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Diagonal equations of different degrees over p-adic fields

by

Michael P. Knapp (Baltimore, MD)

1. Introduction. Let ai and bi (1 ≤ i ≤ s) be rational integers, and let
k and n be natural numbers with k ≥ n. Consider the system of diagonal
equations

(1) a1x
k
1 + · · · + asx

k
s = 0, b1x

n
1 + · · · + bsx

n
s = 0.

We are interested in determining conditions on s which will guarantee that
the system (1) has nontrivial integral solutions over the fields Qp, where a
solution is considered to be nontrivial provided that at least one of the xi is
nonzero. A special case of a conjecture attributed to Artin states that the
system (1) should have a nontrivial Qp-integral solution for each prime p
provided only that s ≥ k2 + n2 + 1.

To describe the known results about this conjecture, we introduce a small
amount of notation. For a given prime p and positive integers k, n, we write
Γ ∗

p (k, n) to denote the least number such that the system (1) has a nontrivial
Qp-integral solution whenever s ≥ Γ ∗

p (k, n). Further, we define

Γ ∗(k, n) = max
p

Γ ∗
p (k, n).

A result due to Brauer [1] shows that this maximum exists for all pairs (k, n).
Note that if s ≥ Γ ∗(k, n), then the system (1) has a nontrivial Qp-integral
solution for every prime p. Therefore Artin’s conjecture may be restated as
claiming that one should have Γ ∗(k, n) ≤ k2 + n2 + 1 for all pairs (k, n).

Much is known about this problem in the situation where k = n. Dav-
enport & Lewis [7] have shown that

(2) Γ ∗(k, k) ≤

{
2k2 + 1, k odd,

7k3, k even.

2000 Mathematics Subject Classification: Primary 11D72; Secondary 11E76, 11E95.
Key words and phrases: Artin’s conjecture, diagonal forms in many variables, local

solubility.
The completion of this paper was partially supported by NSF grant DMS-0344082.

[139]



140 M. P. Knapp

Hence this case of Artin’s conjecture is true in the situation where k = n
and k is odd. Moreover, Davenport & Lewis show in their paper that one
has Γ ∗

p (k, k) ≤ 2k2 + 1 except possibly when both p | k and we have either
(k, p − 1) = p − 1 or (k, p − 1) = (p − 1)/2 < 3.

We note here that if k + 1 is a prime p, then one also has the lower
bound Γ ∗(k, k) ≥ 2k2 + 1. This follows from the observation of Davenport
& Lewis [6] that in this situation there exists a single diagonal form in k2

variables having no p-adic solutions. Taking two such forms with no variables
in common leads to a system of two forms in 2k2 variables having no p-adic
solution. Thus the work of Davenport & Lewis shows that Γ ∗(k, k) = 2k2+1
for these values of k.

Recently, Brüdern & Godinho ([2], [3]) have proven this case of Artin’s
conjecture for most even values of k. In particular, they have shown that
Γ ∗

p (k, k) ≤ 2k2 + 1 except possibly when either k = pτ (p − 1) with p prime
and τ ≥ 1, or k = 3 · 2τ . Even in these situations, however, they have shown
that Γ ∗

p (k, k) ≤ 8k2.

When k 6= n, much less is known about this problem. Leep & Schmidt [8]
have shown that Γ ∗(k, n) ≤ (k2 + 1)(n2 + 1). Also, their work in [8] shows
that Γ ∗(k, 1) ≤ k2 + 2, although this latter fact is not explicitly stated.
Hence, this case of Artin’s conjecture is true when one of the degrees is
equal to 1.

While the bound due to Leep & Schmidt for general degrees k and n
is larger than that conjectured by Artin, Wooley [10] has shown that if the
prime p is large, then the Artin bound is too big. In particular, he has shown
that if p > k4n2, then

Γ ∗
p (k, n) ≤





2k + 2n + 1 if k ≥ n > 1,

2k + 2 if k > n = 1,

3 if k = n = 1.

Hence, for each pair (k, n), it is only for relatively small primes that bounds
as large or larger than those conjectured by Artin are needed.

The purpose of this paper is to develop new bounds on Γ ∗(k, n) in the
case where k 6= n. First, we have the following theorem.

Theorem 1. Let k > n > 1 be integers. Then

Γ ∗(k, n) ≤ 64(k + 2n)(k + n)(k − n)2 − 2k − 3n + 1.

