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Two conjectures by Zhi-Hong Sun
by

CONSTANTIN N. BELI (Bucuresti)

Let € be an algebraic integer in Q(\/&), where d > 1 is square-free, and
let p > 2 be a prime with p { d and p { N(g), where N : Q(v/d) — Q is the
norm map. It is well known that P~! = 1 (mod p) if p = 1 (mod 4) and
ePt1 = N(e) (mod p) if p = 3 (mod 4).

The next problem is to find e®*1/2 mod p. If (%) = (%) =1 then (%)

is defined and we have P~1/2 = (%) (mod p) so the problem is equivalent

to finding the Legendre symbol (%) A particular case with a long history is
when € = g4, the fundamental unit of Q(v/d) and N(g4) = —1. The problem
of finding (%‘i) when N(g4) = —1 for primes p with (%) = (%) = 1 was first
considered in 1942, when Aigner and Reichardt showed that if p = 1 (mod 8)
then e5 = 14 4/2 is a quadratic residue modulo p if and only if p = 22 + 32>
for some z,y € Z. Various mathematicians have obtained similar results for
other fundamental units €; of norm —1. The problem was finally settled by
Z. H. Sun [S1], who determined the value of ¢®~(=1/P)/2 mod p, where ¢
is an arbitrary integer in Q(v/d), in the case when (%1) = 1. Sun’s result,
just as the results obtained before him, is given in terms of z,y satisfying
f(z,y) = p, where f = AX? 4+ 2BXY + CY? is a quadratic form with
det f = B2 — AC = —k?d and k is a (bounded) positive integer. The fact
that p can be represented by one of these quadratic forms is ensured by the
fact that (_Td) =1.

The next level of difficulty is to calculate e ?—(=1/2))/4 mod p, again when

(%d) = 1. In this paper we restrict ourselves to the case when p = 3
(mod 4), i.e. (%) = (%) = —1, and we determine e®+1/4 mod p. We solve
two conjectures by Z. H. Sun regarding the value of 5ép /4 hod p, where

e5 = (1++/5)/2, for p = 3,7 (mod 20), and the value of eépﬂ)/g mod p,
where e3 = 2 + /3, for p = 7 (mod 24). Apparently the second conjec-
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ture is one level of difficulty up because of the denominator 8. However, if
we note that 2 + v/3 = (1 ++/3)%?/2 then the problem reduces to finding
(1+ v/3)P+D/4 mod p.

The conjecture regarding (2++/3) (#+1)/8 is related to a problem involving
the sequence Sy given by S; = 4, Sii11 = S,% — 2, from the Lucas—Lehmer
test, which is mentioned in [G, A3]. If M, = 2P — 1 is a Mersenne prime
then p|S, 1 = S2 5 —2s0 852 5 =2 = 2! (mod 2¥ — 1), s0 S 2 =
+2(+1)/2 (mod M,). The problem is to determine the + sign. We have
Sk = (2—1—\/3)2]671 +(2— \/3)21671 = 2V,k—1, where V,, is given by the formula
V, + U,V3 = (2+ \/3)” Therefore we want to know the &+ sign for which
2V, 11)/s = 2Var-s = Sp_o = £20FD/2 (mod M,). Since M, = 7 (mod 8)

5%2) _

we have (J\_/T;lo) = —1 and (Mlp) = 1. Thus the + sign equals (

Vi
((MPT?W) Sun’s conjecture gives the quadratic residues mod p for both

Vip+1)8 and U, y1) /s for any p =7 (mod 24) and it allows us to determine
(24 v/3)®P*TD/8 mod p. As a consequence, our = sign is (—1)@2*4)/32, where
M, = 22 + 3y? with z,y € Z.

The methods we use are from class field theory. Given a number field
F and a (possibly archimedian) prime p of F, for any x € F' we denote by
xp its image in F,. When there is no danger of confusion we simply write
x instead of zp. If E/F is a finite abelian extension and B is a prime of F

lying over p then we denote by ("Ep/F) : ) — Gal(E/F) the Artin map
and by (-, Byp/Fp) : Fy — Gal(Egp/Fy) the local Artin map. If we identify
Gal(Eyp/Fp) with its image in Gal(E/F) then (%) = (a, B/ F}) for any

X
aEFp.

1. Fpy1)/4 and L4 )4 mod p for p = 3,7 (mod 20). Let Fy, Ly be
the Fibonacci and Lucas sequences given by Fy = 0, F; = 1 and F,,+1 =
Fo 14+ F,and by Lo=2,L; =1and L,+1 = Ly—1 + Ly,. We have

Lo+ Fpv/5 _ (1+\/5>"_

2 2
In [S1, Conjecture 5.2] Z. H. Sun proposed the following conjecture:

CONJECTURE 1.1 (Z. H. Sun, 2003). If p = 3,7 (mod 20) is a prime
with 2p = 2 + 5y for some integers ,y then
. _ {2(_1)[@5)/10110@3)/4 (mod p) ify==+(p—1)/2 (mod 8),
(PHD/A = _o(—1)l=5)/1010(—3)/ (mod p) if y £ +(p — 1)/2 (mod 8).
By [SS, Corollary 2(iii)] we have

Fipr1yalprya = Flpyry2 = 2(—1)lp=3)/105(P=3)/1 (1m0d p).
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Therefore the conjecture above is equivalent to:
(—2)(1)“‘1)/4 (mod p) ify=+x(p—1)/2
L(P+1)/4 = (p+1)/4 .
—(=2)¥ (mod p) ify#=(p—1)/2

We have p = 3 (mod 4) and p = 2,3 (mod 5) so (_?1) = (g) =—1.

1.2. Since (L, + F,V/5)/2 = ", where ¢ := (1++/5)/2, we have to
evaluate e®+1/4 mod p. We have (%) = —1so0 pis inert in Q(v/5). Since p { &
the conjugate of ¢,  := (1 — v/5)/2, is given by the Frobenius automorphism
£ = ®,(c) = P (mod p). Thus eP™ = ¢z = —1 (mod p).

Note that (p — 1)/2 is odd so

2
p°—1 p+1 p—1 p+1
<p+’ 8 > 4 ( 2 4

Thus if we also know ¢®*~1)/8 mod p then we know £®+1)/4 mod p. More
precisely, if p =3 (mod 8) then
p+1 p2 —1 p—3

= - 1). 22
1 5 (p+1) 5

S0
e@HD/4 = (P =1)/8(pt1)=(0=3)/8 = (_1)P=3)/8.(*~1)/8 (104 p),
while if p =7 (mod 8) then

p+1 p?—1 p+1
= — 1) .- 2——
1 S +(p+1) S

S0
cP+1)/4 _ 5—(p2—1)/8(€p+1)(p+1)/8 = (_1)(p+1)/8€—(p2—1)/8 (mod p).

We will obtain ¢®*~1/8 mod p in terms of some Hilbert symbol of or-
der 8. To do this we will construct a cyclic extension of order 8 of F :=
QV5).

Since (_71) = —1 we have either (7) =1 (if p= "7 (mod 8)) or (=2 5 2)
(if p = 3 (mod 8)). This implies that we can write 2p = u? — 2v? if p
(mod 8) or 2p = u? + 202 if p = 3 (mod 8).

Let F = Q(v/5) and FE = F(¢) = F(i,v/2), where ¢ := (g = (14+14)/V/2.
Note that the morphisms ¢ — (¥ with k € Z§ behave as follows: ¢ +— ¢
is the identity; ¢ — (3 is given by i — —i and V2 — —v/2; ¢ — (® is given
by i — i and V2 — —v/2; ( — (7 is given by i — —i and V2 — /2.

Define Ay € E by

_ { 2p(z + yv/5i)%(u+vv2i)* if p=3 (mod 8),
2p(z +yv5i)%(u+vv2)*  if p=7 (mod 8).

1
7
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Note that v/2p ¢ E = Q(i,/5,v/2) so A; is not a square in E. For k € ZJ
we denote by Aj the image of A; under the automorphism ¢ — (¥ from
Gal(E/F).

Let L = E(/A;). Since ug C E and A; is not a square in E we have
Gal(L/FE) = (o) = Zg, where o € Gal(L/E) is given by /A; — (v/A;.

LEMMA 1.3. The extension L/F is Galois and Gal(L/F) = 7§ X Zs.

Proof. First we prove that L/F is normal. Define a; = /A;. Let F be
some algebraic closure of F' containing L and let o € F be some conjugate
of a1 over F. Then o® is a conjugate of af = A; over F so it is of the form
Ay, with k € Z§. We show that for any k € ZJ, k # 1, we have 4;, = of,
where

s — {ai’(w+y\/5i)1(u+vﬂi)l if p=3 (mod 8),
a3 2p(z +yv5i) P (u+vyv2)"? if p=7 (mod 8),
(

)

)

o — {a?(aj+y\/5i)_l(u+v\@i)_3 if p =3 (mod 8),

i 3 (x+yv5i) 3 (u+vyv2)73 if p="7 (mod 8),
o — {2poz1_1:a{($+y\/5i)_2(u+vﬂi)_4 if p=3 (mod 8),
2p(u+vv2)a; =] (z + yv5i) S (u+vv2)"3 if p=7 (mod 8).

The proof is straightforward and it uses the relations of = Ay, 2p =
(x4+yv5i)(z—yv/51i) and 2p = (u+vv/24)(u—vv/21) or (u+vv2)(u—vv?2),
corresponding to p = 3 (mod 8) or p = 7 (mod 8), respectively, and also the
way the morphisms ¢ — ¢* from Gal(E/F) act on v/2 and 4. For illustration
we give the argument for a5 when p = 3 (mod 8). Since the morphism ¢ + ¢°
is given by ¢ +— ¢ and V2 — —/2 we have

As = 2p(x + yV5i)*(u — vV240)* = (2p)°(z + yV/5i)*(u + vv20) ™
= A3+ VB ) S+ VB = o,

where a5 = o (z + yv/5i) " (u + vv/2i) 73

In all cases we have a® = A, = 042 for some oy € L, with k € Zg.
Therefore o = lay, for some [ so a € L. So the 32 conjugates of oy over F
are (lay with k € ZJ and [ € Zs.

