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Small solutions of cubic equations with
prime variables in arithmetic progressions

by

HAIGANG ZHOU (Shanghai) and TiANzE WANG (Kaifeng)

1. Introduction. A well known work of A. Baker [1] on the solvability
of certain Diophantine inequalities involving primes first raised the problem
on bounds for small solutions of some equations with prime variables. This
problem is now called the Baker problem. As for the linear equation, the
Baker problem was settled qualitatively in [6] by M. C. Liu and K. M. Tsang,
and was generalized to the case of prime variables in arithmetic progressions
in [8] by M. C. Liu and T. Z. Wang. Similar investigations have been applied
to quadratic equations with five prime variables in [2], [7], [10] and [11]; and
some different types of qualitative and quantitative results have been given.

In this paper, we are going to consider the cubic equation

(1.1) aipi + -+ agpy = b

with prime variables in arithmetic progressions modulo large integer k > 1.
One novelty of our investigations is that we will overcome the difficulties
coming from the twisting of the nonlinearity and the rareness of primes in
arithmetic progressions of large modulus as in [10]. The other novelty is
that we can transform the congruent solvability condition similar to that
in [7] to an easy to check form, by giving an elementary necessary and
sufficient solvability condition using cubic residue characters. This needs
some delicate analysis of the singular series, and forms one of the main
themes of the present paper. Further, the best qualitative bound for small
solutions is given.

Throughout this paper, we always use a1,...,a9; c1,...,¢9; b and k to
stand for integers satisfying
(12) ap---agcr---cg 0, k>0,
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(1.3) (cj, k) :=ged(cj, k) =1, 1<35<0.

We define k* to be 3k or k according as k is divisible by 3 or not, and assume
(1.4) ay + -+ a9 = b (mod2),

(1.5) aici + -+ agcs = b (mod k*).

We sometimes use ajg to denote —b, and for any subset {ii,...,ig9} of
{1,...,10} suppose

(1.6) (Qiyy ey aig) = ged(aiy, ..., a5,) = 1.

Put w = (=1 + +/34)/2, and let Z[w] denote the ring of algebraic integers
in the quadratic field Q(w) as in [5]. For any rational prime p with p = 1
(mod 3) we let 7 stand for a fixed primary prime divisor of p in Z[w], and
X=(+) denote the cubic residue character modulo 7. If a rational prime p > 7
with p = 1 (mod 3) divides exactly eight of the ten numbers a1, ..., a1g, and
if (a;,p) = (aj,p) = 1, then we suppose

(17) Xﬂ(ai) = Xw(aj)'

Moreover, for any rational prime p < 96 with p = 1 (mod3), i.e. p =
7,13,19,31,37,43,61,67,73,79, we assume that the congruence

(1.8) ain? + -+ agng = b (mod p)

is solvable in F)’, the multiplicative group of the finite field IF,. Throughout
this paper, we put

A :=max{3,k,|ai|,...,|aql|}.
We use C and ¢ to denote positive effective absolute constants, not neces-

sarily the same at different occurrences.
Our main results are as follows.

THEOREM 1. Assume (1.2)—(1.8). If a1,...,a9 are all positive, then
there exists an effective absolute constant C > 0 such that the equation
(1.9) {alp?+'--+a9p3=b,

' pj =c¢j (modk), 1<j<09,

is solvable whenever b > AC.

THEOREM 2. Assume (1.2)—(1.8). If ay,...,a9 are not of the same sign,
then there exists an effective absolute constant C' > 0 such that equation
(1.9) has solutions in primes p; satisfying

max{p1,...,po} < 3|b|'/3 + AC.

PROPOSITION 1. Conditions (1.2)—(1.8) are either natural or necessary
for the solvability of equation (1.9), so in view of Theorems 1 and 2 they
form a necessary and sufficient condition for the solvability of (1.9).
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It is trivial to see that (1.2) and (1.3) are natural for the study of equation
(1.9). Now we assume that (1.9) is solvable in odd primes. Since every odd
solution satisfies p% = 1 (mod 2) for 1 < j <9, (1.9) implies a; +---4ag = b
(mod 2), which is (1.4). If 31k, then k* = k by definition; so (1.5) is clearly
necessary for the solvability of (1.9). If 3|k, then p; = ¢; (mod k) clearly
gives p? = ¢ (mod 3k); so the solvability of (1.9) also implies (1.5). Con-
dition (1.6) is natural, since otherwise, the remaining a; must be divisible
by (ai,,...,ai,), and then we may divide both sides of the first equality of
(1.9) by (ai,, ..., ai,). To see (1.7), we set p1g = 1 (similar usage may occur
below); then the solvability of (1.9) implies

a;p} + a;p5 =0 (modp).
This clearly implies (1.7). Finally, the necessity of (1.8) is trivial, and the

proof of Proposition 1 is complete.

REMARK. The bound A% in Theorems 1 and 2 is best possible if we are
not concerned with the exact value of C.

2. Outline of the proofs of Theorems 1 and 2. We shall use the
circle method, so we introduce a large parameter N which is fixed throughout
this paper. Put

(2.1) P:=N° L:=logN, @Q:=Np20[-100,

here and throughout, ¢ is a fixed sufficiently small constant which may
depend on some fixed small positive absolute constant ¢ > 0. We always
assume

(2.2) P> A

By Dirichlet’s lemma on rational approximations, each a in [1/Q,1+ 1/Q)]
may be written as

(2.3) a=a/qg+n, Inl<1/(qQ),

for some integers a and ¢ with (a,q) = 1 and 1 < a < ¢ < Q. We denote
by m(a, q) the set of « satisfying (2.3), and define the major arcs M and
minor arcs C(9M) as follows:

24 = J U maq, CO:=[1/Q1+1/Q]\M.
1<g<P 1<a<q
(a,q)=1

It is clear that all the m(a, ¢)’s are mutually disjoint for ¢ < P since 2P < Q.
As usual write e(x) = exp(2miz) for any real z, and let A(n) denote the von
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Mangoldt function. For 1 < 57 <9 put

(2.5) Si(a) = > A(n)e(ajan),

N/100<|a;|n*<N

n=c; (mod k)
and define
(2.6) r(b) :== Z (logp1) - - (logpg),
(P15--3p9)
where the summation is over all prime 9-tuples (p1, ..., pg) satisfying a;p3 +

o+ +agpy = b, N/100 < |aj]p§? < N and p; = ¢; (modk) with 1 < 5 <09.
Then using Holder’s inequality and Hua’s lemma (Theorem 4 in [4]) to treat
the error term we have

(2.7) r)={+ | +ow'/ore).