The reader can see that the conclusion of Theorem 1 is better than that
of Leep & Schmidt [8] when the degrees k and n are large and close together,
but worse when k is significantly larger than n. Unfortunately, even in the
best possible scenario, when k = n + 1, the bound of Theorem 1 is worse
than the bound conjectured by Artin.
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Theorem 1 is actually an easy corollary of the following theorem, which
is more precise but somewhat more complicated to state.

Theorem 2. Let k > n > 1 be integers. Let p be a prime, and write

k = pτkk0 and n = pτnn0, with (p, k0n0) = 1.

(i) If p is odd , then

Γ ∗
p (k, n) ≤ (k + 2n)

(
k0

p2h+τk−1 − 1

p − 1
+ n0

p2h+τn−1 − 1

p − 1

)
+ n + 1,

where h = [logp((k−n)/(p−1))]+2, with [·] being the greatest integer

function.

(ii) If p = 2, then

Γ ∗
2 (k, n) ≤ (k + 2n)(k + n)(22h) − 2k − 3n + 1,

where we define

h =

{
2 if k − n is odd,

[log2(k − n)] + 3 if k − n is even.

The basic idea behind the proof of Theorem 2 is to lift solutions of
congruences to p-adic solutions. We begin by utilizing a normalization pro-
cedure due to Wooley [10], which shows that we may restrict our attention
to systems which have the property that many of the variables are explicit
modulo p (i.e. the variable still occurs with a nonzero coefficient when the
system is reduced modulo p). By setting some of these variables equal to
multiples of others, we then show that there exists a nontrivial nonsingular
solution of a system similar to (1), but with the equalities replaced by con-
gruences modulo suitable powers of p. Finally, we use a version of Hensel’s
Lemma to lift this solution to a nontrivial Qp-integral solution of (1).

If it happens that (p − 1) ∤ (k − n), then it turns out that our methods
allow us to look modulo smaller powers of p than in the main argument.
Thus we obtain the following corollary.

Corollary 1. Let k > n > 1 be integers and p be a prime. If (p − 1) ∤
(k − n), then

Γ ∗
p (k, n) ≤

3

2
(k + 2n)(k + n) + n + 1.

If we restrict the parities of k and n, then we can use a different, simpler
method to obtain smaller bounds, even when k is large compared to n. In
this vein, we will also prove the following theorem.

Theorem 3. Let k and n be positive integers with k odd. Then Γ ∗(k, n)
≤ 2n2 + k2 + 1.
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We will prove this theorem by finding a linear space on which the form
of odd degree is identically zero and then finding a zero of the other form
in this space.

2. Preliminaries. Before we begin the proof of Theorems 1 and 2, we
must discuss the concept of a normalized system of forms. To do this, we
will follow the normalization procedure used by Wooley in [10]. Consider a
system F = (F, G) of two forms as in (1), with deg F = k and deg G = n.
We assume that k > n. Fix a prime p and write k = pτkk0 and n = pτnn0,
where (p, k0n0) = 1. We write F∗ = (F ∗, G∗) for the image of the system F

modulo p. Two systems F and F′ whose coefficients are p-adic integers are
called equivalent if we can write

F′ = (F ′, G′) = (aF (pv1x1, . . . , p
vsxs), bG(pv1x1, . . . , p

vsxs)),

where v1, . . . , vs are all rational integers and a and b are any nonzero rational
numbers. Now, for a fixed number r (to be chosen later) with 1 ≤ r ≤ s,
we define R = {1, . . . , r}, T = {r + 1, . . . , s}, t = |T |, and N = 2(r − 1)n.
Finally, we define

∂(F) = ∂(F, G) =
∏

i6=j
i,j∈R

(an
i bk

j − an
j bk

i )
∏

h∈T

aN
h ,

and call a system F p-normalized if ∂(F) 6= 0 and the power of p dividing
∂(F) is less than or equal to the power of p dividing ∂(F′) for all systems
F′ equivalent to F. By a standard argument (see for example page 33 of
[11]) based on the compactness of the p-adic integers, it is sufficient to prove
Theorem 2 for p-normalized systems.

We now give a lemma showing that p-normalized systems are explicit in
a large number of variables when considered modulo p. First, however, we
need to establish some more notation. If F is a p-normalized system, let U
be the set of variables explicit in F ∗ and let V be the set of variables explicit
in G∗. Then we have the following lemma.

Lemma 1. Suppose that F = (F, G) is a p-normalized system of the

form (1). Then

|U | ≥
r

2k
+

t

k
, |V | ≥

r

2n
.