Let ¢ € Gal(L/F). Then ¢ is of the form ¢ + ¢k with k € ZF . Tt follows
that ¢(a1)® = ¢(A1) = Ax = of so ¢(a1) = ('ay for some I. Therefore the
32 elements of Gal(L/F) are given by ¢ — (¥, a1 + (loy, with k € ZF,
| € Zs. For k € Z§ we denote by 73 the morphism ¢ — ¢*, a1 — ay.

Let H = {r | k € Z§ }. We now prove that H is a subgroup of Gal(L/F),
the mapping k — 75 defines an isomorphism between Z§ and H, and
Gal(L/F) is the internal direct product of its subgroups H and Gal(L/E) =
(o). To do this we have to prove that H N Gal(L/FE) = {1}, 10 = o7, for
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k € Z§, and i1 = 1y for k,1 € Zg. (In fact, for the second assertion we
only need to prove that 7'3? = 7'52 = 772 =1 and 7375 = 77.)

If ¢ € HN Gal(L/E) then ¢ = 74 = o' for some k € ZJ and | € Zs.
It follows that oy = 7p(a1) = ol(ay) = Clay so Ay = af = (¢lay)® = Ay
Hence k = 1 and we have ¢ =17 = 1.

For the second assertion we note that in all cases we have a;y = afa

for some a € E. Now 1,0(¢) = 7(¢) = ¢¥ and o711,(¢) = o(¢¥) = ¢*. Also
mo(a1) = (o) = Fay and omp(o) = o(ay) = o(aka) = (Car)fa =
¢*ay,. So 1o = o7

The proof of the third assertion is more laborious as it involves many
cases. We first prove that 7375 = 77 when p = 3 (mod 8). Since 71,(¢) = ¢*
we have 7375(¢) = ¢'° = (7 = 17(¢). Also

m7s(a1) = 13(as) = (o (x + yVEi) " Hu+vv2i)73)
= a3z —yV5i)Hu+0v2i)7?
= (3 (z+yvV5i) N u+vv2i) ") (2p) e + yVE i) (u+vv2i) 3
= a1°(2p) (& + yV5i) H(u+vv2i) 7

od(z 4+ yV5i) 2 (u+vv2i) "t = ar = m(ay).

So 7375 = 77. (Recall that 73/ is given by  — ¢ ie byi— —i, /2 —/2.
Also of = Ay = 2p(z + yV51i)2(u + vv2i)4)

The proof of 7,77 = 71 in all the other cases is quite straightforward if we
follow the pattern above. The reason why it always works is the following: We
have 71,7(¢) = 7(¢!) = ¢*. As seen above, this implies that 7,7;(cv1) is of the
form (7ay; for some j. But in calculating 747;(aq), as well as 74(a1) = g,
¢ is not involved. (We only have the factors = + yv/5i, u £ vv/2i (if p =3
(mod 8)), u 4 vv/2 (if p= 7 (mod 8)), 2p and «;.) Therefore we must have
7 = 0. Hence 77 is given by ( — Ckl, a1 — ap So it is equal to 7.

Consequently, Gal(L/F) = H x Gal(L/E) = Z; x Zg. m

Let K = L. Then Gal(K/F) 2 Gal(L/F)/H = (¢H) = Zs, the iso-
morphism being given by ¢ +— ¢H. We denote by xo : Gal(K/F) — us the

isomorphism given by O"kK — ¢¥. Tt induces a character y : Gal(L/F) — ug
given by the composition with Gal(L/F) — Gal(K/F). For any o*n €
Gal(L/F) we have x(c*n) = ¢*. We obtain

(5) =1 = (I(2F)) -1

Note that o%(a;) = ¢Fay so for any ¢ € (0) = Gal(L/E) we have
x(¢) = ¢(a1)/on.
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Since (%) = —1 the extension F/Q is inert at p. Let p be the prime of F'
lying over p, i.e. p = pOp. Now —1, 2 are units in Q, so they are in the square
class modulo p of either 1 or 5. In both cases they are squares in F},. Therefore
the prime p splits completely in E = F(i,v/2). Now (z+yv5i)(z—yv/51i) =
2p and either (u + vv/2i)(u — vv/2i) = 2p or (u + vv2)(u — vv/2) = 2p
(according as p = 3 or 7 (mod 8)). So for every prime P of E lying over p
exactly one of z + yv/54 and exactly one of u + vv/2i or u + vv/2 belongs
to P. Of the four primes of F that lie over p we choose the one for which
z—yV5i € P, and u —vyv2i € P or u —vyv/2 € P, corresponding to p = 3
or 7 (mod 8).

Denote by oot the two archimedian primes of F' corresponding to the
embeddings F' < R given by /5 — £+/5.

LEMMA 1.4.

(i) x((ﬁ”)) = =P/ (mod ).
(%)) = o ot ot s
(i) X<<€Lq/F>> —1ifq#p,o0o_ and q}2.

Proof. (i) Since p splits in £ we have [Eyp : Fy] = 1 s0 Npy /p,e = € s0
(2EE) = (2HE) € Gal(L/E). It follows that

(D) (e
_ <E,A1) _ <A1,€>_1
(Recall that L = E(a;) and we faveSal A?e J; and pg C E.)

Note that ¢ is a unit in Eg so (%)8 = (NPT A1) /8 (mod B). But
Egp = Fy is an unramified extension of degree 2 of @, so ordgp = 1 and

N = p?. Since also z+yv/54 ¢ P and either u+vv/2i ¢ P or u+vv2 ¢ B,
depending on whether p = 3 or 7 (mod 8), we get ordp A; = 1. There-

fore .
((35)) = (557), == moaw

(ii) Let g = co_ and let Q be the infinite prime of E = F(() lying over q
corresponding to an embedding of F in C given by ¢ + ( (i.e. the embedding
of E = Q(V/5,i,v/2) in C given by v/5 — —/5, i i, v/2 = 1/2). Finally,

we extend Q to a prime Q of L.
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We have Fy; 2 R and Eq & Lg = C. Moreover, g4 = (1 —+/5)/2 < 0
so if ¢ = (#) then ¢ corresponds to ¢, the conjugacy automorphism
from Gal(Lg/F,) = Gal(C/R). So we want to know what automorphism
¢ € Gal(L/F) corresponds to ¢ € Gal(Lg/Fy). First note that ¢(¢) = ¢(¢) =
(=("= 7'7(() Thus ¢p = 77)p. It follows that ¢ € 77Gal(L/E) = (o).
So ¢ = o*1; for some k € Zg. We have x(¢) = ¢*.

If p = 3 (mod 8) then ¢(ay) = o¥m7(a1) = o¥(2pa;!) = 2p¢*at. On
the other hand, ¢(a) = c(ay) = @;. Hence aya; = 2p¢~*. Since aya; € Ry
and (7% € g we must have (7% =150 X((#)) = (¥ =1, as claimed. The
proof in the case when p = 7 (mod 8) is similar but this time a; = 2p(u +
vv/2)a so we get aqar; = 2p(u+vv2)¢*. So aqa; € Ry and (7F € pg will
imply this time (7% = sgn(u+v+/2). Thus X((sL/F)) = ¢k = sgn(u+vv?2).
But u? — 202 = 2p > 0 so |u| > [vv/2|. Hence Sgn(u+v\/§) = sgn(u) and we
get the desired result.

(iii) If g = ooy then gg = (1++/5)/2 > 0 so (22E) = 1, 1f q is
non-archimedian lying over ¢ # 2,p then g does not ramify in £ = F(().
If Q is a prime of E lying over q then Q does not ramify in L = E({/A;)
because A; is a unit in Fn. This happens because A; divides a power of 2p
and (2p,q) = 1. (If p = 3 (mod 8) we have x +yv/5i|2p and u + vv/2i|2p
so Ay = 2p(x+yV5i)%(u+vv/2i)* divides (2p)7. Similarly, if p = 7 (mod 8)
then Ay = 2p(z 4+ yv54)%(u + vyv/2)* divides (2p)!'.) Hence q does not
ramify in L. Since € is a unit in F' we have again (#) = 17. Therefore

X((2FF) =1
1.5. By Lemma 1.4 the relation H X((‘E L/F)) = 1 implies

x<(5’ﬁl/F)) (mod %) it p = 3 (mod ),
sgn(ﬂ)x<<5’i/F>> (mod ) if p=7 (mod 8),

where ¢ is the only prime of F lying over 2. (The prime 2 is inert in F' =

Q(V5).)

Unfortunately, calculating the local Artin map ( is very diffi-
cult since q ramifies in L. In order to circumvent this impediment we
show that if p’ = 3,7 (mod 20) is another prime and /.y, v/, o', L', x/ are
the z,y,u,v, L, x corresponding to p/, and p,z,y,u,v are close enough to
p', 2’y v/, v in the 2-adic topology, then X((eL/F)) = X((#)) Next
we show that if p = p’ (mod 16) and y = +y/ (mod 8), then our conjecture
is true for p iff it is true for p’. Hence we reduce the proof to a finite number
of p’s.

p2—l)/8 =

6(

L/F
1> : )
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LEMMA 1.6. Let k be a finite extension of Qq, O its ring of integers, m
the maximal ideal of O, and O* = O\ m the group of units. Let j > 1.

(i) Ifa e 2]:+1m then there is 3 € 2m such that 1+ a = (1+ ).
(ii) If o € 27110 and the extension k/Qy is totally ramified then there
is B € 2m such that 1 + o = 52" (1 + 8)?.

Proof. We use the following well known result: If o € 4m then 1 + «
is a square in k and 14+ o = (1 + 8)? for some 8 with SO = aO. More
precisely, (8 € %a(l + m). One way to prove this is to show that there is a
sequence (g, 31, ... with Gy = %a such that (1+ 3,)? =1+« (mod am™*!)
and [, = fBp+1 (mod %am”“) and then take 8 = lim G,.

