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1. Introduction. Let cq(n) be the Ramanujan sum [1, p. 160] defined
by

cq(n) =

q∑
h=1

(h,q)=1

e2πihn/q =
∑
d|(q,n)

dµ

(
q

d

)
,

where µ(n) is the Möbius function. We recall a well-known identity [9, p. 10]
∞∑
q=1

cq(n)

qs
=
σ1−s(n)

ζ(s)
(Re s > 1)

with σ1−s(n) =
∑

d|n d
1−s and the Riemann zeta function ζ(s) =

∑∞
n=1 n

−s.

Recently, T. H. Chan and A. V. Kumchev [2] studied a new type of sums,

Ck(x, y) =
∑
n≤y

(∑
q≤x

cq(n)
)k

(k = 1, 2)(1.1)

for any sufficiently large positive numbers x and y. They showed

(1.2) C1(x, y) = y − x2

4ζ(2)
+O(xy1/3 log x+ x3/y)

for y ≥ x,

(1.3) C2(x, y) =
yx2

2ζ(2)
+O(x4 + xy log x)

for y ≥ x2(log x)B (B > 0), and

(1.4) C2(x, y) =
yx2

2ζ(2)
(1 + 2κ(u)) +O

(
yx2(log x)10

(
1√
x

+

(
x

y

)1/2))
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for x ≤ y ≤ x2(log x)B (B > 0) and u = log(yx−2). Here κ(u) is given by

1

2π

∞�

−∞

ζ(1− it)
ζ(1 + it)

1

(1 + it)2(1− it)
e−itu dt.

Their work stems from their unpublished paper concerned with Diophantine
approximation of reals by sums of rational numbers. In the present paper, as
a problem on arithmetical functions, we shall consider a certain sum which
is a modification of (1.1).

Let ĉq(n) be the arithmetical function defined by

ĉq(n) =
∑
d|(n,q)

d

∣∣∣∣µ(qd
)∣∣∣∣.(1.5)

This can be regarded as a modification of the Ramanujan sum and also as a
restricted divisor function (a sum over modified square-free divisors). Note
that the Dirichlet series with the coefficients ĉq(n) is given by

∞∑
q=1

ĉq(n)

qs
= σ1−s(n)

ζ(s)

ζ(2s)
(1.6)

for Re s > 1. Following [2], we let

Dk(x, y) =
∑
n≤y

(∑
q≤x

ĉq(n)
)k

(k = 1, 2).(1.7)

The purpose of this paper is to obtain formulas for Dk(x, y) analogous to
(1.2)–(1.4).

In the case k = 1, we have the following theorem:

Theorem 1.1. Let x and y be large real numbers such that y ≥ x, and
let ε(x) = (log x)3/5(log log x)−1/5. Then

D1(x, y) =
1

ζ(2)
xy log x+

1

ζ(2)

(
2γ − 1− 2ζ ′(2)

ζ(2)

)
xy − ζ(2)

4ζ(4)
x2

+O(x1/2y exp(−Cε(x)) + xy1/3 log x+ x3/y),

where γ is the Euler constant and C is a certain positive constant.

In the case k = 2, we have two types of formulas. To state the first
formula, define a polynomial P (u) by

P (u) =
1

3ζ3(2)
u3 + C1u

2 + C2u,(1.8)
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where

C1 =
1

ζ3(2)

(
3γ − 1− 3ζ ′(2)

ζ(2)

)
,(1.9)

C2 =
1

ζ3(2)

{
2γ1 + 8γ2 − 6γ

(
1 +

3ζ ′(2)

ζ(2)

)
(1.10)

+ 1 +
6ζ ′(2)

ζ(2)
+

10(ζ ′(2))2

ζ2(2)
− ζ ′′(2)

ζ(2)

}
,

where γ1 is the coefficient of s−1 in the Laurent expansion of ζ(s) at s = 1:

ζ(s) =
1

s− 1
+ γ + γ1(s− 1) + · · · .

In fact, these values are determined by

C1 =
A1 +A2

ζ2(2)
, C2 =

A2
1 + 2A1A2

ζ(2)
− 2A3

ζ2(2)
,(1.11)

where A1, A2 and A3 are constants defined by (2.1), (2.7) and (2.8) below,
respectively.

Theorem 1.2. Let the notation be as above. Then for large real numbers
x and y, we have

D2(x, y) = x2yP (log x) +O(x2y + x4).(1.12)

This (1.12) gives an asymptotic formula for D2(x, y) when y � x2/log3 x.

For the second formula, we introduce another polynomial Q(u) by

Q(u) = − 1

6ζ3(2)
u3 + C3u

2 + C4u+ C5,(1.13)

where

C3 =
1

2ζ3(2)

(
−2γ + 1 +

4ζ ′(2)

ζ(2)

)
(1.14)

C4 = − 2

ζ3(2)

{
2γ1 − γ

(
1 +

4ζ ′(2)

ζ(2)

)
(1.15)

+ 1 +
2ζ ′(2)

ζ(2)
+

6(ζ ′(2))2

ζ2(2)
− 2ζ ′′(2)

ζ(2)

}
and C5 is a certain constant.