Mmoo C(m)
To prove Theorems 1 and 2, we only need to prove that for some N satisfying
(2.2), i.e. N> A% | r(b) has a positive lower bound if

(i) b= N when all the a; with 1 < j <9 are positive;
1 > when a; wit < 7 <9 are not of the same sign.
ii) N > 20/b| wh j with 1 1 <9 f th i

So by (2.7) we need a lower bound for {,, and an upper bound for {

M com)”
The former will be given in Lemma 6.1, and the latter in Lemma 7.2. Then
the combination of Lemmas 6.1, 7.2 and the definition of r(b) in (2.6) proves

Theorems 1 and 2.

3. Simplification for { .. In the following, we always abbreviate

m
(3.1) d:= (), D= [k q).
When (¢4, q) = 1 and ¢ = ¢; (mod d), we let s; be the unique solution modulo
D to the pair of the congruences n = ¢; (modk), n = ¢ (mod g). Note that
(sj, k) = (sj,q) = (sj, D) = 1. Introduce the Dirichlet character x modulo
any ¢ > 1 and let x¢ (modq) be the principal character. For 1 < j7 <9, x
(mod D), and any integer a with (a,q) = 1, define

Gji(x,a) = X(s5)e(ajal®/q),

(=1
(32) {=c; (mod d)

Gj(q,a) == Gj(xo (mod D), a).
Define a large parameter T' by
(3.3) T := NV = pl/V3,

It is well known (see, e.g., [3, §14]) that there exists a small constant ¢ > 0
such that the function

M=
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I II ztv

q<EkP x (modq)

has at most one zero B in the region

c
3.4 c>1———, |t < T,
(3.4) >1- s <
where the * indicates that the product over x runs through all primitive
characters, s is any complex variable, 0 = Res, t = Ims; such a zero S,
if it exists, is real, simple and unique, and corresponds to a nonprincipal
primitive character ¥ to a modulus 7 with 3 < 7 < kP. We call ¥ and
the exceptional character and exceptional zero respectively. From [3, §14] we
have
3.5 - <B<l——
(3.5) logP_ﬁ_ 71/210g? 7

Define E =1 or 0 according as 7| D or not. For 1 < j <9, put

(3.6) Nj = (N/]a;)!®,  Nj:= (N/(100]a;|))"/>.
Let

N; N;

Ii(n) = S e(ajnz®)dz, I;(n) = S 7 Ye(ana®) du,

N]( Njf
(37) ,Nj

Loon =Y |« te(ama®) da.

lv|<T N}
Put
(38) Cjla,qn) =Y. Gi(xa)L(x.n),
x (mod D)

(3.9)  Hja,q,n) = Gj(g,a)1;(n) — EG;(Xxo0, )L (1) = Cj(a, ¢, 7).
When we multiply out the product H?:l Hj(a,q,n) using (3.9), we get a
sum of 37 terms which can be classified into the following three categories:
Ji: the term [[]_, G;(q, a)I;(n),
J2: the 39 — 29 = 19171 terms each of which has at least one Cj(a, q,7)

as factor,
J3: the remaining 29 — 1 =511 terms.

For 1 < v < 3 define

(3.10)  M,:= > ﬁ Zq: e<_%b>

X S e(—bn){sum of the terms in 7, } dn.

— o0
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Then, with the help of [9, Lemmas 4.3 and 4.5], we can conclude, using
similar arguments to those in [10],

(3.11) | =My + My + Mz + O(N?|ag - - ag| /P P727),

m

4. Estimation of M;. We first give a lemma which can be proved by
the method of [6, Lemma 4.7] and will be used to treat the singular integral.

LEMMA 4.1. For any complex number o; with 0 < Rep; <1, we have

o0 9 Nj
(4.1) S (H S x% " e(anx )d:z:) dn
—oo J=1N]
9
= N*3Jao) 1 | T (V)@ D02 )y diy - da,
D j=1
where
(4.2) zg := (BN~' — ajzy — -+ — asws)/ag
and
(4.3) D :={(z1,...,28) : 1/(100]a;|) < z; < 1/|aj|, 1 < j <9}.

Furthermore, if either (i) not all the a;’s are of the same sign and N > 201b|,
or (ii) all the a;’s are positive and N = b, then

9
(4.4) X ij—z/s dzy - dzg = |ay - ag|~/3|ag|?/3.
Dj=1

For any character y modulo ¢ >1 and any integers a and ¢ with (¢, k)=
let d = (k,q) and put

(4.5) G'(va)= >  x(De(al/q).