We use induction on j. Take j = 1. For (i) we have a € 4m and, by the
result above, 1+« = (1+ 3)? for some 3 such that SO = %a@. But a € 4m
so f € 2m. For (ii) we have oo € 40 so a = 47 for some n € O*. We now
use the fact that k/Qg is a totally ramified extension so its inertia degree
[O/m : Z/2Z] is 1. Thus O/m =2 7./27 = {0,1}. Since n ¢ m we have 7j # 0
so 7 = 1. It follows that n = 1 (mod m), which implies 1 + o =1+ 4n =5
(mod 4m) so 57 1(1 + @) = 1 (mod 4m). Hence 57 1(1 + a) = 1 + oy for
some oy € 4m. By (i) we have 1+ a3 = (1 + )2 for some 3 € 2m so
1+a=5(1+p)>2%

Let now j > 1. We have a € 2/t'm or 27H1O*. In both cases a €
2/+10 C 4m. This implies that 1 + « = (1 + 7)? for some 7 such that
7O = 1a0. In the case of (i) this implies v € 2/m, while in the case of (ii),
v € 270*. By the induction hypothesis we have 1 +~v = (1 + 6)2]71 or
52j_2(1 + ﬁ)zj_l, respectively, for some 3 € 2m. Since 1 +a = (1 + v)? we
get the desired results. m

1.7. Suppose now that p,p’ are two primes = 3,7 (mod 20) and assume
that p = p’ (mod 16) and y = +y’ (mod 8).

From 2 + 5y% = u? & 2v% = 2p we see that x,y,v are odd and u is even.

If p=3 (mod 8) then u? =2p — 202 =2-3-2-1=4 (mod 8) so 4 { u.

If p=7 (mod 8) then u? =2p +20v2=2-3+2-1=0 (mod 8) so 4| u.
We reduce to the case when 8| u. If u = 4 (mod 8) then we replace u, v with
w1 = 3u + 4v and vy = 2u + 3v. (3 + 2v/2 is a unit of norm 1 in Z[/2] and
(u 4+ vv/2)(3 4+ 2v/2) = u1 + v1v/2.) Since u = 4 (mod 8) and v is odd we
have 8 | 3u + 4v = u;.

Similarly for 2/, 1/, v/, v'.

Since x,y,v,x’,y’,v" are all odd we may assume, after multiplying z, vy, v
with +1, that z,y,v = 2/,¢,v' (mod 4). If p = p’ = 3 (mod 8) then
u/2,u'/2 are odd, so after multiplying v with +1, we may assume that
u/2 = 4/ /2 (mod 4) so u = v/ (mod 8). The same happens if p =p' =7
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(mod 8), when both u,u’ are multiples of 8. Since z = 2’ (mod 4) and x
is odd we have z + 2/ = 2z = 2 (mod 4), and similarly for y + 3’ and
v+

We have 2p = 2p’ (mod 32) so 22 + 5y> = 22 + 5y (mod 32) and
u? £ 20? = u/? + 20"? (mod 32).

If p=p =3 (mod 8) then u/2 and u'/2 are odd so u?/4 = u?/4 = 1
(mod 8). Thus u? = u? (mod 32). The same happens if p = 7 (mod 8), when
8 | u,u’. Together with u? 4 2v? = u/? 4+ 2v'? (mod 32), this implies v? = v
(mod 16). Since 16 |v? — v"? and v + v’ = 2 (mod 4) we have 8|v — v’ so
v =17 (mod 8).

Since y = 3 (mod 4) and y = +y' (mod 8) we have y = ¢ (mod 8).
This implies that y?> = y? (mod 16). (We have 2|y + 4 and 8|y — ¢’ so
16 | y? — y2.) Since 22 + 5y? = 2 + 5y"? (mod 32) and y? = y? (mod 16)
we have 72 = 2’2 (mod 16). Thus 16|22 — 2/? and = + 2/ = 2 (mod 4) so
8|z —a'. Let 2’ — x = 8a and 3y’ — y = 8b. Then

2? + 5y° = 2% + 5y = (v + 8a)® + 5(y + 8b)*
= 2% + 16xa + 5y* + 80yb (mod 32)

so 2| xza + 5yb. But z,y are odd so we get a = b (mod 2).

In conclusion, we reduced to the case when z, y, u,v=2',y', v/, v' (mod 8),
and if z — 2/ = 8a and y — ¢y’ = 8b, then a = b (mod 2). Also z,y,v,2’,y’, v’
are odd, and if p = p’ = 3 (mod 8), then u/2,u’/2 are odd as well.

Note that 2 is inert in F' = Q(v/5) and is totally ramified in Q(¢) =
Q(i,v2), so in E = F(¢) = Q(v/5,4,v/2) there is only one prime £ over 2
with ramification index eq/o = 4. Let q1,q2 be the primes of Q(v/54) and
Q(v21i) (if p = 3 (mod 8)) or Q(v/2) (if p = 7 (mod 8)) lying over 2. We
have eq 5 = €4,/2 =250 €q/q, = €q/g, = 2.

Denote by Oq the ring of integers in Fy and by q = qOq4 the maximal
ideal of Oy. We do the same for qi,q2,Q. Also denote by O, the ring of
integers in Qy and by 2 = 20, the maximal ideal of Os.

LEMMA 1.8. If A, is the Ay corresponding to p' then A} = (V5 )84,
for some integer s and somet € 1+ 29.

Proof. If p = 3 (mod 8) then g» is generated by v/24. Since u is even
and v is odd we have ordg, (u + vv/2i) = 1. Now 8|u/ — u and 8|v — v so
(v +v'V2i) — (u+vv2i) = (v —u) + (v — v)V/2i € 804,. Together with
ordg, (u + vy/21) = 1, this implies that

u +v'\V2i
u + v\/ii
By Lemma 1.6(i) applied to k = Q(v/21),, we get

—1€8q," = 4qs.
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u +v'V21
u + U\/ii
Similarly for (v’ + v'v/2)/(u + vv/2) when p = 7 (mod 8).

We have NQ(\/gi)ql/QQ (z+yv5i)=2p so ordg, (z+yv/5i) =3 ordg, 2p=1.
Now (2’ +y'v/514) — (v +yv/5i) = 8a+8bv/5i, where a,b € Z have the same
parity. But NQ(\/Sz‘)ql/Qz (a+bv5i) = a® 4 5b% is even so a + byV/5i € q. It
follows that (z/+y'v/51) — (z+yv/51i) € 841, which, together with ordg, (z +
yv/5i) = 1, implies that

=12 witht; € 142§, C 14 29.

/ / 5 .
M — 1€ 80y,
x +y\/52
By Lemma 1.6(i) and (ii) applied to k = Q(v/51)g,, this implies that
o+ YVEiL g, ~ A
————— =5*"2t5, where s € {0,1},to€1+4+2q; C1+42Q.
2+ yvoi 2 2 € {0,1}, to q1

Since p = p’ (mod 16) we have p'/p € 1 4 160;. By Lemma 1.6(i)
and (ii) apphed to k = Qq, we have p'/p = 53§ where s3 € {0,1} and

ts€1422C1+29.
If p =3 (mod 8) then
VAL =552 )2 (1) = (VB 1)°
with s = s3 + s9 and ¢ = tstaty. If p =7 (mod 8) then
VAL =552 )0 (1) = (VB 1)°
with s = s3+3s9 and t = tgtgtl. Since t1,to, t3 belong to 1 —1—255, sodoest. m

LEMMA 1.9. We have

((49) ()

Proof. Let ¢ = (#) Then ¢ = (¢, Lo/Fy), where Q is a prime of L
over £, so over (. Since —1,2 € Q5 and N(@(\/g)q/(@2 () = —1 we have

(o) =)= ()2 (57)
so ¢(i) = —i and ¢(v/2) = V2. It follows that ¢(¢) = = ¢~ = (7 = m(0).
So ¢|g = T7|p, which implies that ¢ € 77Gal(L/E) = 77(0). So ¢ = oPr; for
some k € Zg. We have x(¢) = x(co* 77) ¢k,
We have 77(a1) = a7 = 2paj! or 2p(u + vv/2)a;?, corresponding to
= 3 or 7 (mod 8). So ¢(a1) = ofrr(ar) = o (2pa;t) = 2p¢Fat or
d(a1) = 2p(u + vv/2)¢Fag!, respectively.
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We make the same reasoning for p’. Denote by ¢, @', k’ the ¢, Q, k cor-
responding to p’. Our goal is to prove that ¢* = ¢

We have Lg = Eq(a1), of = Aj € Eq, and ug C Eq. It follows that Lo
is the splitting field of X® — A € Eq[X]. Similarly Ly is the splitting field
of X8 — A). By Lemma 1.8 we have A} = B34;, where B = /5't € Eq,
so Ly = Lg. Let ¢ : Ly, — Lg be an isomorphism with ¢p, = 1g,. We
have ((a)))® = ¢(A}) = A} = B®A; = (Bay)® so () = ¢! Bay for some
integer [.

Now ¢ = (e,1(Lly)/Ba) = (e, Lo [Ba)y™" = wd'v" s0 i = /o,
In particular, ( (0/1)) = w(¢>’(a1)) But 1fp =3 (mod 8) then
$(1(ah)) = o(¢ Bal) '9(B) - 2p¢Far
b(¢' () = (2P’ ¢F )—QC ¥ B e
It follows that ¢¥'—F = ;(qu(B))— . We have B = /5t so B$(B) =
5%t¢(t). By Lemma 1.8, ¢ belongs to 1+ 29 and so does its conjugate, o(t).
Since also 5 € 1440, C 1+29 we get B¢(B) € 1429, which, together with

p/pel+160, C 1+ QQ implies ¢ % € 1+ 29. By a similar reasoning,
if p=7 (mod 8) we have

k_g’ u +v'V2
P outov2

u +v'/2
U+ v\@
(see the proof of Lemma 1;8) we get again C’i_k €1+29.
We have ¢V =% € 1 +2Q so 1 - ¢¥* € 29, which implies ¢¥'~% = 1. (If
neus,n#1,then 1 —n|2s01—n¢29.) Thus (¥ =¢*. u
LEMMA 1.10.
(i) If p=3 (mod

¢H- (Bo(B)) ™.

