1 / 2}}+\frac{1}{2} \int_{1}^{1500} \frac{\psi(u)}{u^{3 / 2}} d u\right) \\
& +\frac{0.8}{D^{1 / 2}}\left(\frac{\psi(\sqrt{D})-\psi(1500)}{D^{1 / 4}}+\frac{1}{2} \int_{1500}^{\sqrt{D}} \frac{\psi(u)-\psi(1500)}{u^{3 / 2}} d u\right)
\end{aligned}
$$

We readily compute that $\psi(1500)=1509.27+\mathcal{O}^{*}(0.01)$, so that

$$
\left|R_{4}(D)\right| / D^{1 / 2} \leq(0.2-0.8) \frac{1509.3}{1500^{1 / 2}}+0.642+0.8 \cdot 1.04\left(2 D^{1 / 4}-1500^{1 / 2}\right)
$$

The right hand side is not more than 0.0073 when $D \geq 1300000000$.
6. The relevant error term for the primes. The main actor of this section is the remainder term R_{2}^{*} defined by

$$
\begin{equation*}
\sum_{d \leq D}(\Lambda \star \Lambda(d)-\Lambda(d) \log d)=-2[D] \gamma+R_{2}^{*}(D) \tag{6.1}
\end{equation*}
$$

The object of this section is to derive explicit estimate for R_{2}^{*} from explicit estimates for ψ. Most of the work has already been done in the previous section, and we essentially put things in shape. Here is our result.

Lemma 6.1. When $D \geq 1435319$, we have $\left|R_{2}^{*}(D)\right| / D \leq 0.0213$.
We start by an expression for R_{2}^{*}.
Lemma 6.2.

$$
\begin{aligned}
\left|R_{2}^{*}(D)\right| \leq & 2 D|r(\sqrt{D})|+2 D^{1 / 2} R(\sqrt{D})+R(\sqrt{D})^{2}+R(D) \log D \\
& +1+2 \gamma+2 R_{4}(D)+\left|\int_{1}^{D} R(t) \frac{d t}{t}\right|
\end{aligned}
$$

where R_{4} is defined in (5.1).
Proof. The proof is fully pedestrian. We have

$$
\begin{aligned}
\sum_{d \leq D} \Lambda(d) \log d & =\psi(D) \log D-\int_{1}^{D} \psi(t) d t / t \\
& =D \log D-D+1+R(D) \log D-\int_{1}^{D} R(t) d t / t
\end{aligned}
$$

Concerning the other summand, the Dirichlet hyperbola formula yields

$$
\begin{aligned}
\sum_{d_{1} d_{2} \leq D} \Lambda\left(d_{1}\right) \Lambda\left(d_{2}\right)= & 2 \sum_{d_{1} \leq \sqrt{D}} \Lambda\left(d_{1}\right) \psi\left(D / d_{1}\right)-\psi(\sqrt{D})^{2} \\
= & 2 D \sum_{d_{1} \leq \sqrt{D}} \frac{\Lambda\left(d_{1}\right)}{d_{1}}-D \\
& -2 \sqrt{D} R(\sqrt{D})-R(\sqrt{D})^{2}+2 \sum_{d_{1} \leq \sqrt{D}} \Lambda\left(d_{1}\right) R\left(D / d_{1}\right) \\
= & D \log D-2 D \gamma-D \\
& +2 D r(\sqrt{D})-2 \sqrt{D} R(\sqrt{D})-R(\sqrt{D})^{2}+2 R_{4}(D)
\end{aligned}
$$

We arrive at $R_{2}^{*}(D)=R_{3}(D)-1+2 R_{4}(D)-R(D) \log D+\int_{1}^{D} R(t) d t / t$, where

$$
\begin{equation*}
R_{3}(D)=2 \operatorname{Dr}(\sqrt{D})-2 \gamma\{D\}-2 \sqrt{D} R(\sqrt{D})-R(\sqrt{D})^{2} . \tag{6.2}
\end{equation*}
$$

The lemma follows readily.
Lemma 6.3. For the real number D satisfying $3 \leq D \leq 110000000$, we have

$$
\left|R_{2}^{*}(D)\right| \leq 1.80 \sqrt{D} \log D
$$

When $110000000 \leq D \leq 1800000000$, we have

$$
\left|R_{2}^{*}(D)\right| \leq 1.93 \sqrt{D} \log D
$$

We used a Pari/Gp script. The only non-obvious point is that we have precomputed the values of $\Lambda \star \Lambda-\Lambda \star \log$ on intervals of length $2 \cdot 10^{6}$. On letting this script run longer (about twenty days), I would most probably be able to show that the bound $\left|R_{2}^{*}(D)\right| \leq 2 \sqrt{D} \log D$ holds when $D \leq 10^{10}$. This would improve a bit on the final result.