Under this notation we have

Theorem 1.3. Let x and y be large real numbers such that y � xM for
some constant M . Then
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(1.16) D2(x, y) = x2yP (log x) + x2yQ

(
log

x2

y

)
+O

(
x2y

(
(x−3/8 + y−1/2) log10 x+

(
x

y

)1/2

log4 x+

(
y

x2

)1/2

log2 x

))
,

where the implied constant depends on M .

This gives an asymptotic formula for D2(x, y) when x log2 x � y �
x2 log2 x.

These theorems are proved in the same way as in [2]. The change in
the definition of the Ramanujan sum cq(n) causes a little complication in
the behaviour of Dk(x, y). However this may be of arithmetical interest,
especially in connection with modified square-free numbers.

Remarks. (i) In Theorems 1.2 and 1.3, the asymptotic behaviour is
obtained only for y � x log2 x. It is an interesting problem to investigate
the asymptotic behaviour e.g. for y � x log2 x.

(ii) In the proof of Theorem 1.3 (see Section 5), we will observe by direct
calculation that the first three terms containing x2y logj x (j = 3, 2, 1) are
the same as those of Theorem 1.2. If we ignore the error term O(x4) of
Theorem 1.2, this is easily derived by considering the asymptotic behaviour
of these two theorems with the special choice y = x2/log4 x. Unfortunately
we cannot deduce it from the present error terms, but this observation may
suggest that the error term O(x4) in Theorem 1.2 could be smaller.

The identity (1.6) leads to problems similar to those above. Let cq(n; l)
be the qth coefficient of the Dirichlet series

σ1−s(n)
ζ(s)

ζ(ls)
=

∞∑
q=1

cq(n; l)

qs
(Re s > 1).

The function cq(n; l) can be regarded as a sum over modified l-free numbers.
We shall write

Uk(x, y) =
∑
n≤y

(∑
q≤x

cq(n; l)
)k
.

Moreover, let c̃q(n) be the qth coefficient of the series

σ1−s(n)
ζ(2s)ζ(3s)

ζ(6s)
=

∞∑
q=1

c̃q(n)

qs
(Re s > 1/2),

which can be regarded as a sum over modified square-full numbers. Similarly
we write

Vk(x, y) =
∑
n≤y

(∑
q≤x

c̃q(n)
)k
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for any positive integer k. The method of the proofs of Theorems 1.1–1.3
may be applied to studying Uk(x, y) and Vk(x, y) (k = 1, 2), which will be
done elsewhere.

2. Some lemmas. In order to prove our theorems, we prepare several
lemmas.

Lemma 2.1. Let ω(m) be the number of distinct prime divisors of a
positive integer m, and ε(x) = (log x)3/5(log log x)−1/5 as in Theorem 1.1.
For x ≥ 1, we have∑

m≤x
2ω(m) =

1

ζ(2)
x log x+A1x+O(x1/2 exp(−Cε(x))),

where C > 0 is a positive constant and

(2.1) A1 =
1

ζ(2)

(
2γ − 1− 2

ζ ′(2)

ζ(2)

)
.

See A. Ivić [7, p. 394]. It is easy to see that A1 is indeed given explicitly
by (2.1), though this form is not given in [7].

In the proof of Theorem 1.1, we need an upper bound on the sum∑
n∈I ψ(y/n), where ψ(x) = x− [x]−1/2 denotes the first periodic Bernoulli

function. This kind of sum is estimated effectively by exponent pairs. Roughly
speaking, an exponent pair (κ, λ) is a pair of numbers 0 ≤ κ ≤ 1/2 ≤ λ ≤ 1
such that ∑

n∈I
e2πif(n) � AκNλ,

where I ⊂ (N, 2N ] and A� |f ′(u)| � A for u ∈ I. For the precise definition
and properties, the reader should consult S. W. Graham and G. Kolesnik
[5] and [7]. Now applying [5, Lemma 4.3] with f(n) = y/n, we have

Lemma 2.2. Let (κ, λ) be an exponent pair. If I is a subinterval of
(N, 2N ], then ∑

n∈I
ψ

(
y

n

)
� y

κ
κ+1N

λ−κ
κ+1 +N2y−1.

In particular, if we take (κ, λ) = (1/2, 1/2), we get∑
n∈I

ψ

(
y

n

)
� y1/3 +N2y−1.(2.2)

Lemma 2.3. Let q be a non-negative integer. For y ≥ 1, we have

(2.3)
∑
n≤y

logq n

n
=

1

q + 1
logq+1 y − logq y

y
ψ(y) + C(q) +O

(
logq(y + 1)

y2

)
,

where C(q) is the constant given by
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C(q) =
δq
2

+

∞�

1

q logq−1 t− logq t

t2
ψ(t) dt

with δ0 = 1 and δq = 0 for q ≥ 1, and in particular C(0) = γ and C(1)
= −γ1.

This lemma is derived immediately by applying the Euler–Maclaurin
summation formula (see also [3]).

Lemma 2.4. Let φ(n) be the Euler totient function and define

F (x) =
∑
n≤x

µ(n)

n
ψ

(
x

n

)
.