Since

€144 C1+29Q
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Proof. Note that p 1 xyuv.

Let ¢ # 2,5,p be a prime. If ¢|x, then 2p = 2% + 532 = 5y? (mod q).
Hence (%) = 1, which implies (%Op) = 1. The same happens if ¢ t z,
when both z and 10p are units in Q,. We also have 10p > 0 so (%c?p) =1.
By Hilbert’s reciprocity law we get

z\  [(z,10p\  [(z,10p\ (z,10p

p) \ » ) \ 2 5 )
But 51 x so (@) = (%) Since 2p = 2 + 5y? = 22 (mod 5) and (%1) =1,
the quartic residue symbol (25—1”) 4 1s defined and is equal to (%) Hence

()= (=2")(3),

But if p = 3 or 7 (mod 8) then modulo Q5? we have 10p = 14 or 6,
respectively. This yields the formulas for (%) in (i) and (ii).

Similarly if ¢ # 2,p is a prime then either ¢ |y so 2p = 22 + 5y? = 22

(mod ¢q) so (%p) =1so0 (%) =1, or ¢ty so again (%) =1. Also 2p > 0
SO (%) = 1. Hence (%) = (%) = (yQﬁ) By the same proof (%) = (%)
(in both cases when u? + 2v? = 2p). But if p = 3 or 7 (mod 8) then 2p = 6
or 14, respectively, in Q5 /Qx?. This gives the formulas for (%) and (%) in
(i) and (ii).

If p = 3 (mod 8) then for any prime ¢ # 2,p we have either ¢|u so
2p = u? + 2v% = 2v? (mod p) and so (%) =1so0 (%) =1, or ¢ { u and again
(%) = 1. Similarly if p = 7 (mod 8) then 2p = u? — 2v? implies (%) =1

for ¢ # 2, p prime. If p = 3 (mod 8) then p > 0 so (%) =1 and so

()-(5)- (%)~ (%)

If p=7 (mod 8) then —p € Q52 so (“52) = 1. We get

(£)-(:)(52) -

REMARK 1.11. If s,t are p-adic units and s = ¢ (mod p) then

s = <j)t (mod p).

Indeed, if s = ¢ (mod p) then (%) = 1, while if s = —t (mod p) then
(S—t) = (;1) = —1. Also note that, since (;1) = —1, we have (9) =« if
P P P P

a € {£1}.
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LEMMA 1.12. Let o, 3 € {£1} and let s,t be integers in Q, such that
s+tV/b = a+ﬁl (mod B).

(i) Ifp= 3 (mod 8) then

s = 2052 (5 ()
o () ) () (5

(ii) If p="7 (mod 8) then

s = 2P=3)/4 <U’214> sgn(u)a (mod p),

t= 10(13—3)/4(36’26) <y214> (U’214> (?)48@(%)6 (mod p).

Proof. (i) We have p { zyuv and x — yVBi,u—vv2i € Psox=y/5i
(mod P) and u = vv/2i (mod R). It follows that

Hence

Since both sides belong to F}, the congruence will also hold modulo p. This
implies

sz—ﬁg (mod p), t=—a?’ (mod p).
u zu

We have
v i ~ « ~
=—-03-=— d tvh = —a—+vVhb=— d B).
s I} =3 (mod ), V5 = a? - 7 (mod P)
Takmg squares yields s> = —1 (mod ‘,]~3) and 5t2 = 1 (mod i]?) so t? = ﬁ

(mod &]3). Since all sides belong to @), these congruences will also hold mod-
ulo p. It follows that (7?2) = (%) =1 and so (—2)P=D/2 = 10(-D/2 =
(mod p). Thus s? = L5 = ((=2)P=3/1)2 (mod p) so s = £(—2)P~3)/4 and
similarly t = £10?~3)/4 (mod p).

By Lemma 1.10 and Remark 1.11 we have

-3)/4
o= <(—2>(p)/5>(_2)(p3>/4 _ <5> o(p-3)/4
b b

- (oo (52) () omn
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(Note that (p — 3)/4 is even.) Similarly

—3)/4
L= (10<p>/t> olp=3)/4 ( >1O(P 3)/4 <—x3~ﬂ“’0‘>10(p—3)/4
p P p
_ge-3ya( 14N (4,6 (u,3Y (0,6 (2p
0 < 2 >< 2 2 2 5 )" (mod p).

If p =7 (mod 8) then again z = yv/5i (mod P) but u = vv/2 (mod P).
So this time

1 v ~ 1 Yyv
— =— (mod P), — =—-"-5.
B (mod ) N
We get
s+tV5 = %a— ELVE 5 (mod P)
so
s=2a (mod p) and tz—gﬁ (mod p).
u U
Now
(Y (6] ~ yv ~
— o0’ ="2 (mod V5= — = d ).
s=ay =z mdP), wE=-p 5= f<mo F)
Just as for the case when p = 3 (mod 8), we get s> = 1 (mod p) and
5t = —1 (mod p) and so t? = — L (mod p), which, by the same argument,
will 1mply
s UV v, 14
5= 2(p_3)/45< ):(’ )sgnua mod p
) (52) (2 i
and

t = <t> (—10)P=3)/4 = <W> 10(P—3)/4

p

4 4
— 10(—=3)/4 <:U’26> <y’21 > <U’21 ) (25P>4 sgn(u)B (mod p),

as claimed. (Note that this time (p—3)/4 is odd so (—10)®=3/4 =
—10P=3)/4)) u

LEMMA 1.13. We have

_ 2
Fopr)ya=2- 10(P=3)/4 <5p> A (mod p),  Lpy1)a = o(r+1)/4p (mod p),
4

where A, B € {£1} depend only on p mod 16 and +y mod 8.

Proof. As seen in 1.2, e*! = —1 (mod p). This congruence also holds
modulo P so eP+1/4 =y (mod B) for some primitive n € us.



Two conjectures by Zhi-Hong Sun 113

By 1.2 we have
St/ = (—1)(p_3)/85(p2_1)/8 (mod p) if p=3 (mod 8),
T (=1)®HD/Be=@*=1)/8 (1nod p) if p =7 (mod 8).

These congruences also hold modulo PB. Together with 1.5 they imply
that e®*1/* = 1 (mod P), where v € pg is given by

<_1)<p3>/sx<<57L/F)> if p=3 (mod 8),

q
L/F\\ "'
(—1)Pt+1)/8 sgn(u)x((g’ / )) if p=7 (mod 8).
It follows that n = v (mod ), which implies that n = v. (If 51,72 € ug and
n = n2 (mod PB) then 7, = 72 since otherwise 1 — 12 |2 so n1 —n2 ¢ P.) In
particular, since n = v is primitive in ug, so is X((ﬂ))

q
Let X((#)) = (a+ Bi)/v/2. We have

L F 5t
(etD/4 | TH)/4 /e (p+1)/4 — n (mod ‘P),

2 2
where .
n=(—1)P-3)/8 atpi if p=3 (mod 8)
and
N —1 .
1= (0P s (S = e g (20

if p="7 (mod 8). By Lemma 1.12 this implies that

F L
Fornya _ 10@3)/4(2;’) A (mod p), w = 20-9/1B (mod p),
4

2
u,3\ (v,6 e
(2>(2>a if p =3 (mod 8),

where A, B € {£+1} are given by

_(_1)(10*3)/8 z, 143 [y, 6
A= 2 2
B 1

—(—=1)P+1)/8 <$’6> (y, 4> <v, 14)5 if p=7 (mod 8),
AP 2
and
_(_1)<p—3>/8<“é3> (”’26>@ it p =3 (mod 8),
B =
(1) 8 (”214>a if p=17 (mod 8).

We still have to prove that A, B depend only on p mod 16 and +y mod 8.
Suppose that p = p’ (mod 16) and y = +y’ (mod 8). Denote by o/, 5/, A’, B
the «, 3, A, B corresponding to p’. We have to prove that A = A’ and
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B = B'. By 1.7 we can restrict ourselves to the case when z,y,u,v =
',y w0 (mod 8). Also x,y,v,2',y,v" are odd and, if p = 3 (mod 8),
then u/2,u’ /2 are odd integers. This implies that zz’, yy', v’ € Q2. More-
over, if p = 3 (mod 8), then u/2,u'/2 are odd and u/2 = u//2 (mod 4) so
wu' € Q2 U5QR2.

To prove that A = A’ we show that the various factors that occur in
A are equal to the similar factors from A’, and similarly for B = B’. By

Lemma 1.9 we have X((#)) = X/((%)) soa=c and 8 =0
If p=p' =3 (mod 8) then p = p' (mod 16) implies that (—1)P—3)/8 =
(=)' =3/ From za', yy',vv’ € Q52 and wu’ € QF? U5Q5? we also have

(acx’,14) B (yy’,ﬁ) B <uu’,3) B (vv’,6> _1q
2 2 2 2
x,14 2,14 y,6 y',6
(5)-(57) (%)-(%)
u, 3 u', 3 v,6 v, 6
(5)-(5) (%)-(5)
Together with a = o/ and 3 = [/, these imply A = A’ and B = B'.

If p=p =7 (mod 8) then p = p’ (mod 16) implies that (—1)(17_3)/8 =
(=)@ =3)/8 and za’,yy/, 00’ € Q% implies that

zx',6\  [(yy, 14\ (o014 1

2 ) 2 B 2 B
x,6\ (2,6 y, 14\ [y, 14 v,14\ (v, 14
2 ) \\ 2 ) 2 )\ 2 ) 2 )\ 2 )

Together with o = o/ and 8 = //, these imply A= A" and B=B’. u
Proof of Conjecture 1.1. Note that the factor (—1)IP=5)/10 which ap-
pears in the expression for Fi,,1)/4 mod p is equal to —(%’)4. (If p =3

(mod 20) they are both —1; if p = 7 (mod 20) they are both 1.) There-
fore Sun’s conjecture states that F, 1y, = 2- 10(5"_3)/4(%)414 (mod p) and

Lips1y/4 = 2PHV/4B (mod p) where
_ )1 if y = £251 (mod 8),
1 ify# £251 (mod 8),
(PO iy = £22d (mod 8),
| ()@ ify 2 +220 (mod 8).