Lemma 6.4.

$$
\int_{1}^{10^{8}} R(t) d t / t=-129.559+\mathcal{O}^{*}(0.01) .
$$

We used a Pari/Gp script as above, but the running time was much shorter.

Proof of Lemma 6.1. Assume that $D \geq 1.3 \cdot 10^{9}$. We start with Lemma 6.2. We bound $r(\sqrt{D})$ via Lemma 4.5 (this requires $D \geq 23^{2}$), then $R(\sqrt{D})$ by Lemma 4.4 (this requires $D \geq 32054^{2}$), and $R(D) \log D$ by using Lemma 4.2 (this requires $D \geq 1514928$). We bound R_{4} by appealing to Lemma 5.2. We conclude by appealing to Lemma 4.3. All of that amounts to the bound

$$
\begin{aligned}
\left|R_{2}^{*}(D)\right| \leq & \frac{4 \cdot 0.0067 D}{\log D}+0.006 D+(0.003)^{2} D+0.0065 D \\
& +0.0073 D+132+0.000213 D-0.000213 \cdot 10^{8}
\end{aligned}
$$

We arrive at

$$
\begin{equation*}
\left|R_{2}^{*}(D)\right| / D \leq 0.0213 \tag{6.3}
\end{equation*}
$$

when $D \geq 1.3 \cdot 10^{9}$. Thanks to Lemma 6.3, we extend this bound to $D \geq$ 1435319.
7. Estimating $M(D)$. We appeal to (3.4) and use the Dirichlet hyperbola formula. In this manner we get our starting equation:

$$
\begin{align*}
\sum_{d \leq D} \mu(d) \log ^{2} d= & 2 \gamma+\sum_{d \leq D / K} \mu(d) R_{2}^{*}(D / d) \tag{7.1}\\
& +\sum_{k \leq K} R_{2}^{*}(k) \sum_{D /(k+1)<d \leq D / k} \mu(d)
\end{align*}
$$

This equation is much more important than it looks since a bound for $R_{2}^{*}(k)$ that is $\ll k /(\log k)^{2}$ shows that the second sum converges. A more usual treatment would consist in writing

$$
\begin{aligned}
\sum_{d \leq D} \mu(d) \log ^{2} d= & 2 \gamma+\sum_{d \leq D / K} \mu(d) R_{2}^{*}(D / d) \\
& +\sum_{k \leq K}(\Lambda \star \Lambda-\Lambda \log +2 \gamma)(k) \sum_{D / K<d \leq D / k} \mu(d)
\end{aligned}
$$

as in [21] for instance. However, when we bound $M(D / k)-M(D /(k+1))$ roughly by $D /(k(k+1))$ in (7.1), we get $D \sum_{k \leq K}\left|R_{2}^{*}(k)\right| /(k(k+1))$, which is expected to be $\mathcal{O}(D)$. On bounding $M(D / k)-M(D / K)$ by D / k in the second expression, we only get $D \sum_{k \leq K}|\Lambda \star \Lambda-\Lambda \log -2 \gamma|(k) / k$, which is of size $D \log ^{2} K$. Practically, if we want to use a bound of the shape $|M(x)| \leq x / 4345$, we will loose the differentiating aspect and will bound $|M(D / k)-M(D /(k+1))|$ by $2 D /(4345 k)$ and not by $D /\left(4345 k^{2}\right)$. It is thus better to use differentiation-difference on the variable $R_{2}^{*}(k)$ when k is fairly small. It turns out that small is large enough! We write

$$
\begin{align*}
\sum_{k \leq K} & R_{2}^{*}(k)(M(D / k)-M(D /(k+1))) \tag{7.2}\\
& =\sum_{k \leq K}(\Lambda \star \Lambda-\Lambda \log +2 \gamma)(k) M(D / k)+R_{2}^{*}(K) M(D / K)
\end{align*}
$$