For x ≥ 2, we have∑
n≤x

φ(n)

n2
=

1

ζ(2)
log x+A2 −

1

x
F (x) +O

(
1

x

)
,(2.4)

∑
n≤x

φ(n) log n

n2
=

1

2ζ(2)
log2 x+A3 −

log x

x
F (x) +O

(
log x

x

)
,(2.5)

∑
n≤x

φ(n) log2 n

n2
=

1

3ζ(2)
log3 x+A4 −

log2 x

x
F (x) +O

(
log2 x

x

)
,(2.6)

where the constants Aj (j = 2, 3, 4) are given by

A2 =
γ

ζ(2)
−
∞∑
n=1

µ(n) log n

n2
=

γ

ζ(2)
− ζ ′(2)

ζ2(2)
,(2.7)

A3 =
C(1)

ζ(2)
+ γ

∞∑
n=1

µ(n) log n

n2
− 1

2

∞∑
n=1

µ(n) log2 n

n2
(2.8)

= − γ1
ζ(2)

+ γ
ζ ′(2)

ζ2(2)
+

1

2

ζ ′′(2)

ζ2(2)
− (ζ ′(2))2

ζ3(2)
,

A4 =
C(2)

ζ(2)
+ 2C(1)

∞∑
n=1

µ(n) log n

n2
+ γ

∞∑
n=1

µ(n) log2 n

n2

− 1

3

∞∑
n=1

µ(n) log3 n

n2
.

Proof. We shall give a proof of (2.5) only, since (2.4) and (2.6) are sim-
ilar. Using the well-known formula φ(n) = n

∑
d|n µ(d)/d and changing the

order of summation, we obtain

S :=
∑
n≤x

φ(n) log n

n2
=
∑
d≤x

µ(d)

d2

∑
n≤x/d

log dn

n
.
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For the sum over n we apply (2.3) with q = 0, 1 to get

(2.9) S =
∑
d≤x

µ(d)

d2

{
log d

(
log

x

d
+ γ − d

x
ψ

(
x

d

)
+O

(
d2

x2

))

+
1

2
log2

x

d
+ C(1)− d

x
ψ

(
x

d

)
log

x

d
+O

(
d2

x2
log

(
x

d
+ 1

))}
=

1

2

(∑
d≤x

µ(d)

d2

)
log2 x− 1

2

∑
d≤x

µ(d) log2 d

d2
+ γ

∑
d≤x

µ(d) log d

d2

+ C(1)
∑
d≤x

µ(d)

d2
− log x

x
F (x)

+O

(
1

x2

∑
d≤x

log d

)
+O

(
1

x2

∑
d≤x

log

(
x

d
+ 1

))
.

From the prime number theorem we observe that∑
d≤x

µ(d) logj d

d2
=

∞∑
d=1

µ(d) logj d

d2
+O

(
x−1 exp(−c

√
log x)

)
for j = 0, 1, 2. Substituting this into (2.9) we get (2.5).

Lemma 2.5. If σ0 > max(0, σa) and x, T > 0, then∑′

n≤x
an =

1

2πi

σ0+iT�

σ0−iT
α(s)

xs

s
ds+R,

where

R�
∑

x/2<n<2x
n6=x

|an|min

(
1,

x

T |x− n|

)
+

4σ0 + xσ0

T

∞∑
n=1

|an|
nσ0

,

and
∑′ indicates that the last term is to be halved if x is an integer.

This is the famous Perron formula (see H. L. Montgomery and R. C.
Vaughan [8, Theorem 5.2 and Corollary 5.3]).

Lemma 2.6 ([2, (4.12)]). Let

G(s1, s2; y) =
∑
n≤y

σ1−s1(n)σ1−s2(n)(2.10)

and L = log y. Then

G(s1, s2, y) =

4∑
j=1

Rj(s1, s2, y) +O(L6(y1/2 + y/T )),(2.11)
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where

R1(s1, s2, y) = y
ζ(s1)ζ(s2)ζ(s1 + s2 − 1)

ζ(s1 + s2)
,

R2(s1, s2, y) = y2−s1
ζ(2− s1)ζ(1− s1 + s2)ζ(s2)

(2− s1)ζ(2− s1 + s2)
,

R3(s1, s2, y) = y2−s2
ζ(2− s2)ζ(1 + s1 − s2)ζ(s1)

(2− s2)ζ(2 + s1 − s2)
,

R4(s1, s2, y) = y3−s1−s2
ζ(3− s1 − s2)ζ(2− s2)ζ(2− s1)

(3− s1 − s2)ζ(4− s1 − s2)
.

3. Proof of Theorem 1.1. From (1.5) and (1.7), we have

D1(x, y) =
∑
n≤y

∑
q≤x

ĉq(n) =
∑
n≤y

∑
q≤x

∑
d|q
d|n

d

∣∣∣∣µ(qd
)∣∣∣∣ =

∑
n≤y

∑
dk≤x
d|n

d|µ(k)|.

Changing the order of summation, we find that

D1(x, y) =
∑
dk≤x

d|µ(k)|
∑
n≤y
d|n

1 =
∑
dk≤x

d|µ(k)|
[
y

d

]
(3.1)

= y
∑
dk≤x

|µ(k)| − 1

2

∑
dk≤x

d|µ(k)| −
∑
dk≤x

d|µ(k)|ψ
(
y

d

)
=: D1,1(x, y)−D1,2(x, y)−D1,3(x, y).