Obviously A, B defined this way depend only on p mod 16 and +y mod 8.
In view of Lemma 1.13 the conjecture has to be verified only for a set of

SO

SO
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primes p such that p covers all the possible remainders modulo 16, namely
3,7,11,15, and +y covers the odd remainders modulo 8, i.e. £1 and +3.
One can check that 3,7,23,43,47,67,107,127 cover all eight possibilities.
(We have 2-3 = 12 +5-12, 2.7 = 32 +5-12,2.23 = 12 + 5. 32,
2.43=92+4+5.12,2.47=72+5-32,2.67=32+5-5%,2-107 = 132+ 5- 32
and 2-127 = 32 +5-72.) But Sun checked the conjecture for primes up to
3000, including these.

2. (2+v3)P+*D/® mod p when p =7 (mod 24). Let
Vi + UpV3 = (24 V/3)FD/4,

CONJECTURE 2.1 (Z. H. Sun, 1988). If p is a prime, p = 7 (mod 24),
and z,y € Z with x = 1 (mod 3) such that x> + 3y? = p, then

(U(p+1)/8> _ (_1)((x+4)2—4)/32 <V(p+1)/8> _ (_1)(332—4)/32.
p ’ p

Note that 22 + 3y? = p = 7 (mod 8) implies that y is odd and x = 2
(mod 4). Therefore

(_1)((7z+4)274)/32 _ _(_1)((x+4)2—4)/32’
(_1)((—;;:)2—4)/32 _ (_1)(#—4)/32.

Since also (5£) = —(%) we can remove the condition # = 1 (mod 3),

provided that we replace (—1)((@+49)?=4)/32 1y (—1)((Z+4)2_4)/32(%). (Ifx=2
(mod 3) then replacing by —x will not change the outcome of the two
formulas.)

By Lemma 2.11 these will yield some formula for (2 + v/3)®+1)/8 mod p:
Ulprryss = —(— 1)@ =0/526(0=3)/ 4<:§> (mod p),
Viprys = (-1 0/3290=3/4 (mod p).

An alternative formula for (2 4+ v/3)®*1/8 mod p is provided in [L, Ex-
ercise 9.9, p. 315], but it also involves writing p as p = ¢? 4 6d? = €% — 22
with ¢,d,e, f € Z.

We will also prove a related result regarding (2++/3)®+5)/8 mod p when
p =19 (mod 24).

THEOREM 2.2. If p =19 (mod 24) is a prime and p = x> + 3y* then
(—1)(@tpHD)/8g(p=3)/4 g (mod p) if 8tz

Upts)/s =
(—1)@HPH3)/50-9/1 (mod p) i8]z,
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and
(—1)@tpt1)/8 . 3. 6(p—3)/4 <§> (mod p) if 81x,
(—1)@+p+5)/82(=3)/4 (mod p) if 8.

REMARK. Since 22+3y? = p = 3 (mod 8) we have 4 | z. If z = 4 (mod 8)
then (x 4+ p+1)/8 € Z so the formulas above in the case 8 { + make sense.
Moreover, (z +p+ 1)/8 and (—x + p + 1)/8 have opposite parities, which,
together with (52)=— (%), implies (—1)(@FPH1/8(2) = (—1)(-z+p+1)/8 (),
So the formulas from Theorem 2.2 are preserved if we replace z by —=.

If 8|z then (x+p+5)/8 € Z and (x+p+5)/8 = (—x+p+5)/8
(mod 2) so again the formulas from Theorem 2.2 make sense and they do
not change if we replace x by —x.

2.3. We will treat the two problems together. Note that p=7, 19 (mod 24)
means p = 7 (mod 12). We have p =1 (mod 3) and the two cases, p = 3, 19
(mod 24), correspond to p = 3, 7 (mod 8) respectively.

We have 2 +v/3 = (14+v/3)2/2. Let ¢ = 2+ /3 and ¢/ = 1 + /3 and

Vip+5)/8 =

denote by g, their conjugates. We have (%) = —1 50 p is inert in Q(v/3).
As in §1, we obtain eP*! = 2 = 1 (mod p) and P! = ¢'# = —2 (mod p).

We reduce our problem to finding /**~1)/8 mod p.

If p=7 (mod 8) then e®+1/8 = 2=(P+1)/8/(p+1)/4 Byt as in 1.2, we
have

p+1)/4 — 5’*(172*1)/8(5/p+1)(p+1)/8 = (_2)(p+1)/8€*(p271)/2 (mod p).
It follows that

cpt1)/8 — (_1)(p+1)/8€/*(p271)/8 (mod p).
If p =3 (mod 8) then
gPH9)/8 — 9=(pF5)/8/(p+5)/4 — 9= +3)/8(1 4 \/3)/(PT1)/4,

As in 1.2, we also have

Sp+1)/4 — 5/(p271)/8(5/p+1)*(%3)/8 = (_2)7(%3)/85/(172*1)/8 (mod p).
It follows that

e t9)/8 = (_1)(=3)/8y~(p+1)/4(1 4 \/§)€/(p271)/8 (mod p).
Theorem 2.2 can be stated as:

ePHE = Vipys)/s + UppisysV/3
(—1) P H1)/86-)/4 <§> (3+3) (mod p) if 81z,
(—1)(@tp+5)/89(=3)/4(1 4 \/3) (mod p) if 8| x.
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Since e(PH5)/8 = (—1)(P=3)/82=(p+1)/4(1 4 \/3)e'®*~1/8 (mod p) this is equiv-
alent to

r— — z :
5'(172—1)/8 = (—1)( H/83(p=3)/4 <3>\/§ (mod P) if 81z,

(—=1)*/8 (mod p) if 8| x.
(Here we use the fact that (%) = —1 s0 2Pt N/46P=3)/4 = 2(p=1)/23(r=3)/4 =
_3(p73)/4 (mod p) and 2(p+1)/42(p73)/4 — 2(}7*1)/2 = -1 (mod p))

From now on, the proof follows the pattern from §1. We write p = u?+2v>
if p=3 (mod 8) and p = u? — 2v? if p = 7 (mod 8). Note that the relations
p = 22 + 3y? = u? £+ 202 are similar to 2p = 22 + 5% = u? &+ 202 from §1.
Therefore we can repeat the definitions and results from §1 with Q(v/5), 2p

and x & yv/51i replaced by Q(v/3), p and z + yv/3i. So we take F = Q(+/3)
and E = F(¢) = Q(v3,v2,i). We define L = E(¥/A;), where A € E is
given by
{p(az +yv30)2(u+vv2i)* if p=3 (mod 8),
Al =
p(z +yv3i)%(u+vv2)*  if p=7 (mod 8).
Again Gal(L/E) = (o) = Zg where o is given by v/A; — (/Ay. For k € Z§
define Ay and oy similarly to the proof of Lemma 1.3. The analogue of
Lemma 1.3 will hold so Gal(L/F') = Z§ x Zg. More precisely, Gal(L/F) is
the internal direct product of its subgroups H = {7, |k € ZJ } and (o).
Just as in §1 we define x : Gal(L/F) — ug by o¥r s ¢F.
Define p,3 and ooy as in §1. By a proof similar to that of Lemma 1.4
we have:

LEMMA 2.4.

(2
()
.

=/~ (*-1)/8 (mod ‘B).

;{1 if p=3 (mod 8),

sgn(u) if p="7 (mod 8).
(iii) << >—1ifq7ép,oo_ and q 1 2.

(Note that for (i) we use the fact that ¢/, = 1— /3 <0, and for (iii)
the fact that e/ L= = 14++v/3 > 0and €| 2 so0 it is a unit at all nonarchimedian
primes q with q 1 2.)

So ¢/P*~1)/8 = X((#)) or sgn(u)x((al’L#)) (mod PB), according as
p =3 or 7 (mod 8), where q is the prime of Q(+/3) over 2.

2.5. We now take another prime p’ = 7 (mod 12) and let 2,3’ ,v/,v" be

the corresponding x, y, u, v. Assume that p = p’ (mod 16) and either x = 2’
(mod 16) or z = 2/ =0 (mod 8).
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Since u? 4+ 2v% = 22 + 3y?> = p = 3 (mod 4) we see that z is even and
y,u,v are odd, and similarly for 2/, v, «’,v’. By multiplying vy, u, v with &1
we may assume that y,u,v = ¢/, u/, v’ (mod 4). This implies that y + ¢/ =
u+u =v+0 =2 (mod 4).

Since v, v are odd, we have v?> = v> = 1 (mod 8). Together with u? +
202 = p = p' = u? + 20 (mod 16), this implies u*> = v/?(mod 16). Since
16 |u? — u? and v’ +u = 2 (mod 4), we get 8 |u’ — u.

If 2 = 2/ (mod 16) then 16 |z — 2’ and = + 2’ is even so 32|z — 22
The same happens if z = 2/ = 0 (mod 8). This implies that 3(y"? — y?) =
p —p+2a?—2 =p —p (mod 32). Since 16| p’ — p we have 16 | 2 — y? and
32| y? —y? iff 32|p' — p. But ¢/ +y =2 (mod 4) so 8|y’ —y and 16|y’ —y
iff 32| p’ — p.

Also note that if p = 3 (mod 8) then 2+ 3y? = p implies that 4 | z, while
if p =7 (mod 8) then x = 2 (mod 4); and similarly for /. In particular, if
p=p =7 (mod 8) then x = 2’ (mod 16) since we cannot have z = 2/ =
(mod 8).

We now prove the analogue of Lemma 1.8. Let Q,q1,q2 be the only
primes of E,Q(v/34) and Q(v2i) or Q(v2) lying over 2. Define Q, 41,42
and 2 as in §1.

LEMMA 2.6. If A} is the Ay corresponding to p, then A} = (V/3't)8A;
for some t € 1 +29Q, where s =0 if x = 2’ (mod 16) and s = 1 otherwise.