Lemma 7.1. When $K=462$ 848, we have

$$
\sum_{k \leq K} \frac{|\Lambda \star \Lambda-\Lambda \log +2 \gamma|(k)}{k}+\frac{\left|R_{2}^{*}(K)\right|}{K} \leq 0.03739 \times 4345
$$

We can use the simple bound (6.3) to get, for $D / K \geq 2160535$,

$$
\begin{aligned}
\left|\sum_{d \leq D} \mu(d) \log ^{2} d\right| / D & \leq \frac{2 \gamma}{D}+0.0213\left(\frac{6}{\pi^{2}} \log \frac{D}{K}+1.166\right)+0.03739 \\
& \leq 0.0130 \log D-0.144
\end{aligned}
$$

with $K=462848$. Note that this lower bound of K has been chosen to satisfy

$$
462848 \times 2160535 \leq 10^{12}
$$

Concerning the smaller values, we use summation by parts:

$$
\sum_{d \leq D} \mu(d) \log ^{2} d=\sum_{d \leq D} \mu(d) \log ^{2} D-2 \int_{1}^{D} \sum_{d \leq t} \mu(d) \frac{\log t d t}{t},
$$

which gives, when $33 \leq D \leq 10^{12}$,

$$
\begin{aligned}
\left|\sum_{d \leq D} \mu(d) \log ^{2} d\right| \leq & 0.571 \sqrt{D} \log ^{2} D+2\left|\int_{1}^{33} \sum_{d \leq t} \mu(d) \frac{\log t d t}{t}\right| \\
& +2 \cdot 0.571 \int_{33}^{D} \frac{\log t d t}{\sqrt{t}} \\
\leq & 0.571 \sqrt{D} \log ^{2} D+2.284 \sqrt{D} \log D+4.568 \sqrt{D}-43,
\end{aligned}
$$

and this is $\leq 0.0130 \log D-0.144$ when $D \geq 8613000$. We extend this bound to $D \geq 2161205$ by direct computations using Pari/Gp.

Let us state formally:
Lemma 7.2. For $D \geq 2161$ 205, we have

$$
\left|\sum_{d \leq D} \mu(d) \log ^{2} d\right| / D \leq 0.0130 \log D-0.144
$$

8. A general formula and proof of Theorem 1.1, Let $(f(n))$ be a sequence of complex numbers. We consider, for integer $k \geq 0$, the weighted summatory function

$$
\begin{equation*}
M_{k}(f, D)=\sum_{n \leq D} f(n) \log ^{k} n \tag{8.1}
\end{equation*}
$$

We want to derive information on $M_{0}(f, D)$ from information on $M_{k}(f, D)$. The traditional way to do that is in essence due to [14] and goes via a differential equation. It turns out that it is clearer and somewhat more precise to use the identity that follows.

Lemma 8.1. For $k \geq 0$ and $D \geq D_{0}$ we have

$$
M_{0}(f, D)=\frac{M_{k}(f, D)}{\log ^{k} D}+M_{0}\left(f, D_{0}\right)-\frac{M_{k}\left(f, D_{0}\right)}{\log ^{k} D_{0}}-k \int_{D_{0}}^{D} \frac{M_{k}(f, t)}{t \log ^{k+1} t} d t .
$$

This formula in a special case is also used in [21] and [10].
Proof. Indeed, we have

$$
k \int_{D_{0}}^{D} \frac{M_{k}(f, t)}{t \log ^{k+1} t} d t=-\frac{M_{k}\left(f, D_{0}\right)}{\log ^{k} D_{0}}+\sum_{n \leq D} f(n) \frac{\log ^{k} n}{\log ^{k} D}-\sum_{D_{0}<n \leq D} f(n)
$$