For the first term, we apply Lemma 2.1 to get

D1,1(x, y) = y
∑
dk≤x

|µ(k)| = y
∑
m≤x

∑
k|m

|µ(k)| = y
∑
m≤x

2ω(m)(3.2)

= y

(
1

ζ(2)
x log x+A1x+O(x1/2 exp(−Cε(x)))

)
.

Furthermore,

D1,2(x, y) =
1

2

∑
dk≤x

d|µ(k)| = 1

2

∑
k≤x
|µ(k)|

∑
d≤x/k

d(3.3)

=
1

2

∑
k≤x
|µ(k)|

(
x2

2k2
+O

(
x

k

))
=

1

4
x2
∑
k≤x

|µ(k)|
k2

+O(x log x) =
ζ(2)

4ζ(4)
x2 +O(x log x).
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To estimate D1,3(x, y) we use the theory of exponent pairs. Let Nj = Nj,k =
(x/k)2−j . Then

D1,3(x, y) =
∑
k≤x
|µ(k)|

∑
d≤x/k

dψ

(
y

d

)

�
∑
k≤x
|µ(k)|

∞∑
j=0

Nj sup
I

∣∣∣∣∑
d∈I

ψ

(
y

d

)∣∣∣∣,
where the sup is over all subintervals I of (Nj , 2Nj ]. From (2.2) we have

D1,3(x, y)�
∑
k≤x
|µ(k)|

∞∑
j=0

{Njy
1/3 +N3

j y
−1}(3.4)

�
∑
k≤x
|µ(k)|

{(
x

k

)
y1/3 +

(
x

k

)3

y−1
}

�
∑
k≤x

|µ(k)|
k
· xy1/3 +

∑
k≤x

|µ(k)|
k3

· x3y−1

� xy1/3 log x+ x3y−1.

Substituting (3.2)–(3.4) in (3.1), we get the assertion of Theorem 1.1.

4. Proof of Theorem 1.2. We follow the method of Chan and Kum-
chev [2]. From (1.5), we have

D2(x, y) =
∑
n≤y

(∑
q≤x

ĉq(n)
)2

=
∑
n≤y

( ∑
dk≤x
d|n

d|µ(k)|
)2

=
∑

d1k1≤x
d1|µ(k1)|

∑
d2k2≤x

d2|µ(k2)|
∑
n≤y

d1|n, d2|n

1.

The sum over n can be written as∑
n≤y

d1|n, d2|n

1 =
∑

[d1,d2]m≤y

1 =
∑

m≤y/[d1,d2]

1 =

[
y

[d1, d2]

]
,

where [d1, d2] denotes the least common multiple of d1 and d2. Hence

D2(x, y) =
∑

d1k1≤x

∑
d2k2≤x

d1d2|µ(k1)| |µ(k2)|
[

y

[d1, d2]

]
(4.1)

= y
∑

d1k1≤x

∑
d2k2≤x

(d1, d2)|µ(k1)| |µ(k2)|+O(E),
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where

E =
∑

d1k1≤x

∑
d2k2≤x

d1d2|µ(k1)| |µ(k2)|

�
∑
d1≤x

d1

[
x

d1

] ∑
d2≤x

d2

[
x

d2

]
� x2 · x2 = x4.

Now we shall evaluate the main term of (4.1):∑
d1k1≤x

∑
d2k2≤x

(d1, d2)|µ(k1)| |µ(k2)|

=
∑
d≤x

d
∑∑

dl1k1≤x, dl2k2≤x
(l1,l2)=1

|µ(k1)| |µ(k2)|

=
∑
d≤x

d
∑

dl1k1≤x

∑
dl2k2≤x

|µ(k1)| |µ(k2)|
∑

l|(l1,l2)

µ(l)

=
∑
dl≤x

dµ(l)
( ∑
mk≤x/(dl)

|µ(k)|
)2

=
∑
dl≤x

dµ(l)
( ∑
n≤x/(dl)

∑
k|n

|µ(k)|
)2
.

By Lemma 2.1, for large x,

(4.2)
( ∑
n≤x/(dl)

∑
k|n

|µ(k)|
)2

=
( ∑
n≤x/(dl)

2ω(n)
)2

=
1

ζ2(2)

x2

d2l2
log2

x

dl
+

2A1

ζ(2)

x2

d2l2
log

x

dl
+A2

1

x2

d2l2
+O

((
x

dl

)3/2)
=
x2 log2 x

ζ2(2)

1

d2l2
− 2x2 log x

ζ2(2)

log dl

d2l2
+

x2

ζ2(2)

log2 dl

d2l2
+

2A1x
2 log x

ζ(2)

1

d2l2

− 2A1x
2

ζ(2)

log dl

d2l2
+A2

1x
2 1

d2l2
+O

((
x

dl

)3/2)
=

{
x2 log2 x

ζ2(2)
+

2A1x
2 log x

ζ(2)
+A2

1x
2

}
1

d2l2
−
{

2x2 log x

ζ2(2)
+

2A1x
2

ζ(2)

}
log dl

d2l2

+
x2

ζ2(2)

log2 dl

d2l2
+O

((
x

dl

)3/2)
.