Proof. Note that u 4+ /24 (or u + vv/2), z + yv/31i|p, which is odd, so
u+ /24 (or u+vv2), x +yv/34,p are units in Og,, Oq, , O3 tespectively.

Suppose that p = 3 (mod 8). Then gy is generated by v/24. Since 8 | u' —u
and 4 |v'—v, we have (v +v'v/21) — (u+vv/2i) = (v —u)+ (v —v)V21i € 4qs.
Since also u 4+ vV/2i € Og, we get

u +v'V21

—— — 1 € 4qo.
u+vv2i 12

By Lemma 1.6(i) we have

! / 2 . o~
w:t% for some t1 € 1+ 2q2 C 1+ 29Q.
u+vv2i

Similarly for %@ when p = 7 (mod 8).

+vv/2
We have = 2/ (mod 8) and y = ¢/ (mod 8). If z+y = 2’ + ¢’ (mod 16)
then we can write x — 2’ = 8a and y — 3y’ = 8b with a + b even. This

implies that N(@(\/gi)ql/(@2 (a+ b\/?;z) =a? 4+ 3b% is even so a + bV/3i € gy so
(z' +y'V3i) — (x +yV3i) = 8(a+ bv/3i) € 84;. Since also z +yv/3i € OF
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we have
/ / 3 "
z +y\f'z_1€8q1
:c—i—y\/gz
By Lemma 1.6(i) applied to k = Q(v/31)4, we get
o +y'V3i - =~
———— =15 forsomets €1+42q; C1+29.
T +yV3i 2 ? o

If x+y # 2’ + v (mod 16) then 2’ +3y' =z +y + 8 (mod 16). Note that
x+yisoddso 9x+9y = z+y+8 = 2/ +y' (mod 16). Since also 9z = x = 2/
(mod 8) and 9y = y = ¢/ (mod 8), by a similar reasoning to the one above,
we get

o +yV3i ' +y'V/3i

2T 45 so —2 =09t} for somet €1+29.
92 + 9yv/3i v +yV3i 2 ?
In conclusion,
/ / 3 . -
M — 3224 with ty € 1+ 29,
x4+ y\/gz

where so =0if x +y=2"+y (mod 16) and so =1l ifx+y=2"+y +8
(mod 16).
If p = p' (mod 32) then p’ — p € 320, = 162, which, together with
p € O, implies that p//p — 1 € 162. By Lemma 1.6(i) applied to k = Q2
we get p'/p = t§ for some t3 € 1+ 2Cc1+29. Ifp#yp (mod 32) then
p' = p+16 (mod 16). But p is odd so 81p = p+80 = p+16 = p’ (mod 32). As
in the previous case, we get p’/81p = 5, so p//p = 81t} for some t3 € 1+29Q.
For short, p’/p = 33§ with t3 € 1 + 29, where s3 = 0 if p = p’ (mod 32)
and s3 = 1if p=p' + 16 (mod 32).
If p =3 (mod 8) then
iﬁ B 1)’<x’+y’\/§i>2<u’+v’ 27j>4
A p\z+yV3i u+vy/2i
= gii(2e) (1) = 3105 (51,
If p=7 (mod 8) then
A ]J’(x'+y’\/§i)6(u’+v'\/§)4
At p\ z+yV3i u + vv/2

_ 3483t§(3282t%)6(t%)4 _ 34(83+382)(t3t%t1)8.

By 2.5 we have either p = p’ (mod 32) and y = ¢/ (mod 16), or p = p'+16
(mod 32) and y = v + 8 (mod 16). We now consider separately the cases
z =2’ (mod 16) and x = 2/ + 8 (mod 16).
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If x = 2’ (mod 16) then either p = p/ (mod 32) and = +y = 2/ + ¢/
(mod 16), or p = p’ + 16 (mod 32) and = +y = 2’ + 3 + 8 (mod 16). This
implies that either s3 = sy =0 or s3 = so = 1. If p =3 (mod 8) then

A ttot1)®
1 34(53+52)(t3t2t1)8 _ { (83 2 1) (;1“ .
Al 3 (tgtgtl) = (—3t3t2t1) .

If p=7 (mod 8) then

3418
Aill _ 34(83+382)(t3t%t1)8 _ { (t3t2t1)
A 310(t3t3t1)® = (9tst3tr)®.
Thus A} /A1 = t°, where t = tstat1, —3tstat1, t3t3t) or Otstits. But t3,ta,11 €
1+29 and also —3,9 € 1 +40; C 1+ 29. So in all four cases we have
tel+29.

If 2 = 2/ 4+ 8 (mod 16) then either p = p’ (mod 32) and x+y = 2’ +y' +8
(mod 16), or p = p’+16 (mod 32) and z+y = 2’ +¢' (mod 16). This implies
that either s3 = 0,s9 =1 or s3 = 1,9 = 0. Since z Z 2’ (mod 16) we must
have x = 2/ =0 (mod 8) so p = 2% + 3y? = 3 (mod 8). We get

Ay

Ay
But t3,t2,t; belong to 1 + 29) and so does t.

= 3405H52) (451011)8 = 34 (t3t0t1)® = (V31)®, where ¢ = tslot;.

Let E’, X' be the E, x corresponding to p’.
LEMMA 2.7. We have

N )

(Note that if p=p' =7 (mod 8) then by 2.5, x = 2’ (mod 16) so the factor
(=1)@'=2)/8 can be dropped in the formula above.)

Proof. Let ¢ = X((#)) We have N Q(V3)q /Qz( g')=—-2so

Co)=C) = (5)- ( )
q 2
Thus ¢(i) = —i and ¢(v/2) = v/2 and so ¢(¢) = ( =

Now the proof follows that of Lemma 1.9. We have Al = B%A;, where
B = V3%t It X((#)) = (¥ and X’((#)) = (¥ then we have to
prove that ¢¥~% = (=1)#~2)/8 By the same proof as for Lemma 1.9 we
have

K- pou V2 1
¢ p(B¢( )~' or » u+vf( ¢(B))",



Two conjectures by Zhi-Hong Sun 121

according as p =3 or 7 (mod 8). Now p = p’' (mod 16), so p'/p € 1+160; C
1429, and if p =7 (mod 8), then
u +v'\2
u+vv2
On the other hand, B = v/3"¢ so B¢(B) = 3°t¢p(t). By Lemma 2.6, t belongs
to 1429 and so does its conjugate ¢(t). In the case x = 2’ (mod 16), when
(=1)#'=2)/8 = 1 we have s =0so (Bé(B))™t = (to(t))~! € 1 +2Q. This
implies that Ck/_k € 1+ 29 and so Ck/_k = 1. In the case z = 2/ + 8
(mod 16), when (—1)(36/*"6)/8 = —1, we have s = 1 so 3(B¢(B N~ =
(to(t)) "t € 1+ 29Q. It follows that 3& “F €1+ 2Q. Together with 4¢¥ ~F €
404 C 29, this implies by subtraction that —C* % € 1 + 29 and so
—(Mk=1
LEMMA 2.8.
(i) If p =3 (mod 8) then

0-6) 0)-()

0 e 0-@)
()= ()won ()= ()

Proof. As in the proof of Lemma 1.10, the relation 22 + 3y? = p implies
(L?”’) =1 for ¢ #2,3,p and (%) =1 for ¢ # 2,p. Also (%) = (%2) =1.

q o0
Therefore

x\ (x3p\ _ (x,3p\ [z, 3p\ _ [(x,3p\ [z y\ _(v:p\_ (YD
()-(5)-()050)-(27)6)- 6)-(5)-(%)
If p=3 (mod 8) then (%2) =1 and (%) = (%*). If p = 7 (mod 8) then
(IT?’p) = (zé‘r’) and (%2) = (4 7) This yields the formulas for (g) and (%)
from (i) and (ii).

If p = 7 (mod 8) then u? — 2v? = p implies (“’%zp) =1 and (”(’Ip) =1
for ¢ # 2,p. Also (%2) = 1. Hence

(5)=(52) = (“29) (%) = (15 s
()= ()= (%) =

€144g, C1+29.

g

<
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LEMMA 2.9. Let s,t € Op, o, 3 € {£1}.

(i) Ifp=7 (mod 8) and s +t\/3 = a\—;@i (mod P) then

s = <8>2(p_3)/4 (mod p) and t= —< 6=/ (mod p).

p
()= (5 e (5)--(5)0
(i) If p=3 (mod 8) and s+ tv/3 = Bi (mod P) then s = 0 (mod p)

and t = ( )3(;: /4 (mod p). Also (1%) - _(%)ﬂ'

Proof. (i) We have z — yV3i,u—vv2 € P so z = yv3i (mod P) and
u = vv/2 (mod B). Since also p | zyuv, we have

—%\/?, (mod ).

;)
5

[

= (mod P) and

V2

Sl

Therefore

s+tV/3= a\—;iﬁz Ea%—ﬁ%\/g(mod‘i).

Since both sides belong to F}, the congruence will also hold modulo p so
sza% (mod p), ——ﬂ— (mod p).
By Remark 1.11 we get
<S) (uva) (uv) (t) <—ajyuvﬂ) (xyuv)
)= (") = (e (o) = = - 8.
p p p p p p

‘We have

(mod P), tV3=-7 yv\f = 7 (mod P)

so s? = § (mod ‘,]3) and 3t = —3 (mod P). Since both sides belong to Qp,
these congruences also hold modulo p. Consequently, s? = % (mod p) and
t? = —1 (mod p). It follows that (%) = (_76) = 15020-D/2 = (—¢)(P-1/2 =
1 (mod p). Therefore s? = 1 = (2?P=3)/4)2 (mod p) and so s = +2(P—3)/4

(mod p). By Remark 1.11 we have

~3)/4
5= (2@)/8> 9(P=3)/4 _ <8> 2(P=3)/4 (mod p).

p p

. <t> (—6) -3/ — _ <t> 67-3/1 (mod p).

p p
(Note that p =7 (mod 8) so (p — 3)/4 is odd.)