This lemma is immediate from Lemma 2 of [10]. While Lemma 1 is all
that we need for our purposes, Wooley in fact shows in [10] that more can
be said about systems which have been normalized by this procedure.

As mentioned in the introduction, our plan is to solve the system (1)
modulo powers of p and then lift this solution to a solution of (1) in p-adic
integers. Our next lemma, due to Schanuel [9], will help us with the first part
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of our plan. This is a version of Chevalley’s Theorem (see [4]) for congruences
modulo prime powers. However, rather than allowing the variables to take
on any values as in Chevalley’s Theorem, the variables are restricted to lie
in the Teichmüller set TQp

= {x ∈ Qp : xp = x}.

Lemma 2. Let f1, . . . , fR ∈ Zp[x1, . . . , xN ] be polynomials with no con-

stant terms, and for each i let di be the (total) degree of fi. Finally , let

v1, . . . , vR be positive integers. If

N >
R∑

i=1

di(p
vi − 1)/(p − 1),

then the system

fi(x1, . . . , xN ) ≡ 0 (modpvi), i = 1, . . . , R,

has a nontrivial solution with each variable belonging to the Teichmüller

set TQp
.

The final lemma of this section will be needed in order to deal with the
prime p = 2.

Lemma 3. Let d be a positive integer and write d = 2rℓ, with ℓ odd. Set

h ≥ 2 if r = 0, and set h ≥ r + 3 if r > 0. Then the expression xd takes on

more than one value modulo 2h for odd values of x. Moreover , if h is any

smaller integer , then xd ≡ 1 (mod2h) for all odd values of x.

Proof. If h = 1, then the lemma is trivially true. For h ≥ 2, the lemma
is an easy consequence of the fact that the number of reduced dth power
residues modulo 2h is given by

2h−1

(d, 2)(d, 2h−2)
.

To see that this formula is true, we note that modulo 2h, all reduced dth
power residues have the same number of dth roots, so that the number of
such residues is given by φ(2h)/N = 2h−1/N , where N is the number of
dth roots of unity. Recalling that for h ≥ 2, any reduced residue modulo 2h

may be written uniquely in the form (−1)α5β with α ∈ {0, 1} and β ∈
{0, . . . , 2h−2 − 1}, we see that the number of dth roots of unity is equal to
the number of pairs (α, β) such that (−1)αd5βd ≡ 1 (mod2h). It is then
necessary and sufficient that the pair (α, β) satisfy the equations

αd ≡ 0 (mod2), βd ≡ 0 (mod2h−2).

It is easy to see that there are exactly (d, 2)(d, 2h−2) such pairs. This com-
pletes the proof of the lemma.
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3. A version of Hensel’s Lemma. The final result which we will need
in order to prove Theorems 1 and 2 is a version of Hensel’s Lemma. This
will allow us to lift solutions of congruences to solutions of equations in
p-adic integers. Since it is no more difficult to prove this version of Hensel’s
Lemma for a system of arbitrarily many additive forms than for a system
of two forms, we will prove a slightly stronger statement than we actually
need. Our proof does, however, require a fair amount of notation, and so for
this section only we will depart from the notation used in the remainder of
this paper.

Lemma 4. Consider a system

(3)

F1(x) = a11x
k1

1 + · · · + a1sx
k1

s = 0,

...

FR(x) = aR1x
kR

1 + · · · + aRsx
kR
s = 0,

where k1, . . . , kR are positive integers and all of the coefficients are integers.

Let p be a prime number and for 1 ≤ j ≤ R define numbers τj and k̃j such

that kj = pτj k̃j with (p, k̃j) = 1. Further , for 1 ≤ j ≤ R, define

γj =

{
τj if p is odd ,

τj + 1 if p = 2.

Let h be a positive integer , and suppose that z is a nontrivial solution of the

system of congruences

(4) Fj(x) ≡ 0 (modp2h+γj−1) (1 ≤ j ≤ R)

such that the matrix

(5)




a11z
k1−1
1 · · · a1sz

k1−1
s

...
...

aR1z
kR−1
1 · · · aRsz

kR−1
s




has an R × R submatrix M such that

(6) detM 6≡ 0 (modph).

Then the system (3) has a Qp-integral solution y such that y ≡ z (modph).

An immediate corollary of Lemma 4 is that if R = 2 and z is a nontrivial
solution of (4) such that

(7) a1ma2nzk1−1
m zk2−1

n − a1na2mzk1−1
n zk2−1

m 6≡ 0 (modph)

for some m and n, then the system (3) has a nontrivial Qp-integral solution.