Write G(x, dl) for the first three terms of the right hand side of (4.2). Since∑
dl≤x

dµ(l) · logj dl

d2l2
=
∑
n≤x

φ(n) logj n

n2
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we can apply Lemma 2.4 to get

(4.3)
∑
dl≤x

dµ(l)G(x, dl)

=
x2 log3 x

3ζ3(2)
+
A1 +A2

ζ2(2)
x2 log2 x+

(
A2

1 + 2A1A2

ζ(2)
− 2A3

ζ2(2)

)
x2 log x

+

(
A2

1A2 −
2A1A3

ζ(2)
+

A4

ζ2(2)

)
x2 −A2

1xF (x) +O(x log2 x).

Since F (x)� log x trivially, xF (x) is included in the last error term.

On the other hand, the contribution from the error term of (4.2) is
bounded above by ∑

dl≤x
d

(
x

dl

)3/2

� x3/2
∑
n≤x

σ(n)

n3/2
� x2.

Hence the terms lower than x2 in (4.3) are absorbed in the error. Thus using
(1.8)–(1.11), we finally obtain

D2(x, y) = x2yP (log x) +O(x2y + x4).

This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3. In this section we assume 1 ≤ y ≤ xM for
some constant M . Without loss of generality we can assume x, y ∈ Z+ 1/2.
We apply Lemma 2.5 with

α(s) =
∞∑
q=1

ĉq(n)

qs
= σ1−s(n)

ζ(s)

ζ(2s)
.

Then we have, for xε � T � x,

∑
q≤x

ĉq(n) =
1

2πi

α+iT�

α−iT
σ1−s(n)

ζ(s)

ζ(2s)

xs

s
ds+ E1(x, n)(5.1)

with α ≥ 1 + 1/log x, where E1(x, n) is the error term given by

E1(x, n)�
∑

x/2<q<2x

|ĉq(n)|min

(
1,

x

T |x− q|

)
+
xα

T

∞∑
q=1

|ĉq(n)|
qα

.

It is easy to see that

E1(x, n)� x

T
σ0(n) log x.
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Let αj = 1 + j/log x (j = 1, 2). Applying (5.1) with α = αj we get(∑
q≤x

ĉq(n)
)2

=
1

(2πi)2

α1+iT�

α1−iT

α2+iT�

α2−iT
F (s1, s2, n) ds2 ds1 + E2(x, n),(5.2)

where

F (s1, s2, n) = σ1−s1(n)σ1−s2(n)
ζ(s1)ζ(s2)

ζ(2s1)ζ(2s2)

xs1+s2

s1s2

and

E2(x, n) = E1(x, n)

(
1

2πi

α1+iT�

α1−iT
σ1−s1(n)

ζ(s1)

ζ(2s1)

xs1

s1
ds1

+
1

2πi

α2+iT�

α2−iT
σ1−s2(n)

ζ(s2)

ζ(2s2)

xs2

s2
ds2 + E1(x, n)

)
.

We can see easily that

E2(x, n)� x2

T
σ0(n)2 log3 x.

Summing (5.2) over n and using the estimate∑
n≤y

σ0(n)2 � y log3 y,

we get

D2(x, y) =
1

(2πi)2

α1+iT�

α1−iT

α2+iT�

α2−iT
G(s1, s2, y)

ζ(s1)ζ(s2)

ζ(2s1)ζ(2s2)

xs1+s2

s1s2
ds2 ds1(5.3)

+O(x2yL6/T ).

where G(s1, s2; y) is defined by (2.10) and L = log x. Here we note that
log y ≤M log x by the assumption.

Now we shall evaluate the integral of (5.3). Substituting (2.11) in (5.3),
we obtain

D2(x, y) =
4∑
j=1

D2,j(x, y) +O(yx2L10(y−1/2 + 1/T )),(5.4)

where

D2,j(x, y) =
1

(2πi)2

α1+iT�

α1−iT

α2+iT�

α2−iT
Rj(s1, s2, y)

ζ(s1)ζ(s2)

ζ(2s1)ζ(2s2)

xs1+s2

s1s2
ds2 ds1

with α1 = 1 + 1/log x and α2 = 1 + 2/log x.
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First we deal with D2,1(x, y). From the definition of R1(s1, s2, y), we get

D2,1(x, y) =
y

(2πi)2

α1+iT�

α1−iT

α2+iT�

α2−iT

ζ2(s1)ζ
2(s2)ζ(s1 + s2 − 1)

ζ(s1 + s2)ζ(2s1)ζ(2s2)

xs1+s2

s1s2
ds2 ds1.