LEMMA 4.2. Let x (modp®) be any character and o« > 0. Then
(a) G*(x,a) =0 if x is primitive, ord,(k) < o —1, and p|a
(b) G*(xxo0,a) = 0 if xo is modulo p*, pfa and ord,(k) < max{1l,a},
t > 0 +max{1,a}, where 0 =1+ [3/p] — [2/p];
(¢) 1G*(x,a)| < 2(2,p)(a,p™)"/?p™/2.
Proof. (a) In view of p|a, we can write a = a’p. Writing £ = vp®~! +u
with 1 < u < p*~!' and 0 < v < p — 1, and noting (k,p®) = p>*%*) since
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ordy(k) < o —1, we get

(4.6) G*(x,a) = > e(a'u®/p* 1) F(u),
1<u<p® ™t
u=c (mod p°rdr (k)

where F(u) = > 5c,<, 1 x(vp®~1t 4+ u). Clearly, F(u) is a periodic function
with period p*~!. Since x (modp®) is primitive, there exists an integer
1 < m < p® such that m =1 (mod p®*~1) and x(m) # 1. Thus

x(m)F(u) = Z x(mop®~! + mu) = Z x(vp® ! +u) = F(u),
0<v<p—1 0<v<p—1

which implies F'(u) = 0, and part (a) follows from (4.6).
(b) For 1 < ¢ < pt, write £ = vp! P +u with 1 <u < p'=? 0 < v <p?—1.
Then since ord, (k) < max{1,a} and t > 6 + max{1, a} we have

e(ag?)/pt) :e( ( 3, 3t— 39+3u 'Up +3UU2 2t — 29+u3)/pt)
= e(au®/pe(Bar/r),
xXxo(f) = xxo(vp' ™" +u) = x(w)xo(u), (k,p") =p”=® <p'~
So by definition and in view of pta, 8 =1+ [3/p] — [2/p], we get
G*(xx0, a) = > xxo(we(au®/p) Y e(Bautv/p’) =0

1<u<pt~? 0<v<p?—1
u=c (mod p°rdr (k)

This proves part (b).
(c) By definition and the orthogonality of characters, we have

i} 1
1G*(x, a)| < W ‘ZXIX Je(al®/p)|.
x1 (modd) £=1

Note that d = (k,p®). So x1x is a character modulo p®. Thus the last sum
over £ can be bounded by 2(2, p)(a,p®)'/?p®/? by [7, Lemma 3.1(c)]. This
proves part (c¢). The proof of Lemma 4.2 is complete.

Now we turn to the investigation of the singular series. Let

9 q a 9
(@) a0 =205 Y (-2 6w

a=1
(a,q)=1

Then A(q) is a multiplicative function of ¢. So we are led to evaluate A(q)
when ¢ is a prime power p". Firstly, by (1.3) and (1.4), direct computations
yield A(1) = A(2) = 1. For any integer m > 2, we can compute A(2™) as
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follows. If 2™ | k (so (k,2™) = 2™), then in view of (1.5),

2m 9
AQ™) = > e(—;—i) I e(asact/2™) = p(2m).

a=1 J=1
(a,2)=1

If 2™t k, we suppose 2Y || k, i.e. 2° | k but 2°T14k. Then 0 < v <m — 1 and
(k,2™) = 2¥. Also, in view of (1.6), there exists a 1 < jo < 9 such that
(aj,,2) = 1. Introducing Dirichlet characters x (mod2"), we get

2777.
(4'8) Z e(aj0a63/2m)

=1
(¢,2)=1

ZECjO (modZ“) 1 27n

= (29 Z x(¢jo) Z x(O)e(aj,al®/2™).
7 X (mod 2v) =1
(€,2m)=1

For any x (mod2"), in view of m > 1+ max{1l,v}, by Lemma 4.2(b) we
see that the last sum over ¢ in (4.8) vanishes. Thus by (4.7) we obtain
A(2™) = 0.

Gathering together the above, we obtain

LEMMA 4.3. Under the assumptions (1.3)-(1.5), we have A(1l) = A(2)
=1, and for any integer m > 2,
e(2™) if 2™ |k,

A@R") = {0 if 2 1k.

Now we begin to compute A(3™) for m > 1. If m = 1, we consider two
cases according as 3|k or not. When 3|k, by (1.5) we have A(3) = ¢(3).
When 31k, so (3,k) = 1, we have

3 9
1 b —n n—
AB)=—= > el =z ) [](ea;/3) +e(=a;/3) = (=1)" "0 (3)" 7,
80(3) a=1 3 7j=1
(a,3)=1
where n is the number of integers among a1, . .., a1o divisible by 3. To com-

pute A(9) we consider three cases according as (k,9) = 1,3 0or 9. If (£,9) = 1,
(4.7) gives

A(9):<$>9 29: ( >]9] 29; e(ajal® /9)
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If (k,9) =3 or 9, by (4.7) and (1.5), direct computation yields A(9) = ¢(9).
For any integer m > 3, we can compute A(3™) as follows. If 3™ |k (so
(k,3™) = 3™), then in view of (1.5) we have A(3™) = ¢(3™). If 3™~ | k but
3™tk (so (k,3™) =3m"1), then

1\ 3" ab\ <2 3m

(49) A@™) = <3) > (—3—m) 11 e(ajal* /37).
a=1 j=1 (=1
(a,3)=1 (£,3)=1
{=c; (mod3m~—1)

Note that ¢ = ¢; (mod 3™~1) must imply (¢,3) = 1 since (¢, k) = 1. So the
last summation variable £ in (4.9) can be written as £ = 3™t + ¢; with
0 <t <2, and the sum over £ is

Z e(a;a(3™ 't +¢;)%/3™) = 36(ajac§?/3m).

0<t<2

Thus by (4.9) we get
3m 9
AB™ = > e<—§—i> He(ajacje/:am) = p(3™).