Proof. We first note that we may assume without loss of generality that
τ1 ≥ · · · ≥ τR. For each j, we now define qj = τj − τR, so that τj = τR + qj
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and γj = γR +qj for each j with 1 ≤ j ≤ R. Finally, define µ0 = 2h+γR−1,
and suppose that for some µ ≥ µ0 there is a point z = (z1, . . . , zs) such that

F1(z) ≡ 0 (modpµ+q1),

...

FR(z) ≡ 0 (modpµ+qR),

and such that there exists an R × R submatrix M of (5) for which the
relation (6) holds. For 1 ≤ i ≤ s, we set

yi = zi + pµ−h−τR+1di,

where we wish to choose the di to satisfy

(8)

F1(y) ≡ 0 (modpµ+q1+1),

...

FR(y) ≡ 0 (modpµ+qR+1).

Suppose for the moment that this can be done for all values of µ with
µ ≥ µ0. Noting that y ≡ z (modph), we see that the condition (6) also
holds for y. Hence we may proceed inductively to show that for all positive
integers r, the system

F1(x) ≡ 0 (modpµ0+q1+r),

...

FR(x) ≡ 0 (modpµ0+qR+r)

has a solution yr with yr ≡ z (modph). Therefore the solution to (4) can
be lifted to a solution of (3), as desired.

To show that we may always choose the di appropriately, note that for
each i and j we have

y
kj

i = (zi + pµ−h−τR+1di)
kj = z

kj

i + kjp
µ−h−τR+1diz

kj−1
i + · · · .

Considering this as a polynomial in the zi and di, we claim that only the first
two terms of this expansion can be explicit modulo pµ+qj+1. Before proving
this, we will show how it implies the truth of the lemma. The claim implies
that we have

y
kj

i ≡ z
kj

i + kjp
µ−h−τR+1diz

kj−1
i (mod pµ+qj+1).

Therefore, if we write Fj(z) = pµ+qjCj for each j and recall that kj = pτj k̃j

and τj = τR + qj , then
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F1(y) ≡ pµ+q1C1 + pµ+q1−h+1k̃1(a11z
k1−1
1 d1 + · · · + a1sz

k1−1
s ds)

(modpµ+q1+1),

...

FR(y) ≡ pµ+qRCR + pµ+qR−h+1k̃R(aR1z
kR−1
1 d1 + · · · + aRsz

kR−1
s ds)

(modpµ+qR+1).

Hence we can choose d1, . . . , ds as desired if we can solve the system

ph−1C1 + k̃1(a11z
k1−1
1 d1 + · · · + a1sz

k1−1
s ds) ≡ 0 (modph),

...

ph−1CR + k̃R(aR1z
kR−1
1 d1 + · · · + aRsz

kR−1
s ds) ≡ 0 (modph).

However, since there is a submatrix M of (5) such that detM 6≡ 0 (modph),
we can solve this system for d1, . . . , ds. Therefore we can solve (8) for all
µ ≥ µ0, as needed.

It remains to prove the claim that only the first two terms in the expan-

sion of y
kj

i may be explicit modulo pµ+qj+1. When we consider the expansion
as a polynomial in the zi and di, the coefficient of the lth term after the
first is (

kj

l

)
(pµ−h−τR+1)l.

Note that

ordp

((
kj

l

)
(pµ−h−τR+1)l

)
= ordp

((
kj

l

))
+ lµ − lh − lτR + l,

where ordp(x) is the maximal power of p dividing x.

For l > 1, write l = pr l̃ with (p, l̃) = 1. Since
(

kj

l

)
=

kj

l

(
kj − 1

l − 1

)
,

we obtain

ordp

((
kj

l

)
(pµ−h−τR+1)l

)

= ordp

(
kj

l

(
kj − 1

l − 1

))
+ lµ − lh − lτR + l

= τj − r + ordp

((
kj − 1

l − 1

))
+ lµ − lh − lτR + l

≥ τj − r + lµ − lh − lτR + l.

Thus, if l > 1 and r = 0, then
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ordp

((
kj

l

)
(pµ−h−τR+1)l

)
≥ τj + lµ − lh − lτR + l

≥ τj + (µ − h − τR + 1) + (µ − h − τR + 1)

= µ + qj + 1 + (µ − 2h − τR + 1)

≥ µ + qj + 1,

where the last inequality is true since we assumed that µ ≥ 2h + γR − 1 ≥
2h + τR − 1. Hence these terms are not explicit modulo pµ+qj+1.