Similarly
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(ii) The congruence z = yv/3i (mod P) implies i = —2/3 (mod ) so
s+ tv3 = —B%/3 (mod P). It follows that s = 0 (mod p) and t = —p%
(mod p). By Remark 1.11,

Ly
()
p

t\  [—zyB\ _

<p> - ( p ) -

We have tf ﬁy\f Bi (mod ‘B) so 3t2 = — (mod ‘,]3) This
implies t* = —% (mod p). We have (7?) =1s0 (=3)"=1/2 =1 (mod p).

Thus t? = —é = ((=3)P=3/%)2 (mod p) so t = +(—3 )(p 3)/4 (mod p). By
Remark 1.11 we have

—3)/4
- <(_3)(p)/t>(_3)(1?—3)/4 _ (t)3<p—3>/4 (mod p).
P b

(Note that p =3 (mod 8) so (p — 3)/4 is even.) =
2.10. By 2.3 we have £”*! = —2 (mod p) so

S?-1)/2 — (_2)(17—1)/2 — <_p2> (mod p)

and this congruence also holds modulo ‘ﬁ If p = 3 (mod 8) then &' -1)/2 =
1 (mod P) so /P ~1/8 =y (mod ‘B) for some n € py. If p =7 (mod 8)
then &/(P*~1/2 = _ (mod ‘B) so £'P*~1/8 = 5 (mod ) for some primitive

n e us.
If p =3 (mod 8) then by Lemma 2.4 we have

/ ~
g =1/2 = X<<€ ’ﬁ/F>> (mod ‘B)
e’ ,.L/F

son = x(( - )). (If n,n" € pg and n = 7' (mod P) then 1 = 7 since
otherwise n — 7|2 so n —n' ¢ P.) Similarly if p = 7 (mod 8) then n =
sgn(u)x((#)). It follows that X((EIL#)) is primitive in pg if p = 3
(mod 8) and it belongs to pg4 if p =7 (mod 8).

LEMMA 2.11. If p="7 (mod 24) then

Up+1)/8  a(p—
Upt1y/s = — <(pp)/>6(p /4 (mod p),

Vi +1)/8 —
Vipsiy)s = <<pp>/>2(p D/ (mod p).

(U(p+1>/s> _ A(fﬂ) (V(p+1)/8> _B
p 3) p ’

where A and B are two functions of p mod 16 and x mod 16, A is odd and
B is even in the variable x.
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Proof. We have
"'L/F ~
@ =1)/8 = sgn(u)x((8 - q/ >> (mod B)

and, by 2.3, eTD/8 = (—1)E+1)/8=@*~1/8 (mod p). Thus

H0/8 = sgn<u><—1><p+l>/8x<(*”Iq’/F))_l (mod ).

By 2.10, (—1)(7’“)/8)(((#))_1 is primitive in ug so it can be written as

(o + Bi)/v/2 for some «, 8 € {#1}. Hence
asgn(u) + Bsgn(u)i

Viprys + UpppyjaV3 = ePHD/8 = 7 (mod ).

By Lemma 2.9(i) we have

V 1)/8 _
Vips1)s <<P+>/>2(p D/ (mod p),

U,
Ulp+1)/8 = = < oL 8)6(p_3)/ * (mod p).

<V(p+1)/8> <uv>asgn(u) =B
p p ’
Uptns _ _ ((zyw x
( p >_ < p )ﬁ gnlv) = A<3)’
where

o= () (F) = () (F)5) ()
2 2 2 2 2 2
(See Lemma 2.8(ii).)

We now prove that A, B depend only on p mod 16 and x mod 16. Let
p/ = 7 (mod 24) be another prime such that p’ = p (mod 16) and 2’ = =
(mod 16). We keep the reductions of 2.5. Let o/, 3, A’, B’ be the «, 3, A, B
corresponding to p’. In order to prove that A’ = A we show that the factors

of A’ are equal to the similar factors of A, and the same for B’ = B. By

Lemma 2.7 we have X’((#)) = X((M%)) Since p = p’ (mod 16) we

also have (—1)®'+1)/8 = (—1)®+1/8 3nd so

corn((£4)) e (44)

Also
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which implies that o/ = a and 3’ = 3. We still have to prove that
5\ (x5 v, 7\ [y, 7
2 ) \ 2 ) 2 ) \2)
u',2Y (w2 T\ (0,7
2 ) 2 ) 2 ) \ 2 )

zx',5\  (yy T\ (w2 [o,7 _1
2 ) L2 /) 2 /) \2 /) 7

But this follows from zz’,yy’,uv’ € Q5% and v’ € Q% U 5Q52. (By
2.5, /2,2 [2,y,y ,u,u/,v,0" are all odd, and z/2 = 2//2 (mod 8), y = v/
(mod 8), u =’ (mod 8) and v =’ (mod 4).)

Finally, note that if 22 + 3y? = p then also (—z)? + 3y?> = p. Since
(%;1)/8) and ( <p+1>/s)

i.e. that

are independent of how we write p as 22 + 3y we
must have A(z,p) (%) = A(—z,p)(5%) and B(z,p) = B(—z,p). So A is odd

and B is even in the variable z.

Proof of Conjecture 2.1. With the notation of 2.3, we have to prove that
A= (—1)(@E?=4)/32 4nq B = (—1)@*~9/32_ Tt is easy to verify that the
mappings z — (—1)(@E+)*=0/32 anq 1 (—1)@*~9/32_ Jefined on integers
x = 2 (mod 4), depend only on z mod 16, and they are odd and even,
respectively. In view of Lemma 2.10, the two equalities need to be verified
for a set of primes p = 7 (mod 24) such that p covers all possible remainders
modulo 16, namely 7,15 and 4z all possible remainders modulo 16, namely
+2 and £6. But the primes 7,31,103, 127 cover all four possibilities. (We
have 7 = 2243-12, 31 = 224+3-32, 103 = 102 +3-1%2 and 127 = 10?4+ 3-32.)
It is easy to see that Sun’s conjecture is true at these primes.

Proof of Theorem 2.2. Suppose that p = 19 (mod p) and let s + /3 =
g/(P*~1)/8 By 2.3, Theorem 2.2 is equivalent to

_1)@4)/83-3)/4( L -
A N Ca) 3 <3>\/§(modp) if 81,
(—=1)*/® (mod p) if 8.

By 2.10, X((E L/E )) € py4 so it equals a = £1 or §i with § = +1. In the

first case s + t\[ = o (mod ‘:}3) implies s + tV/3 = aﬁ(vmod p), as both sides
belong to F. In the second case s + tv/3 = a (mod B) implies by Lemmas
2.9(ii) and 2.8(i) that s = 0 (mod p) and

‘We have
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_ (T \a-3)a5_ _ (V35 a-3)4( 2
= ()= (5 )pae(5)

3
s+tV3=— <y’2>6 . 3p=3)/4 (g) V3 (mod p).
It follows that Theorem 2.2 is equivalent to

((225)) == o () e

Let now p’ = 19 (mod 24) be another prime. We use the notations from
2.5 and Lemma 2.7.

SO

LEMMA 2.12. Ifp =p' (mod 16) and x = 2’ (mod 8) then the conclusion
of Theorem 2.2 holds for p iff it holds for p'.

Proof. By 2.5 we have 4 |z,2’ so z =2/ =0 or 4 (mod 8). We consider
the two cases.

If 2 =2/ =4 (mod 8) then z/4,2'/4 are odd integers. By multiplying z
with £1, we may assume that /4 = 2’/4 (mod 4) so x = 2’ (mod 16). We
also have p = p’ (mod 16) so we may apply the reductions of 2.5. By Lemma
2.7 we have X((#)) = X’((#))' Now Theorem 2.2 for p and p’ is
equivalent to

((B55)) - we():
X/<<€/Lq//F>) = — (1) <ylj>z

so in order to prove that the two statements are equivalent it is enough to

prove that
_ 2. " v, 2.
(]G 4)/8(3/’>Z (]G 4)/8(7)1,
(—1) ) (—1) )

But 2 = 2/ (mod 16) so (—1)@=9/8 = (—1)@"=9/8 50 we still need (yéS) =
(%3) This follows from the fact that y,3 are odd and y = ¢’ (mod 8) so
they are in the same square class in Qg .

If z = 2" =0 (mod 8) then again we can apply the reductions of 2.5.
Theorem 2.2 for p and p’ is equivalent to

((ZHE)) = e ((ZELE)) =

The two statements are equivalent because by Lemma 2.7 we have

()2




Two conjectures by Zhi-Hong Sun 127

So it is enough to check Theorem 2.2 for a set of primes p = 19 (mod 24)
such that p covers all the possible remainders modulo 16, namely 3 and 11,
and x covers all the possible remainders modulo 8, namely 0 and 4. The
primes 19,43, 67 and 139 cover all four possibilities. (We have 19 = 42 +3.12,
43 =4243-32,67=82+3-1%2 and 139 = 82 +3.52))

3. Related problems. Throughout this section d > 1 is a square-free
integer and ¢ is an integer of Q(v/d). For the time being we assume that
d> 2 If p=3 (mod 4) is a prime with (g) = —1 then (%d) =1 so p can
be written as p = f(z,y) with =,y € Z, where f(z,y) = ax® + bxy + cy? is
a quadratic form with the discriminant b? — 4ac = —d or —4d, according as
—d =1 (mod 4) or —d = 2,3 (mod 4). For any prime ¢ (including ¢ = o)
we denote by f, the localized of f at g.

We want to determine e®+1)/4 mod p in terms of z and y. We could also
determine the value modulo p for e®*+1/8 if p = 7 (mod 8) and for £®+5)/8
if p =3 (mod 8) assuming that ¢ = g4 is the fundamental unit of Q(v/d)
and the norm of ¢ is 1. In this case, as in §2, we can write ¢ = ¢2/m for
some integer ¢’ in @(\/&), and m € Z*. We can take for example ¢’ = 1 +¢,
and since €2 = Ne = 1, we have ¢ = ¢//&’ = ¢/?/m, where m = /¢’ = N¢'.
Then if p = 7 (mod 8) we have e@Ht1)/8 = p=P+1)/8/0+1)/4 while if p = 3
(mod 8) then eP+5)/8 = p=+5)/8//(P+1)/4 56 in both cases we have to
determine £/+t1/4 mod p.