If 3™~ 14k, we suppose 3V | k. Then 0 < v < m — 2, (k,3™) = 3v. Also, in
view of (1.6), there exists a 1 < jo < 9 such that (aj,,3) = 1. Introducing
the Dirichlet character x (mod3"), we get

37'L
(4.10) Z e(a;al®/3™)
{=1
(¢,3)=1
£=cj, (mod 3?) ) gm
= (37}) Z Y(Cjo) Z X(e)e(ajoa£3/3m)‘
v X (mod 3v) (=1
(€,3m)=1

For any x (mod3"), in view of m > 2 + max{1,v}, by Lemma 4.2(b) we
see that the last sum over £ in (4.10) vanishes, and so does (4.10). Thus by
(4.7) we obtain A(3™) = 0.

Gathering together the above, we obtain

LEMMA 4.4. Under the assumptions (1.3), (1.5) and (1.6), let n denote
the number of a;’s (1 < j < 10) divisible by 3. Then
©(3) if 31k,

Al3) = { (C1)I0=np(3)if 3}k,
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w(99) if 3|k,
A(9) = az ( > H <27ma3> if 31k,
(=1 =

and for m > 3,

my [ e(8™) if 3K,
AB )_{0 if 314k,

Now, we compute A(p"™) for p > 5 and m > 1. If p{k, then (k,p™) = 1;
so by (4.7),

a=1 j=1 =1
(a,p)=1 (6,p)=
In view of (1.6), there exists a 1 < jo < 9 such that (aj,,p) = 1. So if
m > 2, then by Lemma 4.2(b) the last sum over ¢ with j = jy vanishes for
any a with (a,p) = 1; and this leads to A(p™) = 0 for p > 5, m > 2 and
ptk.
Next, we consider the case p| k. For any m > 1, if p" | k, then (k,p™) =
P Thus by (4.7) and (1.5) we get A(p ) e(p™). If pm)(k: we suppose
p¥ || k; then 1 <v <m —1, and (k,p™) = p”. By (4.7) we get

(411)  A(p™)

a=1 =
(a,p™)=1 (£,pm)=1
L=c; (mod pv)

If we introduce Dirichlet characters x (mod p?), the last sum over £ in (4.11)
with ] = jo is

m

oo 2o X)) X x(Oelaj,al/pm),
x (mod p?) =1
(pr)zl

where p{aj,. Since m > 1+v, by Lemma 4.2(b) the last sum over ¢ vanishes
for any x (modp"), and this leads to the vanishing of (4.11).

Now we are in a position to consider A(p) for 5 < ptk. For p = 2 (mod 3)
(so (p—1,3) = 1), it is known that for any 1 < a < p—1, the equation 2> = a
has exactly one solution in the multiplicative group F = {1,...,p — 1} of
the finite field F,. So when £ runs over F 7, £3 will run over F as well. Thus
(4.7) yields
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@12 G =em) Y (—f) Z elaot/p)

9

a=1 J 1

(a,p)=1

= (=1 ().
Here, and in what follows, n is always used to denote the number of integers
divisible by p among aq, . . ., a1 with a;g = —b. For p = 1 (mod 3), let g; and
g2 be two fixed cubic non-residues from 1,...,p — 1 whose indices relative
to a given primitive root modulo p are congruent to 1 and 2 respectively
modulo 3. Then a®, g1a® and goa® will run through respectively the cubic
residues, the cubic non-residues whose indices are = 1 (mod 3), and the

cubic non-residues whose indices are = 2 (mod 3) three times as a assumes
1,...,p— 1. Hence by (4.7) we have

p—1 S0\ 2P
@13) A = 3o X (e(-50) I 3 elaa/n

a=1 Jj=1 ¢=1
(£,p)=1
g1a>b P 3
re(-Z) ] X clwma’tsn
p j=1 ¢=1
(¢,p)=1
920°b - 343
re(-Z) ] X clwmat )
p j=1 (=1
(¢,p)=1

Again, for p = 1 (mod 3), we can write 4p = a? + 27b? with a = 1 (mod 3)
uniquely determined, and we can define a unique = 6(p) up to sign as in [3,
§3]. Put Ay = 2,/pcosf, Ay = 2\/;5(305(9—27?/3) and A3 = 2\/1_)cos(9—|—27r/3).
Then from 3, §3] we have Y 7_, Le(3)p) = Zz Le(qlP/p) =X —1
and > 7_; ! e(g203/p) = A3 — 1. Further, let u,v and w denote respectively
the number of cubic residues, of cubic non-residues whose indices are = 1
(mod 3), and of cubic non-residues whose indices are = 2 (mod 3) among
ai,...,a1p. Then we have n + u + v + w = 10. It then follows from (4.13)
that

(14)  A) =5 e O~ 1) (e~ 1" (s — 1)

+ A =1 (N —1)Y(Ag— 1)
+ (A= 1D)Y(Ae—D*(A3— 1"}
Now we obtain the following

LEMMA 4.5. Under the assumptions (1.3), (1.5) and (1.6), forp > 5 and
m > 1 we have
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m w™) i p™ |k,
A(p™) = { o
0 if Pk, m > 2;
and for 5 < ptk we have (4.12) or (4.14) according as p = 2 (mod3) or
p=1 (mod3).

By Lemmas 4.3-4.5, and the multiplicativity of A(q), for any real y > 1
we have

415) Y A<k I a+laph I a+A®)D.
q<y 3#£ptk 3#£ptk
p=1 (mod 3) p=2 (mod 3)
For p = 2 (mod 3) with p|ay ---ag, but ptk, in view of (4.12), it is easy to
see that |A(p)| < 1. For p = 2 (mod 3) with pta; ---agk, also from (4.12)
we get |A(p)| < ¢(p)~8. For p =1 (mod 3) and ptk, by (4.14),

(4.16) AP < @(@)""2yp+ 1" = (p - 1)" 2y + 1)

Gathering these, direct computations yield |A(p)| < 10 for 3 # ptk, and for
all ptkay---ag (somn =0or 1), |A(p)| < 500p~2. So (4.15) can be estimated
further as

(4.17) <k J] 11 J] @+500p72) < 11(@eolg,
3#£ptk 3#ptkay--ag
P‘al"'GQ

where w(m) denotes the number of distinct prime factors of the integer m.
This shows that »: . |A(g)| can be bounded by a constant independent
of y, so the series

[ee)

(4.18) &(b) ==Y A(q)

is absolutely convergent. In view of Lemmas 4.3-4.5, we can define

1+ o(3) 4+ (32) + - - + p(3LFords(k)) = gltords(k)

(4.19)  s(3):= if 3| k,
1+ A(3) + A(3?%) if 31k;
L+ @(p) +9(0) + - + o(pdr®)) = porde®)

(4.20)  s(p) := if3#plk,
1+ A(p) if 3 # ptk.