(5.5)

As in [2], let Γ (α, β, T ) denote the contour consisting of the line segments
[α−iT, β−iT ], [β−iT, β+iT ] and [β+iT, α+iT ]. In (5.5), we move the line
of integration with respect to s2 to Γ (α2, 1/2, T ). We denote the integrals
over the horizontal line segments by J1,1 and J1,3, and the integral over the
vertical line segment by J1,2. Then

J1,1, J1,3

� xy

T

T�

−T

|ζ2(α1 + it1)|
1 + |t1|

dt1

α2�

1/2

|ζ2(σ2 + iT )ζ(α1 + σ2 − 1 + i(t1 + T ))|xσ2
|ζ(2σ2 + 2iT )|

dσ2

� xyL4

T

T�

−T

|ζ2(α1 + it1)|
1 + |t1|

dt1

α2�

1/2

T
2
3
(1−σ2)T

1
3
(1−σ2−1/log x)xσ2 dσ2

� xyL5

T
(x+ x1/2T 1/2)� yx2

L5

T
,

where we have used the estimate
	T
1 |ζ(α1 + it)|2 dt� T .

For the integral along the vertical line we have

J1,2 � yx3/2
T�

−T

T�

−T

|ζ2(α1 + it1)ζ
2(1/2 + it2)ζ(α1 − 1/2 + i(t1 + t2))|

|ζ(1 + 2it2)|(1 + |t1|)(1 + |t2|)
dt1 dt2

� yx3/2L3
T�

−T

T�

−T

|ζ2(1/2 + it2)ζ(α1 − 1/2 + i(t1 + t2))|
(1 + |t1|)(1 + |t2|)

dt1 dt2

� yx3/2L3
2T�

−2T

∣∣∣∣ζ(1

2
+

1

log x
+ iu

)∣∣∣∣ T�
−T

|ζ2(1/2 + it)|
(1 + |t|)(1 + |t− u|)

dt du

� yx3/2L3
2T�

2

∣∣∣∣ζ(1

2
+

1

log x
+ iu

)∣∣∣∣ T�
−T

|ζ2(1/2 + it)|
(1 + |t|)(1 + |t− u|)

dt du.

Here we note that

T�

−T

|ζ2(1/2 + it)|
(1 + |t|)(1 + |t− u|)

dt =
�

|t−u|> 1
2
|u|

+
�

|t−u|≤ 1
2
|u|

� L

1 + |u|
+
|u|δ

1 + |u|
,
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where δ is a positive number such that

X�

0

|ζ2(1/2 + it)| dt = cX logX + c′X +O(Xδ).

Hence,

J1,2 � yx3/2L4
2T�

−2T

∣∣∣∣ζ(1

2
+

1

log x
+ iu

)∣∣∣∣ |u|δ1 + |u|
du� yx3/2T δL5.

For simplicity, we take δ = 1/3 in what follows.

It remains to evaluate the residues of the poles of the integrand when
we move the line of integration to Γ (α2, 1/2, T ). There is a simple pole at
s2 = 2− s1 with residue

ζ2(s1)ζ
2(2− s1)x2

ζ(2)ζ(2s1)ζ(4− 2s1)s1(2− s1)
=: H1(s1)x

2,

and a double pole at s2 = 1 with residue

ζ2(s1)

ζ(2s1)

xs1+1

s1

{
ζ(s1)

ζ(s1 + 1)

(
log x

ζ(2)
+A1

)
+

1

ζ(2)

(
ζ ′(s1)

ζ(s1 + 1)
− ζ(s1)ζ

′(s1 + 1)

ζ2(s1 + 1)

)}
=: xs1+1{H2(s1) log x+H3(s1)},

where A1 is defined by (2.1). The contributions to D2,1(x, y) from these
residues are

x2y

2πi

α1+iT�

α1−iT
H1(s1) ds1 +

xy log x

2πi

α1+iT�

α1−iT
H2(s1)x

s1 ds1

+
xy

2πi

α1+iT�

α1−iT
H3(s1)x

s1 ds1 =: I1 + I2 + I3,

say.

For I1, moving the line of integration to Γ (α1, 5/4, T ), we get

I1 =
x2y

2πi

5/4+i∞�

5/4−i∞

H1(s1) ds1 +O

(
x2y

∞�

T

∣∣∣∣H1

(
5

4
+ it1

)∣∣∣∣ dt1)
+O(x2yL4T−11/6)

= cx2y +O(x2y/T ),
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where we have set

c =
1

2πi

5/4+i∞�

5/4−i∞

H1(s1) ds1.

For I2, we move the line of integration to Γ (α1, 1/2, T ). The integrals
over the horizontal lines are

� xyL5
α1�

1/2

T 1−σ1T−1xσ1 dσ1 � xyL5

(
x

T
+

(
x

T

)1/2)
,

and the integral over the vertical line is

� xyL2
T�

−T

|ζ(1/2 + it1)|3

1 + |t1|
x1/2 dt1 � x3/2yL6,

where we have used the well-known estimate
	T
0 |ζ(1/2 + it)|3 dt� T log3 T .

Furthermore, when moving the line of integration we encounter a triple pole
at s1 = 1. Hence by Cauchy’s theorem we get

I2 = x2y log xP1(log x) +O

(
xyL5

(
x

T
+

(
x

T

)1/2))
+O(x3/2yL6),

where P1(u) is a polynomial in u of degree 2. By direct computation we find
that

(5.6) P1(u) = a1u
2 + a2u+ a3

with

a1 =
1

2ζ3(2)
, a2 =

1

ζ3(2)

(
3γ − 1− 3ζ ′(2)

ζ(2)

)
,(5.7)

(5.8) a3 =
1

ζ3(2)

{
3(γ1 + γ2)− 3γ

(
1 +

3ζ ′(2)

ζ(2)

)
+ 1 +

3ζ ′(2)

ζ(2)
− 5ζ ′′(2)

2ζ(2)
+

7(ζ ′(2))2

ζ2(2)

}
.