As in 1.2 or 2.3, we reduce our problem to finding eP*=1)/8 mod D.
Namely, we have et = N (mod p) and so

(p+1)/4 _ N—(P=3)/8-(p*~1)/8 (mod p) if p =3 (mod p),
6 p— 2
N@+HD/8e="=1/8 (mod p) if p =7 (mod p),

where N = Ne = ¢z.

We consider the two cases p = 3 or 7 (mod 8) separately. Note that be-
sides the condition that the discriminant b*> —4ac is —d or —4d, f should also
represent numbers = 3 or 7 (mod 8). This is equivalent to the fact that fo
represents 3 or —1, respectively. We claim that the rational quadratic form
F(z,y,u,v) = f(z,y) — (u? £ 2v?), where the sign is + if p = 3 (mod 8)
and — if p = 7 (mod 8), is isotropic. By the Hasse-Minkowski theorem
we have to prove this statement locally. Since f is positive definite F' will
be indefinite and so Fy, is isotropic. If ¢ > 2 is a prime with ¢ 1 d then
Fj, is unimodular so isotropic. If ¢ > 2 and ¢|d then Fj is isotropic be-
cause det F' = £2d # 1 in Q/(Q)?. Finally, if ¢ = 2 and p = 3 (mod 8)
then Fy is isotropic because both fa(z,y) and u? + 2v? represent 3, while
if p =7 (mod 8) then F; is isotropic because both fo(z,y) and u? — 2v?
represent —1.
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Let (z1,y1,u1,v1) € Q*\ {(0,0,0,0)} with F(x1,y1,u1,v1) = 0. Since
both f(x,y) and u? & 2v? are anisotropic we have (x1,y1), (u1,v1) # (0,0)
so f(z1,y1) = u} £ 20? = @ # 0. By multiplying z1,y1,u1,v1 with a
proper rational number we may assume that z1,y1 € Z and (z1,31) = 1.
Hence f represents a’ primitively, which implies that f(z,y) = g(/,v),
where the mapping (z,y) — (2/,y’) belongs to SL(2,Z) and g has the form
g(z',y') = a'z” + V'xy + by'? and has the same discriminant as f.

Let now p be a prime, p{a’, with p = 3 (mod 4) and (g) = —1, that is
representable by f. We write p = f(z,y) = u? + 2v%. Then

/ 2 1.0 2
CL/p — a/g(x/, y/) _ <CL/.T/ + Zy/) + 4a 04— b y/2'
But b2 — 4d’¢’ = —d or —4d, according as —d = 1 (mod 4) or —d = 2,3
(mod 4). Hence p = X2 + dY?, where X = da'2’ + %ly’ and Y = 3¢/ or ¢/,
respectively. Note that X,Y are linear combinations of 2’,y’, and hence of
x,y. We also have a'p = (u3£2v})(u?£2v?) = U2+£2V?2, where U = ujuFuviv
and V = ujv + vyu.

Note that the relations a'p = X? + dY? = U? 4+ 2V? resemble 2p =
22 + 5y? = u? £ 202 from §1. Therefore the reasoning follows the same
pattern but with Q(v/5), 2p,  + yv/54, u = vv/2 and u £ vy/21 replaced by
Q(Wd), d'p, X £Y+/di, U+V+/2 and U + V+/2i. Hence we define the fields
F = Q(d), E = F(C) = Q(Vd, V2,i), where ¢ := (s and L = E(Y/A7),
where

B { ap(X +YVdi)?(U +VV2i)* if p=3 (mod 8),
a'p(X +YVdi)S(U+Vv2)*  ifp=7(mod 8).

The analogue of Lemma 1.3 holds and, with the notation of §1, we define
again x : Gal(L/F) — ug by o%r s ¢F.

Since (g) = —1, p is inert in F' and we denote by p the only prime of
F over p. As in §1, p splits completely in £ and we denote by I3 the prime
of E over p for which ordgp(X — YVdi) = 1 and ordg(U — V/2i) = 1 or
ordg(U — V/2) = 1, according as p = 3 or 7 (mod 8).

By the same proof as for Lemma 1.4(i) we get

L/F ) ) L/F
x<<€’ p/ )) _ P08 P18 = HX<<€’ / >)
a7 9

modulo B. So, in principle, the value of eP*=1)/8 mod B can be determined

and hence we can get eP*=1/8 mod p by a reasoning similar to that from
Lemmas 1.12 and 2.9. The difficulty is that the factors X( (#)) with
q # p may be # 1 not only for g = oo or for q|2 but also for primes q|e.
It is not clear at this time if in all cases the final answer can be given in

terms of x and y alone, as in §1 and §2, or if it has to involve also u and v.
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The case d = 2 is different and somewhat easier because if F' = Q(v/2)
and E = F(v/2,¢) then Gal(E/F) = Zj,, unlike the case d > 2, when
Gal(E/F) 2 Z§ = 7y x Zy. A particular case was conjectured by Z. H. Sun
in 1988 (see also [S1, Conjecture 5.1]) and later solved in [S2] and involves
the value of (1 +v/2)P*1/4 mod p for primes p = 3 (mod 8) and is given in
terms of x,y, where p = 2% + 2y°.

The condition that p = 3 (mod 4) and (%) = —1 is equivalent to p = 3
(mod 8) so it implies that p = 2 + 2y? for some z,y € Z. We define
F=Q(v2), E=Q(¢) = Q(v2,i) and L = E(VA) where A = p(z+yv/2i)>.
The group Gal(E/F) is generated by the automorphism /2 — /2, i +— —i,
which coincides with the automorphism ¢ — ¢3 of Gal(E/Q). We also have
Gal(L/E) = (o) = Zg, where ¢ is given by VA — (VA.

LEMMA 3.1. The extension L/F is Galois and Gal(L/F) = Zy x Zs.

Proof. We prove that L/F is normal. Let o = VA and let 8 be some
conjugate of a over F in some algebraic closure of F. Then % is a conju-
gate of a® = A over F so 3 € {A, A}, where A’ = p(z — y+/2i)?. Since
p=(z+yv2i)(z —yv21i) we have

A =pP(a+yv2i) 2 = Az +yV2i) =¥,
where o = o®(z +yv2i)"t € L. If 3% = A then g = (Fa € L, while if
(38 = A’ then 3 = ¢*o/ € L for some k. So L/F is normal.

Let now ¢ € Gal(L/F'). Then ¢ p € Gal(E/F) so is given by ( + ( or
¢ — 3 If ¢(¢) = ¢ then ¢(a)® = ¢(A) = A so ¢(a) = (Fa, ie. ¢ = oF
for some k. If ¢(¢) = ¢ then ¢(a)® = #(A) = A’ and hence ¢(a) = ¢Fo/
for some k. So the 16 automorphisms of L over F are given by ¢ — (
and a — CFa or ¢ — ¢ and a — ¢*a/ with k € Zg. We denote by 7 the
automorphism ¢ — 3, a — /.

We claim that (7) = Zg and Gal(L/F') is the internal direct product of
(1) and Gal(L/E) = (o) and so it is isomorphic to Zy x Zg. We have to
show that 72 = 1, 70 = o7 and () N (o) = {1}. For the first condition we
have 7(¢) = ¢3 so 72(¢) = ¢? = ¢ and

(a)=7()=7(aP(x + yvV2) ) =3 (z — yv2i)
=a’(z +yv2) Pz — yv2i) " =ap(z + yv2i) (@ —yV2i) T =a.
(Recall that o® = A = p(z + y/214)2.) So 72 = 1. For the second condition
T0(¢) = 7(¢) = ¢* and 07(¢) = 0(¢*) = ¢*. Also
ro(a) = 7(Ca) = o’ = (o’ (z +yv2i)
or(a) = o)) = o(P(x +yv2i) ™) = Bz +yv2i) L.
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So 7o = o7. Finally, the third condition follows from the fact that 7({) #
(soT ¢ Gal(L/E) = (o). n

We define y : Gal(L/F) — pg by o*r +— ¢*. As in §1, x(¢) = ¢(a)/a if
¢ € (o) = Gal(L/E).

Since (%) = —1 we see that p is inert in F. Let p be the prime of F'
over p. Since (7?2) = 1 we infer that —2 is a square in @, and so in F}. Thus
p splits in E. Since (z +yv/21)(x — y/2i) = p each of = & y+/2i belongs to
one of the two primes of E over p. We denote by P the prime of E over p
such that = — yv/2i € P.

By the same proof as for Lemma 1.4(i) (with « instead of o) we get

X((#)) =~ (P*-1)/8 (mod B) and then we follow the same reasoning as

in the case d > 2.
We have X((EL/F)) € pg so it has the form «, Bi or (a + 3i)/V/2 with

«, B = £1. The value of e=(P*=1)/8 mod p can be found from e=(P*=1)/8 mod‘P
by using the following lemma.
LEMMA 3.2. Let s,t be p-adic integers and o, 3 € {£1}.
(i) If s +tv/2 = a (mod ‘3?) then s = a (mod p) and t =0 (mod p).
(ii) If s+tv2 = Bi (mod P) then s = 0 (mod p) and t = —BF% (mod p)
(iii) If s + tv2 = <L (mod P) then s = —BY (mod p) and t = i«

s
(mod p).

Proof. We have x — y\/iz S ‘Is‘ so T = y\/ﬁz (mod &]3) Since p t zy we get
= —%/2 (mod ‘B) and —= = —2 (mod &]3) It follows that 8i = —3 £v/2
(mod ‘B) and

o+ ﬁl 1 Y ~
7 f+,87— a\@—ﬁ;(mod‘ﬁ)

Therefore the congruences from the hypotheses of (i)—(iii) can be written
as s +tvV2 = a, —BLV2 or —BY + a2 (mod P), respectively. Since
both sides of these congruences belong to F} they will also hold mod-
ulo E L]
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