Then for any integer m it is clear that

(4.21) Yo Al =]Ja+ AW + A"+ ) =] s

=1 ptm ptm

(g,m)=1
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Next, we prove that the series &(b) defined by (4.18) has a positive lower
bound. By (4.19), (4.20) and (4.21) with m = 1 we have

(4.22) &) =[]s® ][] s
plk ptk
Note that for 31k, by Lemma 4.4,
i 2maa 9 2maa ? 2maa
2y 2 J . . 10 J
A(3%) = Z Hcos( 9 >+z Z sm( 9 )HCOS( 5 )

a=1,2,4 j=1 a=1 j=1
(a,3)=1

This shows that A(3%) has positive real part when 3{k. Hence, for 31k,
5(3) = 14+A(3)+A(3?%) has real part > 1/2 since by Lemma 4.4, | A(3)| < 1/2.
Thus s(3) > 1/2, and this together with (4.22), (4.19) and (4.20) yields

(4.23) &) >k [] 1+ Ap)).
3#ptk

For convenience we introduce, for any integer g > 1,

(4.24)  N(q) := Card{(nl, cooymg) 1 1< n; <gq,

9
(nj,q) =1, Zajngf = (modq)}.
j=1

Similar to [7, (3.8)], for 3 # p{k we have

(4.25) o(p)"pN(p) =1+ A(p).

When p = 2 (mod 3) and p{k, in view of (4.12) and n < 8, we get A(p) # —1.
When p = 1 (mod3) and ptk, we separate our discussion into three cases
as follows: (i) for p < 96, condition (1.8) clearly implies N(p) > 1, or
A(p) # —1 by (4.25); (ii) for p > 97 and n < 7, in view of (4.16), direct
computation shows that |A(p)| < 1, so A(p) # —1; (iii) for p > 97 and n = 8,
in view of u + v +w+n = 10, we have v+ v + w = 2, so by condition (1.7)
we see that the possible triplets (u, v, w) are (2,0,0), (0,2,0) or (0,0,2); and
by (4.14) we get

A) = 5 )"~ 1% = 1’ — 1)°

+ =1 =D’ =12+ (0 =12 = 1)*(As = 1)°}
1 1
_3p+1) _pt 4
3p—-1) p-1
Therefore we can conclude for any prime p with 3 # p{k that A(p) # —1,
and this in combination with (4.25) implies N'(p) > 1, thus 1 + A(p) >
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©(p)?p. This in combination with (4.23) yields
s>k [[ rew)™® J[ (+A®).

plai---ag 3#ptk
plai--ag

In view of |A(p)| < 500p~—2 for ptkay - - - ag, the last product is > 1. So we
arrive at
(4.26) &) >k J] »*>klar--aol .

plai---ag

Let 0 = (log P)~!. By Lemmas 4.3-4.5, the multiplicativity of A(q), and
|A(p)| < 500p~2 for any 3 # ptka; - - - ag, and |A(p)| < 10 for any 3 # ptk,
we have

(4.27) > |A(gl< P ' I (1p) [ (1 +500p7'7)

qa>P plai--ag pla—ag
< PR ay - - - ag)?.
Finally, we complete the estimate for M;. By definition we have
1 I ab\ T ?
M= >, 5 D 6(——> V e(=on) [] Gila, )i (n) dn
1252p PD) o 1/ w P
a,q)=

Note that ¢(d)p(D) = ¢(k)p(q). So by (4.7) and Lemma 4.1 with g =
02 = 03 = 1 we get

M = N%(3°|ag|)~ (Z Alq )SH “2/3 4y -+ drg.

1<q<P Dj=1
Now let
9
(4.28) My = N2(3%)ag|) L o(k) 26 (b) 223 day - - das.
J
Dj=1

Then by (4.18) and (4.27) we get
Ml - MO + R?

where by (4.4) we have R < N2p(k) 2P~ 1k2L%%|a; - - - ag|*/?. Therefore
we can conclude that

(4.29) My = My + O(N?p(k) O P k2L5%|ay - - - ag|?/?).

5. General singular series. Throughout this section, we let r1,...,79
be any positive integers, and let x; (modr;) be primitive characters. Put
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r:=[r1,...,7r9]. The purpose of this section is to estimate the sum
1 ! ab\
s Y= Y (o) 2 (-2 6w,
1<q<P »(D) =1 175
<q¢< a= j=
r|D (a,q)=1

where d = (k,q) and D = [k,q] are as in (3.1), G,(x,a) is defined as in
(3.2) with x modulo D, and xq is the principal character modulo D. For
1< <9, let

(52) r; = H pordp(Tj)7 74;/ — Tj/T9 —_ H pordp(rj).
ordy (r;)>ord, (k) ordy (rj)<ord, (k)
Put 7" = [r],...,r{]. Then it is easy to see that

(5.3) 7D & rj=riri|lkq, 1<j<9 & rilqg, 1<j<9 & g

Next, (5.2) yields (rj,7/) = 1 and r; = rir/. So one can split x; (modr;),
1 <j<9asx; (modr;) = x;; (modr})x7 (modry) with both x’; and X7
primitive since x; is primitive. Here we temporarily regard x (mod1) as
primitive, and similar usage may occur below. Note that for 1 < j <9, by