In the same way as for I2, we find that there exists a polynomial P2(t)
in t of degree 3 such that

I3 = x2yP2(log x) +O

(
xyL6

(
x

T
+

(
x

T

)1/2))
+O(x3/2yL6).

Here we have used the mean square estimate
	T
0 |ζ

′(1/2 + it)|2 dt� T log3 T

due to A. E. Ingham [6], and the bound ζ ′(σ + it) � |t|
1
3
(1−σ) log3 |t| for

1/2 ≤ σ ≤ 1 (see S. M. Gonek [4]). In this case we find that

(5.9) P2(u) = b1u
3 + b2u

2 + b3u+ b4
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with

(5.10) b1 = − 1

6ζ3(2)
, b2 = 0,

b3 = − γ1
ζ3(2)

+
5γ2

ζ3(2)
− 3γ

ζ3(2)

(
1 +

3ζ ′(2)

ζ(2)

)
(5.11)

+
1

ζ4(2)

(
3ζ ′(2) +

3(ζ ′(2))2

ζ(2)
+

3ζ ′′(2)

2

)
.

From (5.6)–(5.11), (1.9) and (1.10) we find that

a2 + b2 = a2 = C1 and a3 + b3 = C2,

hence

uP1(u) + P2(u) = P (u) + b4,

where P (u) is the polynomial defined by (1.8). The constant term b4 can
also be computed explicitly. Combining these results we get

D2,1(x, y) = x2y
(
P (log x) + b4 + c

)
(5.12)

+O(x2yL6/T ) +O(x3/2yT 1/3L5).

Next we consider the term D2,4(x, y). It is given explicitly by

D2,4(x, y) =
y3

(2πi)2

α1+iT�

α1−iT

α2+iT�

α2−iT

ζ(3− s1 − s2)ζ(2− s1)ζ(2− s2)ζ(s1)ζ(s2)

ζ(4− s1 − s2)ζ(2s1)ζ(2s2)(3− s1 − s2)

× (x/y)s1+s2

s1s2
ds2 ds1.

We move the line of integration with respect to s2 to Γ (α2, β, T ), where
β = 5/2−α1 = 3/2− 1/log x. There are no poles when we deform the path
of integration over s2. The contributions from the horizontal lines are

J4,1, J4,3 � xy2
(
x

y

) 1
log x

T�

−T

∣∣ζ(1− 1
log x − it1

)
ζ
(
1 + 1

log x + it1
)∣∣

1 + |t1|
dt1

×
β�

α2

∣∣ζ(2− 1
log x − σ2 − i(t1 + T )

)
ζ(2− σ2 − iT )ζ(σ2 + iT )

∣∣
(1 + |t1 + T |)T

(
x

y

)σ2
dσ2.

The inner integral is estimated as

� 1

T (1 + |t1 + T |)

(
L3

(
x

y

)1+ 2
log x

+ T 1/3

(
x

y

) 3
2
− 1

log x
)

� L3

T (1 + |t1 + T |)

(
x

y

)(
1 + T 1/2

(
x

y

)1/2)
,
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where we have used the assumption y � xM . Hence,

J4,1, J4,3

� x2y
L3

T

(
1 + T 1/3

(
x

y

)1/2) T�

−T

∣∣ζ(1− 1
log x − it1

)
ζ
(
1 + 1

log x + it1
)∣∣

(1 + |t1|)(1 + |t1|+ T )
dt1

� x2y
L4

T 2

(
1 + T 1/3

(
x

y

)1/2)
.

For the integral on the vertical line we find that

J4,2

� y3
T�

−T

T�

−T

∣∣ζ(12−i(t1+t2)
)
ζ
(
1− 1

log x−it1
)
ζ
(
1
2 + 1

log x−it2
)
ζ
(
1+ 1

log x+it1
)∣∣

(1+|t1+t2|)(1+|t1|)(1+|t2|)

×
(
x

y

)5/2

dt1 dt2

� y3
(
x

y

)5/2

L2
T�

−T

T�

−T

∣∣ζ(12 − i(t1 + t2)
)
ζ
(
1
2 + 1

log x − it2
)∣∣

(1 + |t1|)(1 + |t2|)(1 + |t1 + t2|)
dt1 dt2

� y3
(
x

y

)5/2

L2
2T�

−2T

∣∣ζ(12 − iu)∣∣
1 + |u|

T�

−T

∣∣ζ(12 + 1
log x − it2

)∣∣
(1 + |t2|)(1 + |u− t2|)

dt2 du

� x2y

(
x

y

)1/2

L4.

Hence we get

D2,4(x, y)� x2yL4

{
1

T 2
+

(
x

y

)1/2}
.(5.13)

Now we shall evaluate the integral D2,3(x, y). It is given explicitly by

D2,3(x, y)

=
y2

(2πi)2

α1+iT�

α1−iT

α2+iT�

α2−iT

ζ(2− s2)ζ(1 + s1 − s2)ζ2(s1)ζ(s2)

(2− s2)ζ(2 + s1 − s2)ζ(2s1)ζ(2s2)

xs1+s2y−s2

s1s2
ds2 ds1.