Proof of Theorem 1.1. In the notation of Lemma 8.1, we have $M(D)=$ $M_{0}(\mu, D)$. By Lemma 7.2 with $D_{0}=2161205$ we have

$$
\begin{aligned}
|M(D)| \leq & \frac{0.0130 \log D-0.144}{\log ^{2} D} D+M\left(D_{0}\right)-\frac{M_{2}\left(\mu, D_{0}\right)}{\log ^{2} D_{0}} \\
& +2 \int_{D_{0}}^{D} \frac{0.0130 \log t-0.144}{\log ^{3} t} d t \\
\leq & \frac{0.0130 \log D-0.144}{\log ^{2} D} D-3.48+2 \int_{D_{0}}^{D} \frac{0.0130 \log t-0.144}{\log ^{3} t} d t \\
\leq & \frac{0.0130 \log D-0.118}{\log ^{2} D} D-3.48 \\
& -0.0260 \frac{D_{0}}{\log ^{2} D_{0}}-\int_{D_{0}}^{D} \frac{0.236}{t \log ^{3} t} d t
\end{aligned}
$$

(We used Pari/Gp to compute the quantity $\left.M\left(D_{0}\right)-M_{2}\left(\mu, D_{0}\right) / \log ^{2} D_{0}\right)$. We conclude by direct verification, again relying on Pari/Gp.
9. From M to m. We take the following lemma from [11, (1.1)].

Lemma 9.1 (El Marraki). We have

$$
|m(D)| \leq \frac{|M(D)|}{D}+\frac{1}{D} \int_{1}^{D} \frac{|M(t)| d t}{t}+\frac{\log D}{D}
$$

This lemma may look trivial enough, but its teeth are hidden. Indeed, the usual summation by parts would bound $|m(D)|$ by an expression containing the integral of $|M(t)| / t^{2}$. An upper bound for $|M(t)|$ of the shape $c t / \log t$ would then result in the useless bound $m(D) \ll \log \log D$.

Proof of Lemma 9.1. We reproduce the proof, as it is short and the preprint we refer to is difficult to find. We have two equations, namely

$$
\begin{equation*}
m(D)=\frac{M(D)}{D}+\int_{1}^{D} \frac{M(t) d t}{t^{2}} \tag{9.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1}^{D}\left[\frac{D}{t}\right] \frac{M(t) d t}{t}=\log D \tag{9.2}
\end{equation*}
$$

We deduce from the above that

$$
m(D)=\frac{M(D)}{D}+\frac{1}{D} \int_{1}^{D}\left(\frac{D}{t}-\left[\frac{D}{t}\right]\right) \frac{M(t) d t}{t}+\frac{\log D}{D}
$$

The lemma follows readily.

Proof of Corollary 1.2. We have, when $D \geq D_{0}=1078853$,

$$
\begin{aligned}
|m(D)| \leq & \frac{0.0130 \log D-0.118}{(\log D)^{2}}+\frac{1}{D} \int_{D_{0}}^{D} \frac{0.0130 \log t-0.118}{(\log t)^{2}} d t \\
& +\frac{1}{D} \int_{1}^{D_{0}} \frac{|M(t)| d t}{t}+\frac{\log D}{D} \\
\leq & \frac{0.0130 \log D-0.118}{(\log D)^{2}}+\frac{1}{D} \int_{D_{0}}^{D} \frac{0.0130 d t}{\log t} \\
& -\frac{1}{D} \int_{D_{0}}^{D} \frac{0.118 d t}{(\log t)^{2}}+\frac{301+\log D}{D}
\end{aligned}
$$

We continue by an integration by parts and some numerical computations:

$$
\begin{aligned}
|m(D)| & \leq \frac{0.0260 \log D-0.118}{(\log D)^{2}}-\frac{0.105}{D} \int_{D_{0}}^{D} \frac{d t}{(\log t)^{2}}+\frac{-9795+\log D}{D} \\
& \leq \frac{0.0260 \log D-0.118}{(\log D)^{2}}-\frac{1}{D} \int_{D_{0}}^{D} \frac{d t}{t}+\frac{-9795+\log D}{D}
\end{aligned}
$$

This proves that $|m(D)|(\log D)^{2} \leq 0.0260 \log D-0.118$ as soon as $D \geq$ 1078853 . We extend this bound by direct inspection.

Acknowledgments. I thank Harald Helfgott for interesting discussions that pushed me into pulling this note out of the drawer, and François Dress for giving me the preprint [11]. This paper was mostly prepared when I was enjoying the hospitality of the Mathematical Sciences Institute in Chennai, and I thank this institution and my hosts Ramachandran Balasubramanian, Anirban Mukhopadhyay and Sanoli Gun for this opportunity to work in peace and comfort.