(5.2) we have r7/ | k, and by (5.3), if 7| D then 7% | g. Thus we can write

(5.4) > = (5) (@),
where

(55 >
. (@)9 3 e<—%b>f[ S (Oe(agat )

1<q<P vla a=1 j=1 =1

g (a,9)=1 (6,q)=1
{=c; (mod d)

Now the estimation for ) is reduced to the estimation for ) ;. To proceed
further, we introduce the following notation similar to that in [7, (3.1) and

(3.2)]:
I ab\ 1 K 3
(5:6) Z(gixi,oox0) = Y e(——)H Yo xi(Oelajalfg),

a=1 q Jj=1 (=1
(a7Q):1 ZEC]' (mod d)
I ab\ 1 K
(5.7) Y(g5x15---,x0) == Ze(——> H Z x;(O)e(ajal®/q),
a=1 1755 =1
{=c; (mod d)
where ¢ is any positive integer, xi,..., X9 are characters modulo ¢, and

d = (k,q). When there is no possible confusion about the character y;, we



184 H. G. Zhou and T. Z. Wang

shall abbreviate these to Z(¢) and Y (g) respectively. Similar to [7, Lemma
3.2] it can be easily proved that both Z(q) and Y (¢) are multiplicative.

LEMMA 5.1. For j = 1,...,9, let x; (modp®) be primitive charac-
ters and a = max{a1,...,a9} > ordy(k). For any t > «, let Z(p') =
Z(p' x1x0s - - -, XoXo) where xo is modulo p*. Then

(a) Z(p®) =Y (p%),
(b) Z(p") =0 ift > 0 + o, where =1+ [3/p] — [2/p],

B v 9 5 9
() Z (M) Z(p') = <7¢(;]z];g)))) Y(pﬁ) for any B > a.

—\ o)

Proof. This lemma can be proved in precisely the same way as [10,
Lemma 5.2] using Lemma 4.2.

Now we come to the estimate for ) ;. For any integers m and n, we
now use the notation m||n to denote that m|n and every prime factor of
n divides m. For the integer ¢ in (5.5) we write

=aqw, rla, (@) =1
It is clear that (¢1,¢2) = 1. So by (5.5), (5.6) and (4.7) we get

EDIEEDY ( k(h )Z(ql;x’le,---,xéxO) > Ala).

1< <P 1<q2<P/q1
g (q2,7")=1
From (4.21) and (4.27), the last sum over ¢ is
(5.9) [Is() + 0P 1k L>®ay - - agl?).
pir’

By the multiplicativity of Z(q1; X} Xo0,---,X6X0) and Lemma 5.1(b) we see
that for " || q1,

if 3tr" then Z(q1;Xx1x0,--->XoX0) =0 except for ¢ =1/,
if 3|7 then Z(q1;X)1Xx0,--->XoX0) =0 except for ¢ =r" and 3r'.

Now define
(5.10) o:=1or3 according as 317" or 3|r'.
Then by (5.8) and (5.9) the main term of ), is

(H s(p)) > (M)gz(ur’; X1X0, - - -+ X9 X0)

o o e(ur’)
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when o1’ < P. As in [7, (3.14)], by Lemma 5.1(a),(c), the above last sum

over u is
k,or

(—@(;(UT,)))> Y (ar';X1X0; - - - » X9X0)-
Thus, when o7’ < P, the main term of ) ; can be written as

kor')\?
(5.11) (%) Y (o' xix0s - - Xox0) | | s(p)-

ptr!

Note that, by (5.6) and Lemma 4.2(c), for any ¢ > 1 we have
(5.12) Z(q) < ¢>°lay - - - ag|*/?2%(@,

So by (5.8) and (5.9), and noting ¢; = wr’,u|o, the error term of ), can
be estimated as

EY\° ,
< Plr’k2L500]a1-~-a9\2<¢(( /))) r/5.5’a1_”a9‘1/229w(r)
QO T

< PN L ®ay - ag|*.
This together with (5.11) gives, when or’ < P,
9
o((k,or’
(5.13) Zl = <%) Y(ar';x’lXo,...,XgXO)Hs(p)
v e
4 O(PflkllL5OO’a1 . a9‘2.5).

When o7’ > P (so ' > P), the validity of (5.13) can be seen as follows:
firstly, from (5.5) and (5.12) we have

k 9
(514') Zl < Z <m> q5'5|a1 c. a9’1/229"-’(Q)

1<q<P
r'|q

<70 ay - ag|V?,

which is < P~'k%|ay - - - ag|*/? if or’ > P. Secondly, (4.17) and (4.21) imply,
for any integer n,

(5.15) [Is) <D 1A(g)| < 110 9),
q=1

pin

So in view of |Y(q)| having the same upper bound as |Z(g)| in (5.12), the
main term in (5.13) is

< kgga(r/)79r/5.5’a1 . a9|1/229w(7”/)11w(a1...a9)k < P71k10|a]1 . ag’
if or’ > P. From (5.13) and (5.14) we infer the following
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LEMMA 5.2. Let ), be as in (5.5), and o be as in (5.10). Then

RN
.= <M> Y (or' xixos > Xoxo) [ [ s(p)

p(or’) e
4 O(PflkllL5OO’a1 . a9‘2.5)’

and

Zl < Tl_lkg’a’l T a9|1/2'

6. The major arc integrals. In this section, we complete the estima-
tion for the major arc integrals Sim We first estimate M3, defined in (3.10).
Note that if 5 does not exist then M3 = 0. So in the following we assume 5
does indeed exist, hence F = 1. We decompose 7 as follows:

61 F=77, ¥= ] o0, 7= ] o0
ord, (7)>ord, (k) ord, (7) <ord, (k)

Then (7,7") = 1. So we can split ¥ (mod7r) as

(6.2) X (mod7) =X (mod7)X" (mod7"),

where Y’ and X" are primitive characters. Here we have regarded yo (mod 1)
as primitive character. We define

(6.3) g:=3or1 according as 3|7’ or not.
For distinct integers my, ma, ..., taken from the set {1,...,9}, let
(64)  Llmayma..) im (7 (em )T (ems) -+ )Y (575 x1s - 1 x0),
where for 1 < j <9,
X'Xxo (modar) for j € {mq1,ma,...},
i {XO (mod o7r”) otherwise,
and let

(6.5)  P(my,ma,...)