We move the line of integration with respect to s2 to Γ (α2, 3/2, T ). Note
that there exist no poles under this deformation. The contributions from the
horizontal lines are

J3,1, J3,3

� y2x

T 2

T�

−T

|ζ2(α1 + it1)|
1 + |t1|

3/2�

α2

∣∣ζ(2− σ2 − iT )ζ
(
1 + α1 − σ2 + i(t1 − T )

)
× ζ(σ2 + iT )

∣∣(x
y

)σ2
dσ2 dt1
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� y2xL3

T 2

T�

−T

|ζ2(α1 + it1)|
1 + |t1|

3/2�

α2

T (−1+σ2)/3(1+|t1−T |)(−1+σ2)/3
(
x

y

)σ2
dσ2 dt1

� y2xL3

T 2

T�

−T

|ζ2(α1 + it1)|
1 + |t1|

dt1

3/2�

α2

T 2(−1+σ2)/3
(
x

y

)σ2
dσ2

� y2xL4

T 2

(
T 1/3

(
x

y

)3/2

+
x

y

)
� yx2L4

(
T−2 + T−5/3

(
x

y

)1/2)
.

On the other hand, the contribution from the vertical line is

J3,2

� y2x

T�

−T

|ζ2(α1 + it1)|
1 + |t1|

T�

−T

∣∣ζ(12 − it2)ζ(12 + 1
log x + i(t1 − t2)

)∣∣
(1 + |t2|)2

(
x

y

) 3
2

dt2 dt1

� y2x

(
x

y

)3/2

L.

Hence

(5.14) D2,3(x, y)� yx2L

{
L3

T 2
+

(
x

y

)1/2}
.

Finally we consider the integral D2,2(x, y). Its explicit form is

(5.15) D2,2(x, y)

=
y2

(2πi)2

α1+iT�

α1−iT

α2+iT�

α2−iT

ζ(2− s1)ζ(1− s1 + s2)ζ(s1)ζ
2(s2)

(2− s1)ζ(2− s1 + s2)ζ(2s1)ζ(2s2)

xs1+s2y−s1

s1s2
ds2 ds1.

This time we first move the line of integration over s1 to Γ (α1, 3/2, T ) (1).
The estimates over the horizontal lines and the vertical line are the same as
those of D2,3(x, y), but there is a simple pole at s1 = s2 inside this contour.
The residue of the integrand of (5.15) at this pole is

−ζ(2− s2)ζ(s2)
3x2s2y−s2

ζ(2)ζ(2s2)2(2− s2)s22
,

hence

D2,2(x, y) =
x2y

2πi

α2+iT�

α2−iT

ζ(2− s2)ζ(s2)
3(y/x2)1−s2

ζ(2)ζ(2s2)2(2− s2)s22
ds2

+ yx2L

{
L3

T 2
+

(
x

y

)1/2}
.

(1) In [2, p. 8, line 4], Chan and Kumchev wrote that “Similarly, by moving the line
of integration to Γ (α2, 3/2, T ), we find” formulas (4.16) and (4.17). But it seems that to
derive (4.17) of [2], we need to move the line of integration over s1 to Γ (α1, 3/2, T ).
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The treatment of the integral on the right hand side is easier than the
corresponding integral of [2]. In fact, we move the line of integration to
Γ (α2, 1/2, T ). By the same method as before, the integrals over the hori-
zontal lines are estimated as

� x2y

T 3

(
L4

(
y

x2

)−2/log x
+ L2T 1/2

(
y

x2

)1/2)
� x2yL4

T 3

(
1 + T 1/2

(
y

x2

)1/2)
,

and those over the vertical line are estimated as � x2y(y/x2)1/2L2. Fur-
thermore, there is a contribution from the pole s2 = 1 of order 4, hence

(5.16) D2,2(x, y) = x2yQ0

(
log

x2

y

)
+ yx2L

(
L3

T 2
+

(
x

y

)1/2)
+O

(
x2yL4

T 3

(
1 + T 1/2

(
y

x2

)1/2))
+O

(
x2y

(
y

x2

)1/2

L2

)
,

where Q0(u) is a polynomial in u of degree 3. By Cauchy’s residue theorem,
we have

Q0(u) = − 1

6ζ3(2)
u3 + C3u

2 + C4u+ C ′5,

where C3 and C4 are the constants defined by (1.14) and (1.15), respectively,
and C ′5 is another constant.

Now we substitute (5.12)–(5.14) and (5.16) into (5.4), and take T = x3/8.
Then we obtain

D2(x, y) = x2y
(
P (log x) + b4 + c

)
+ x2yQ0

(
log

x2

y

)
+O

(
x2y

(
L10x−3/8 + L10y−1/2 + L4

(
x

y

)1/2

+ L2

(
y

x2

)1/2))
.

Taking C5 = b4 + c+ C ′5 and defing Q(u) by (1.13), we get the assertion of
Theorem 1.3.
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