Finally, we must deal with the situation where l > 1 and r > 0. We have

(9) ordp

((
kj

l

)
(pµ−h−τR+1)l

)

≥ τj − r + l(µ − h − τR + 1)

= τj − r + µ − h − τR + 1 + (l − 1)(µ − h − τR + 1)

≥ τj − r + µ − h − τR + 1 + (pr − 1)(µ − h − τR + 1).

Our assumption is that µ ≥ 2h + τR − 1 + δ, where δ = 0 if p is odd and
δ = 1 if p = 2. This implies that

(10) ordp

((
kj

l

)
(pµ−h−τR+1)l

)
≥ µ + qj + 1 − r − h + (pr − 1)(h + δ).

To see that these terms are not explicit modulo pµ+qj+1, we need to show
that −r − h + (pr − 1)(h + δ) ≥ 0. We have

−r − h + (pr−1)(h + δ) = (pr − 2)h + (pr − 1)δ − r

≥ pr − 2 + (pr − 1)δ − r

=

{
pr − r − 2, p > 2,

2r+1 − r − 3, p = 2.

To see that this last expression is nonnegative when p > 2, let f(x) =
px − x − 2. Then

f(1) = p − 3 ≥ 0.

Moreover, when x ≥ 1, we have

f ′(x) = px ln(p) − 1 ≥ 31 ln(3) − 1 > 0.

Hence, when p > 2, the function f(x) starts out nonnegative at x = 1 and
is increasing for x ≥ 1. Thus f(r) is nonnegative for all positive integers r,
and so

ordp

((
kj

l

)
(pµ−h−τR+1)l

)
≥ µ + qj + 1.

Therefore these terms are not explicit modulo pµ+qj+1, as claimed. When
p = 2, an essentially identical proof shows that 2r+1 − r − 3 ≥ 0 for all
positive integers r. This completes the proof of the lemma.
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4. The proofs of Theorems 1 and 2 and Corollary 1. We now
return to the notation used in Sections 1 and 2. As mentioned in Section 2, it
suffices to prove our results in the case where the system (1) is p-normalized,
and so we will make that assumption throughout this section. Let h be a
positive integer such that the expression xk−n takes on at least two nonzero
values modulo ph when x is relatively prime to p, and define the numbers
γk and γn as in the statement of Lemma 4. Our plan is to find a nontrivial
nonsingular solution of the system

(11)
F (x) = a1x

k
1 + · · · + asx

k
s ≡ 0 (modp2h+γk−1),

G(x) = b1x
n
1 + · · · + bsx

n
s ≡ 0 (modp2h+γn−1),

which will lift to a nontrivial solution of (1) by Lemma 4.
In order to accomplish this, suppose that for some number N we can

choose a set U of N variables in the set U defined in Section 2 and a set V,
disjoint from U, of N variables in the set V . We then pick N disjoint pairs
of variables consisting of one variable from U and one from V. Now, if a pair
xi, xj of variables is such that both are in both sets U and V , then we set
xi = txj, where t is nonzero modulo p and chosen such that

aibjt
k−n − ajbi 6≡ 0 (modph).

By our assumption on h, such a choice of t is possible. Otherwise, we set
xi = xj . If a variable xi is not a member of any of our pairs, we set xi = 0.
Making these assignments yields a new system

(12) c1y
k
1 + · · · + cNyk

N = 0, d1y
n
1 + · · · + dNyn

N = 0.

We now seek a nontrivial solution of the system

(13)
c1y

k
1 + · · · + cNyk

N ≡ 0 (modp2h+γk−1),

d1y
n
1 + · · · + dNyn

N ≡ 0 (modp2h+γn−1).