9
= N%(3%ag|)~* (H 72/3) (N, Ny, - )P 3 dy - dg,

qk@k’ﬁ

where D is defined as in ( 3) Then by (5.7) we get
(6.6) L(my,ma,.) = > (X (o)X (€n)X Cma)X (€ma) )
(e7)
where for any ¢ > 1,Z(q) denotes the sum over ¢y,...,¢y with 1 < /; < gq,
l; =c; (mod (k,q)) for 1 <j<9and a1fl$ +---+agly =b (modq).
Now we can estimate Ms. By the definition of Hj(a,q,7n) in (3.9), the
511 terms in J3 can be classified into nine types with the vth (1<v<9)
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type consisting of (2) terms, each of which is a product of v pieces of
—Gj(Xx0,a)Ij(n) and 9 — v pieces of G;(q,a)lj(n). So if we define, for 1 <
v<9,

o= 5 oo X (%)

X S e(—bn){sum of the terms in the vth type} dn,

— 00

then by (3.10) we have
(6.7) My = Z Ms,.

For 1 < v <9, the contributions to M3, from the terms of the vth type can
be estimated in precisely the same way. So we only consider the contribution,
denoted by Ms,1, from the typical term
v _ 9
[T-6 o aLm) T (@a.a)Lm).
j=1 j=v+1
We have by definition,

1 - ab
63 M= 2 gpp 3 o()

— 00

By (5.4) and the first equality for ) ; in Lemma 5.2, and then the definition
of L(my,ma,...) in (6.4), the sum over ¢ in (6.8) is

(6.9) (k)07 ek, o)) 9£(1 2,...,0) [T s
. SO(/&/F/) ) AR +~,
piT
+ O(Pflkllﬁpuﬂ)fQLSOO‘al . a9‘2.5).
Note that by (6.5) and (4.4) we have
(610) P(ml,mg,...) < N2]a1--~a9\*1/3.

From (6.5) and Lemma 4.1 we see that the integral with respect to 7 in (6.8)
is precisely P(1,2,...,v). This together with (6.8)—(6.10) gives
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(6.11) M1 = (=1)"p(k)2L(1,2,...,0)P(1,2,...,0)

XW(MYHS@

ey
pl@) )
+O(N?P~ kM (k) "°L7ay - - ag|"/?).

Now gathering together all the results similar to (6.11) for all 1 < v < 9,
and using (6.7), we arrive at

(6.12) M; = wm—%w(%)g(ﬂs(p)){ - 3 Lim)P(ma)
Pl 1<m<9

+ Z L(mq, ma)P(my, ma) +---

1<m1<m2<9

+(=1) Z L(my,...,m)P(ma,....,my)+ -

1<mi<---<m+<9
—5(1,...,9)79(1,...,9)}
+ O(N?*P~ kM (k) "°Lay - - ao|"/?).

On the other hand, by (5.4) and the second inequality for > ; in Lemma 5.2,
the sum over ¢ in (6.8) is < (k)7 ~'k%ay - - - ag|*/?. This in combination
with (6.8) and (6.10) yields

Msy < (k) k%% Yay - ag| 2 N?ay - - - ag|~Y/3
< N2o(k) k%% Hay - - ag|/°,
and consequently by (6.7),
(6.13) Ms < N2o(k) k7 ay - - - ag| /.

Moreover, similar to [10, (6.12)] we have

(6.14) st = a%’(M)g > oL

Pl o0T) ) &
By (4.18), (4.21) and (6.14),
(6.15) &) =]]sw =][s® ][]k

P p|7’ ptr’

~~\\ 9
(2 (1)

pir’ (e7)
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Substituting this into (4.28), by (4.29), (6.12) and (6.5) we get
(6.16) My + Ms;

:N2(39\a9\)14p(k)9577’< (’”7’ ) (Hs )

pir’

X S (ﬁ *2/3){ Z 1— Z E(m1)(Nxml)(5_1)/3
D

=1 (7)) 1<m1<9

<.

+ Z ,C(ml,mz)(NxmlNl-mz)(E—l)/?) +

1<m;<m2<9

+ (-0 Llme m) (N, - Nay,, )03

1<my < <my<9

e L(1,.. . 9)(Nay - .Nx9)<5—1>/3} dz; - - - dag
+O(N2p(k) k1L P~1L50| g, - qo|7/3)

+ O(N2p(k) O P k2L5)ay - - - ag|/?).

By (6.6) we see that the quantity in the above curly brackets equals
9

S TIA = X )R () (N E=D73) > (1 B)log P)° S 1.