References

[1] H. Cohen et F. Dress, Estimations numériques du reste de la fonction sommatoire relative aux entiers sans facteur carré, in: Colloque de théorie analytique des nombres (Marseille, 1985), Publ. Math. Orsay 88-02 (1988), 73-76.
[2] H. Cohen, F. Dress, and M. El Marraki, Explicit estimates for summatory functions linked to the Möbius μ-function, preprint (96-7), Univ. Bordeaux 1, 1996.
[3] H. Cohen, F. Dress, and M. El Marraki, Explicit estimates for summatory functions linked to the Möbius μ-function, Funct. Approx. Comment. Math. 37 (2007), 51-63.
[4] N. Costa Pereira, Elementary estimates for the Chebyshev function $\psi(X)$ and for the Möbius function $M(X)$, Acta Arith. 52 (1989), 307-337.
[5] F. Dress, Théorèmes d'oscillations et fonction de Möbius, Sémin. Théor. Nombres, Univ. Bordeaux I, Exp. No 33:33pp, 1983/84; http://resolver.sub.uni-goettingen.de/ purl?GDZPPN002545454
[6] F. Dress, Fonction sommatoire de la fonction de Möbius I. Majorations expérimentales, Experiment. Math. 2 (1993), 89-98.
[7] F. Dress et M. El Marraki, Fonction sommatoire de la fonction de Möbius II. Majorations asymptotiques élémentaires, Experiment. Math. 2 (1993), 99-112.
[8] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, PhD thesis, Limoges, http://www.unilim.fr/laco/theses/1998/T1998_01.pdf, 1998, 173 pp.
[9] P. Dusart, Inégalités explicites pour $\psi(x), \theta(x), \pi(x)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Canada 21 (1999), 53-59.
[10] M. El Marraki, Fonction sommatoire de la fonction μ de Möbius III, majorations asymptotiques effectives fortes, J. Théor. Nombres Bordeaux 7 (1995), 407-433.
[11] M. El Marraki, Majorations de la fonction sommatoire de la fonction $\mu(n) / n$, preprint (96-8), Univ. Bordeaux 1, 1996.
[12] A. Kienast, Über die Äquivalenz zweier Ergebnisse der analytischen Zahlentheorie, Math. Ann. 95 (1926), 427-445.
[13] E. Landau, Über einige neuere Grenzwertsätze, Rend. Circ. Mat. Palermo 34 (1912), 121-131.
[14] B. V. Levin and A. S. Fainleib, Application of some integral equations to problems of number theory, Russian Math. Surveys 22 (1967), 119-204.
[15] The PARI Group, Bordeaux, PARI/GP, version 2.5.2, 2011, http://pari.math.ubordeaux.fr/.
[16] O. Ramaré, Explicit estimates: from $\Lambda(n)$ to $\Lambda(n) / n$, Math. Comp., to appear.
[17] O. Ramaré and R. Rumely, Primes in arithmetic progressions, Math. Comp. 65 (1996), 397-425.
[18] J. B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211-232.
[19] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[20] J. B. Rosser and L. Schoenfeld, Sharper bounds for the Chebyshev functions $\vartheta(x)$ and $\psi(x)$, Math. Comp. 29 (1975), 243-269.
[21] L. Schoenfeld, An improved estimate for the summatory function of the Möbius function, Acta Arith. 15 (1969), 221-233.
[22] L. Schoenfeld, Sharper bounds for the Chebyshev functions $\vartheta(x)$ and $\psi(x)$. II, Math. Comp. 30 (1976), 337-360.
[23] W. B. Zhang, A generalization of Halász's theorem to Beurling's generalized integers and its application, Illinois J. Math. 31 (1987), 645-664.

Olivier Ramaré
CNRS, Laboratoire Paul Painlevé
Université Lille 1
59655 Villeneuve d'Ascq, France
E-mail: ramare@math.univ-lille1.fr

[^0]: 2010 Mathematics Subject Classification: Primary 11N37, 11Y35; Secondary 11A25. Key words and phrases: explicit estimates, Möbius function.