Although we could use Lemma 2 immediately to obtain a bound on N which
will guarantee that we can solve (13) nontrivially, we can obtain a smaller
bound by solving instead the equations

(14)
c1y

k0

1 + · · · + cNyk0

N ≡ 0 (mod p2h+γk−1),

d1y
n0

1 + · · · + dNyn0

N ≡ 0 (mod p2h+γn−1),

with all of the variables restricted to lie in the Teichmüller set TQp
. Because

of the property that xp = x for any x ∈ TQp
, any nontrivial solution of (14)

is also a nontrivial solution of (13).
By Lemma 2, a solution of (14) exists with each variable in TQp

and at
least one variable nonzero modulo p provided that

(15) N ≥ k0
p2h+γk−1 − 1

p − 1
+ n0

p2h+γn−1 − 1

p − 1
+ 1.
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Suppose that this condition holds. Then the solution of (14) is also a solution
of (13), and upon converting the variables y1, . . . , yN back into x1, . . . , xs,
we obtain a nontrivial solution of the system (11). Moreover, since at least
one of y1, . . . , yN is nonzero modulo p, there exist i, j such that xi and xj

are nonzero modulo p and were paired together to obtain a variable yl. The
way in which we set either xi = txj or xi = xj above ensures that

aibjx
k−1
i xn−1

j − ajbix
k−1
j xn−1

i = (xixj)
n−1(aibjx

k−n
i − ajbix

k−n
j )(16)

6≡ 0 (modph).

Therefore, since we have a solution of (11) for which the condition (16)
holds, Lemma 4 allows us to lift this solution to a nontrivial solution of (1).

To complete the proof, we need to first find an appropriate value for h,
and then obtain a bound on s which will guarantee that we can satisfy the
condition given in (15). Recall that our criterion for choosing h was that the
expression xk−n should attain at least two distinct values modulo ph when x
is relatively prime to p. If p is odd, then this can only fail to occur if k−n is
divisible by φ(ph) = ph−1(p−1). If we set h = [logp((k−n)/(p−1))]+2, then

h is a positive integer such that ph−1(p − 1) > k − n, and so our condition
on h is satisfied. Now, for convenience, write M for the right-hand side of
the inequality (15). Note that we can definitely choose M pairs of variables
in the above manner if we know that there are at least M variables explicit
when F is reduced modulo p and there are at least 2M variables explicit
when G is reduced modulo p. That is, we can satisfy the condition on N
given in (15) if we can ensure that

(17) |U | ≥ M, |V | ≥ 2M.

Since |U | and |V | are both integers, it is sufficient to show that

|U | > M − 1, |V | > 2M − 1.

By Lemma 1, these inequalities will hold provided that we have

r

2k
+

t

k
> M − 1,

r

2n
> 2M − 1,

where r+t = s. Noting that M is an integer, we can satisfy these inequalities
by setting r = 4nM − 2n+1 and s ≥ (k +2n)M − (k +n)+1. Hence, when
p is odd, we can satisfy all of our conditions, and hence find a nontrivial
p-adic solution to the system (1), whenever we have

(18) s ≥ (k + 2n)

(
k0

p2h+γk−1 − 1

p − 1
+ n0

p2h+γn−1 − 1

p − 1
+ 1

)
− (k + n) +1.

Upon noting that γk = τk and γn = τn when p is odd, we see that this is
equal to the estimate in Theorem 2.
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Since h = [logp((k − n)/(p − 1))] + 2, one can see that this bound on s
is less than

(k + 2n)

(
k0

p2h+τk−1

p − 1
+ n0

p2h+τn−1

p − 1
+ 1

)
− (k + n) + 1

= (k + 2n)(k + n)

(
p2h−1

p − 1

)
+ (k + 2n) − (k + n) + 1

≤ (k + 2n)(k + n)(k − n)2
(

p

p − 1

)3

+ n + 1

≤
27

8
(k + 2n)(k + n)(k − n)2 + n + 1,

where the first inequality follows from the definition of h and the second
follows from the fact that p ≥ 3. Note that this estimate is clearly smaller
than the estimate given in Theorem 1.

Finally, we need to deal with the case when p = 2. In this situation we
make use of Lemma 3, defining

h =

{
2 if k − n is odd,

[log2(k − n)] + 3 if k − n is even.

This definition ensures that the hypotheses of Lemma 3 are satisfied with
d = k−n, and hence that the expression xk−n takes on at least two distinct
values modulo 2h for odd values of x.