(67) j=1 (57)
Thus (6.16) together with (6.15) and (4.4) leads to
(6.17) My + Mz > i N%p(k)2S(b)((1 — §) log P)°|ay - - - ag|~1/3
+ O(N2(p(k)79k11P71L500‘a1 . a9’7/3)7
where ¢; is an absolute positive constant. On the other hand, the combina-
tion of (4.28), (4.29), (6.13) and (4.4) yields
(6.18) M, + Ms > ¢aN2o(k)~2&(b)|ay - - - ag| /3
+ O(N2SO(]C)_9P_1]C2L500|CL1 . a9|5/3)
+ O(N?p(k) k%% ay - - - ag|/®),
where ¢y is an absolute positive constant.
Now we turn to the estimation of Ms, defined in (3.10). By definition
there are 19171 terms in /5. The contribution to My from each of them can

be estimated in precisely the same way. So in view of (3.9) we only give the
details for the contribution from the typical term

ECy(a,q,n)C2(a,q,m) - - Cr(a, q,n)Gs(q,a)Is (1) Go(Xx0s a) o (n)
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to illustrate the method. We denote this contribution to Ms as Msr. Note
that if x (mod ¢) is induced by a primitive x* (mod ¢*) with ¢* | ¢ then the
corresponding L-function L(s, x*) has the same set of nontrivial zeros. So
in view of (3.7) we have I;(x,n) = I;(x*,n) for 1 <j < 9. Then in view of
(3.10) and (3.8) we have

* * 1
(6.19) M7 = Z Z Z Z Z ¢(D)?

r1<kP x1 (modry) r7<kP x7 (modry) 1<q<P

[Tl,...,T7,ﬂ|D
q 7
x> 6( )(H (X;Xx0, @ )Gs(q, a)Go(Xx0,a)
a:l 7j=1
a)=1
oo 7 "
x el (H (g m) ) Is () To () dn,
where the * indicates that the sums over x; (modr;) run through all the

primitive characters. By the definition of Y (q) in (5.7), it is trivial that
Y(q)| < q3°(, 1 Thus Lemma 5.2 implies

(6.20) 3| <o (BTN (52 1) T

(or’)  pir’

<IIs®[Isw=]]sk =

plr’ pir’

From this and (5.4) we see that the absolute value of the sum over ¢ in
(6.19) is < ¢(k)79&(b). So in view of the definition of I;(x,n) in (3.7), we
obtain from (6.19), and Lemma 4.1,

(6.21) |M27| < N? (k)_QG( )(3%lag) ™
S(ch’”g)H X ) e,
j=1 r;<kP x; (modrj) |v;|<T

where (; + iy; are the nontrivial zeros of L(s, x;). The last triple sum can
be estimated as < 02° exp(—c/V/§), where £2 = (1 — 3)log P or 1 according

as B exists or not, and ¢ > 0 is an absolute constant. This in combination
with (6.21) and (4.4) gives

Mar < exp(—c/V/E) 2% N2p(k)~*S(b)las -+ -as| /°,
and consequently,

(6.22) M, < exp(—c/V8)2°N2p(k)~2&(b)|ay - - - ag| /2.
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Now we can complete the estimation of the major arc integrals. We
separate the argument into three cases:

(i) If B does not exist, then Ms = 0. So by (3.11), (4.26), (4.28), (4.29),
(6.22), (2.2) and (4.4) we get, for ¢ small enough,

(6.23) | = N2%p(k) 26 () (3% asl) - SHx 213 Ay - -
om Dj=1

+ O(N%ay - --ag| /3P~
+ O(exp(—c/VE) N (k)& (b)|as - - ag| /%)
FO(N20(k) 2P~ K2 L|a; - - - ag|?/?)

> eN2%p(k) 726 (b)|ay - - - ag) 73,

(i) If 3 exists with 7 > P1/100 then the combination of (3.11), (4.26),
(6.18), (6.22) and (2.2) gives

(6.24) g > eN2p(k)°S(b)|ay - - ag| /3
m

+ O(NZ (k)79P71k2L500’a1 . ‘a9|5/3)

+O(N (k)—QkQP—1/100|a1‘.'a9’1/6)

+ O(N?|ay - - - ag|~1/3P~27)

+ O(exp(—¢/VE) 2°N?p(k) & (b)as -+ ag| ~/?)

> eN2p(k) 726 (b)|a; - - - ag) "3,

(iii) If B exists with 7 < P1/100 then by (6.1) we have 7 = 77" <
kP1/100 < p1/99 Thus by (3.5) we get

c —1/197
) = > - > )
(6.25) N=_Q ﬁ)logP_Al/leg 5= > P

Thus by (3.11), (2.2), (4.26), (6.17) and (6.22) we get
(6.26) | > eN2p(k) & (b)2%ay - - ag| /3
m

+ O(N2Q0(k)79k11P71L500|a1 . a9‘7/3)
+ O(exp(—¢/VE) 2O N?o(k) S (b)]ar - - - ag|/?)
+ O(N2|a1 . CL9|_1/3P_27)

> eN2p(k) 26 (b)2%ay - - - ag| /3.

Finally, we conclude that (6.26) always holds with 2 having lower bound as
n (6.25), and so we have
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LEMMA 6.1. Let 9 be as defined in (2.4). Then

9
[ e(—ba) TT Si(@) da > N2o(k) °SB) P~ |ay - ag| /2.
om Jj=1

7. Proof of Theorems 1 and 2
LEMMA 7.1. Let ¢ and k be integers satisfying (¢, k) = 1. For any positive

integer X and any real o with | — a/q| < ¢~ 2% and (a,q) = 1, define

Sx(a) == Z A(n)e(an?).
nzfn(énjc\)fd k)

Then for any absolute € > 0, we have

(7.1)

22—2k

N1+5 1 1 q
SA(OC) < 7k1_>\217A <6 + —N1/3 + m)

For a proof, one can see, e.g., [12, Theorem 4].
LEMMA 7.2. Let C(9M) be defined as in (2.4). Then for any positive €

we have

(7.2)

S < N2tep-1/16,
C(om)

Proof. Using Lemma 7.1, this lemma can be proved in precisely the same

way as [10, Lemma 2.1].

Finally, the combination of (6.26), (7.2) and the definition of 7(b) in (2.6)

proves Theorems 1 and 2.
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