Now, with this value of h we need once again to satisfy the condition
on N given in (15). The same reasoning as above shows that this can be
done if we again set r = 4nM − 2n + 1 and s ≥ (k + 2n)M − (k + n) + 1.
Recalling that γk = τk + 1 and γn = τn + 1 when p = 2, this means that we
can find a 2-adic solution to the system (1) provided that

s ≥ (k + 2n)(k0 · 2
2h+τk + n0 · 2

2h+τn − 1) − (k + n) + 1

= (k + 2n)(k + n)(22h) − 2k − 3n + 1,

as desired. If our definition of h yields h = [log2(k−n)]+3, then this bound
is at most

(k + 2n)(k + n)(22 log2(k−n)+6) − 2k − 3n + 1

≤ 64(k + 2n)(k + n)(k − n)2 − 2k − 3n + 1,

which is the estimate in Theorem 1. If we have h = 2, then our bound on s is

s ≥ 16(k + 2n)(k + n) − 2k − 3n + 1,

which is clearly smaller than the estimate for Γ ∗(k, n) given in Theorem 1.
This completes the proof of Theorems 1 and 2.
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In order to prove Corollary 1, we simply note that if p is a prime and
(p − 1) ∤ (k − n), then we clearly cannot have φ(ph) | (k − n) for any h.
Therefore we may take h = 1 in the proof of Theorem 2. Then the bound
on s which we obtain in (18) becomes

s ≥ (k + 2n)

(
k0

pτk+1 − 1

p − 1
+ n0

pτn+1 − 1

p − 1
+ 1

)
− (k + n) + 1

= (k + 2n)

(
kp

p − 1
−

k0

p − 1
+

np

p − 1
−

n0

p − 1
+ 1

)
− (k + n) + 1.

Since p must be at least 3 in order for the hypothesis of the corollary to
hold, it is easy to see that this bound is at most 3

2(k + 2n)(k + n) + n + 1,
as desired.

One can of course prove many other corollaries in a similar manner. We
point out here for the record that for specific values of p, k and n, one can
typically obtain better bounds on Γ ∗

p (k, n) by adapting the methods here to
the particular numbers involved than by merely quoting Theorems 1 and 2.

5. The proof of Theorem 3. As mentioned in the introduction, we
prove Theorem 3 via an argument based on finding linear spaces of zeros
of a form of odd degree. Since this argument will not require the normal-
ization procedure described in Section 2, we will drop the assumption that
the system (1) is p-normalized. Before we begin the proof, we state a few
lemmata. Our first lemma, which gives a bound on how many variables are
needed to ensure that a single additive form has a nontrivial zero, is due to
Davenport & Lewis. This is Theorem 1 of [6].

Lemma 5. The equation

a1x
n
1 + · · · + asx

n
s = 0,

where the ai are rational integers, has a Qp-integral solution for each p
provided that s ≥ n2 + 1. Moreover , if n + 1 is prime, then this bound

cannot be reduced.

Our second lemma is another version of Hensel’s Lemma, this version
being a consequence of the theory of kth power residues of rational integers.

Lemma 6. Suppose that pτ ‖ k, and define γ = γ(k, p) by

γ =





1 if τ = 0,

τ + 1 if τ > 0 and p > 2,

τ + 2 if τ > 0 and p = 2.

Then if the congruence

axk + b ≡ 0 (modpγ)
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with ab 6≡ 0 (modp) is soluble, then the equation

axk + b = 0

has a nonzero solution in Qp.

A proof of this result can be found on page 36 of [5]. We point out
that this definition of γ differs from the one given in Section 3. Note that
a consequence of this lemma is that any number which is both relatively
prime to p and a kth power modulo pγ is also a kth power in Qp.

Our final lemma will be used in the proof of Theorem 3 to help produce
a linear space of zeros of the form of odd degree.

Lemma 7. Suppose that p is an odd prime, k is a rational integer , and

c1, . . . , cs are p-adic integers which are not divisible by p. If s ≥ k + 1, then

there exist distinct numbers i and j such that ci/cj is a kth power in Qp.

Proof. Suppose that pτ ‖ k. Since p is odd, Lemma 6 shows that it suf-
fices to prove that we can find i and j such that ci/cj is a kth power
modulo pτ+1. We write (Z/pτ+1Z)× for the group of (multiplicative) units
modulo pτ+1, write (Z/pτ+1Z)×k for the subgroup of kth powers, and we
note the well-known fact that when p is odd, one has |(Z/pτ+1Z)×k| =
φ(pτ+1)/(φ(pτ+1), k). Then the number of cosets of the subgroup of kth
powers is

[(Z/pτ+1Z)× : (Z/pτ+1Z)×k] = |(Z/pτ+1Z)×| / |(Z/pτ+1Z)×k|

= φ(pτ+1)
/(

φ(pτ+1)

(φ(pτ+1), k)

)

= (φ(pτ+1), k) ≤ k.

Therefore, if we have k + 1 reduced residues modulo pτ+1, then two must
lie in the same coset of (Z/pτ+1Z)×k, and so their ratio is a kth power
modulo pτ+1. This completes the proof of the lemma.

Now we begin the proof of Theorem 3. Consider the system (1), where
we assume that k is odd, and do not make any assumptions about the parity
of n. Note that since both equations are homogeneous, it suffices to find a
Qp-rational solution of the system. By a linear change of variables of the
form xi 7→ pνxi, we may assume that if ai 6= 0 and pα ‖ ai, then 0 ≤ α < k.
We set V = {i : ai = 0}, and for g ∈ {0, . . . , k − 1}, set Ug = {i : pg ‖ ai}.
Note that if i ∈ V , then the equation aiy

k
i = 0 has yi = 1 as a solution.

Next, for a fixed g ∈ {0, . . . , k − 1}, suppose that Ug has at least k + 1
elements. For each i ∈ Ug, write ai = pgci, so that p ∤ ci. Suppose for now
that p is odd. Then by Lemma 7, there exist distinct integers i and j and
an element ζ ∈ Qp such that ci/cj = ζk. Hence the equation

(19) aiy
k
i + ajy

k
j = 0



Diagonal equations of different degrees 153

can be solved by setting yi = −1 and yj = ζ. After picking i and j, if there
are still at least k + 1 elements left in Ug, then we may repeat the process
until fewer than k+1 elements remain. Therefore we can choose from each Ug

at least (|Ug| − k)/2 disjoint pairs of indices i, j such that there exist yi and
yj satisfying (19). Note that this statement is still true if Ug contains fewer
than k + 1 elements, for then our bound is at most zero. Therefore, after
possibly relabeling variables, we can write the degree k equation in (1) as

a1x
k
1 + a2x

k
2 + · · · + a2N−1x

k
2N−1 + a2Nxk

2N

+ a2N+1x
k
2N+1 + · · · + a2N+|V |x

k
2N+|V |

+ a2N+|V |+1x
k
2N+|V |+1 + · · · + asx

k
s = 0,

where for i = 1, . . . , N there exist y2i−1 and y2i such that

(20) a2i−1y
k
2i−1 + a2iy

k
2i = 0,

and for i = 2N + 1, . . . , 2N + |V | we have ai = 0.
Next, for i = 1, . . . , N, we set x2i−1 = y2i−1Yi and x2i = y2iYi. We also

set xi = Yi−N when i = 2N +1, . . . , 2N + |V |, and xi = 0 when i > 2N + |V |.
Note that the degree k equation will be satisfied for any choice of the Yi,
and that if at least one of the Yi is nonzero then at least one of the xi is
also nonzero. After this assignment of variables, the degree n equation in (1)
becomes

(21) d1Y
n
1 + · · · + dN+|V |Y

n
N+|V | = 0

for some d1, . . . , dN+|V |. By Lemma 5, we can solve this nontrivially provided

that N + |V | > n2. However, we have

N + |V | ≥ |V | +
k−1∑

g=0

|Ug| − k

2
≥

|V |

2
+

k−1∑

g=0

|Ug| − k

2
=

1

2
s −

1

2
k2.

Therefore we can always solve the equation (21) nontrivially if we have

1

2
s −

1

2
k2 > n2,

which occurs whenever
s > 2n2 + k2,

as desired. Therefore, when p and k are both odd, we have the bound
Γ ∗

p (k, n) ≤ 2n2 + k2 + 1.
If we have p = 2, then we can even do a little better. We define the sets

V and Ug as before, and follow the same line of reasoning as above. However,
if we fix g then for any choice of i, j ∈ Ug, the quotient ai/aj will be a 2-adic
integer which is not divisible by 2. A simple application of Lemma 6 shows
that any such number is a kth power in Q2 for any odd k. Therefore, we
are able to choose at least (|Ug| − 1)/2 disjoint pairs of elements from Ug
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for which we can satisfy the equation (19). We can then proceed exactly as
above, except that our bound on N + |V | now becomes

N + |V | ≥ |V | +
k−1∑

g=0

|Ug| − 1

2
≥

|V |

2
+

k−1∑

g=0

|Ug| − 1

2
=

s

2
−

k

2
.

Hence we will be able to solve the equation (21) provided that

s

2
−

k

2
> n2,

which occurs when s > 2n2+k. This yields the bound Γ ∗
2 (k, n) ≤ 2n2+k+1

whenever k is odd. These two bounds together show that if k is odd, then
we have the bound Γ ∗(k, n) ≤ 2n2 + k2 + 1. This completes the proof of
Theorem 3.
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