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On higher-power moments of ∆(x) (II)
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1. Introduction and main results

1.1. Notations. Throughout this paper, let d(n) denote the Dirichlet
divisor function, r(n) the number of ways n can be written as n = x2 + y2

for x, y ∈ Z, and a(n) the Fourier coefficients of a holomorphic cusp form of
weight κ = 2n ≥ 12 for the full modular group, ã(n) := a(n)n−κ/2+1/2. For
short, we use d, r, a, ã to denote these functions, respectively. ζ(s) denotes
the Riemann zeta-function.

Suppose x, t > 0. Define

∆(x) :=
∑

n≤x
d(n)− x log x− (2γ − 1)x,(1.1)

P (x) :=
∑

n≤x
r(n)− πx,(1.2)

A(x) :=
∑

n≤x
a(n),(1.3)

E(t) :=
t�

0

|ζ(1/2 + iu)|2 du− t log(t/2π)− (2γ − 1)t.(1.4)

Suppose f :N→ R is any function such that f(n)� nε, k ≥ 2 is a fixed
integer. Define

(1.5) sk;l(f) :=
∑

√
n1+...+

√
nl=
√
nl+1+...+

√
nk

f(n1) . . . f(nk)
(n1 . . . nk)3/4

(1 ≤ l < k),
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(1.6) Bk(f) :=
k−1∑

l=1

(
k − 1
l

)
sk;l(f) cos

π(k − 2l)
4

.

We shall use sk;l(f) to denote both the series (1.5) and its value. We will
prove the convergence of sk;l(f) in Section 3.

Suppose A0 > 2 is a real number. Define

K0 := min{n ∈ N : n ≥ A0, 2 |n}, b(k) := 2k−2 + (k − 6)/4,

σ(k,A0) :=





1/4 if k − 1 < A0/2,
A0 − k

2(A0 − 2)
if A0/2 + 1 ≤ k < A0,

δ1(k,A0) :=
σ(k,A0)
2b(K0)

, δ2(k,A0) :=
σ(k,A0)

2b(k) + 2σ(k,A0)
.

N denotes the set of all natural numbers; ε always denotes a sufficiently small
positive constant which may be different at different places. We will use the
inequality d(n)� nε freely. SC(

∑
) denotes the summation condition of the

sum
∑

; µ(n) is the Möbius function.

1.2. Introduction. In this paper we shall study the higher-power mo-
ments of ∆(x), P (x), A(x) and E(t).

We begin with the Dirichlet divisor problem. Dirichlet first proved that
∆(x) = O(x1/2). The exponent 1/2 was improved by many authors. The
latest result reads

∆(x)� x23/73(logx)315/146,(1.7)

which can be found in Huxley [6] (see also “Note added in proof”). It is
conjectured that

∆(x) = O(x1/4+ε),(1.8)

which is supported by the classical mean-square result
T�

1

∆2(x) dx =
(ζ(3/2))4

6π2ζ(3)
T 3/2 +O(T log5 T )(1.9)

proved by Tong [17] and the upper bound estimate
T�

1

|∆(x)|A0 dx� T 1+A0/4+ε,(1.10)

where A0 > 2 is a fixed real number. The estimate of type (1.10) can be
found in Ivić [7, Thm. 13.9] with A0 = 35/4 and Heath-Brown [5] with
A0 = 28/3. On the other hand, Voronöı [19] proved that

T�

1

∆(x) dx = T/4 +O(T 3/4),(1.11)
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which in conjunction with (1.9) shows that ∆(x) has a lot of sign changes
and cancellations between the positive and negative portions.

Tsang [18] first studied the third- and fourth-power moments of ∆(x).
He proved that (with notations of Section 1.1)

T�

1

∆3(x) dx =
3s3;1(d)

28π3 T 7/4 +O(T 7/4−1/14+ε),(1.12)

T�

1

∆4(x) dx =
3s4;2(d)

64π4 T 2 +O(T 2−1/23+ε).(1.13)

Heath-Brown [5] proved that for k = 3, . . . , 9 the limit

lim
T→∞

T−1−k/4
T�

1

∆(x)k dx

exists.
In [20] the author improved Tsang’s method and proved that

T�

1

∆3(x) dx =
3s3;1(d)

28π3 T 7/4 +O(T 3/2+ε),(1.14)

T�

1

∆4(x) dx =
3s4;2(d)

64π4 T 2 +O(T 2−2/41),(1.15)

T�

1

∆5(x) dx =
5(2s5;2(d)− s5;1(d))

288π5 T 9/4 +O(T 9/4−5/816).(1.16)

But the argument of [20] fails for k ≥ 6.

1.3. New results on higher-power moments of ∆(x). In this paper we
shall use a different approach to study the higher-power moments of ∆(x).
This leads to the asymptotic formulas for the integral � T1 ∆k(x) dx for 3 ≤
k ≤ 9. Furthermore, if the estimate (1.8) is true, then our approach can give
the asymptotic formulas for � T1 ∆k(x) dx for any k ≥ 10.

Theorem 1. Let A0 > 9 be a real number such that (1.10) holds. Then
for any integer 3 ≤ k < A0, we have the asymptotic formula

T�

1

∆k(x) dx =
Bk(d)

(1 + k/4)23k/2−1πk
T 1+k/4 +O(T 1+k/4−δ1(k,A0)+ε).(1.17)

Remark 1.1. From Ivić’s argument [7, Thm. 13.9], we know that the
value of A0 for which (1.10) holds depends on the large-value estimate and
the upper bound estimate of ∆(x). If we insert the estimate (1.7) into the
argument of Ivić, we find that (1.10) holds with A0 = 184/19. Hence for
k ∈ {3, 4, 5, 6, 7, 8, 9}, we get the asymptotic formula (1.17). Moreover, if the
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estimate ∆(x) � x5/16−δ holds for some small δ > 0, then the asymptotic
formula (1.17) holds for k = 10.

Remark 1.2. For k ≥ 10, Theorem 1 is only a conditional result. How-
ever, it tells us that for any k ≥ 10, the main term in the asymptotic formula
for � T1 ∆k(x) dx (if it exists) must have the form stated in (1.17).

Remark 1.3. We can state the following three conjectures about ∆(x):

Conjecture 1. The estimate (1.8) is true.
Conjecture 2. The estimate (1.10) is true for any A0 > 2.
Conjecture 3. For any fixed k ≥ 3, there exists a constant δk > 0 such

that the following asymptotic formula holds:
T�

1

∆k(x) dx =
Bk(d)

(1 + k/4)23k/2−1πk
T 1+k/4 +O(T 1+k/4−δk+ε).

It is well known that Conjectures 1 and 2 are equivalent. From Theo-
rem 1 we know that actually the three conjectures are equivalent. It is easy
to deduce Conjecture 2 from Conjecture 3. To deduce Conjecture 3 from
Conjecture 2, we take A0 = 2(k − 1) and δk = δ1(k, 2(k − 1)).

Remark 1.4. From (1.11) we know that the integral � T1 ∆(x) dx has
many cancellations from the positive and negative portions of ∆(x). How-
ever, from (1.12) Tsang [18] observed that this is not so for � T1 ∆3(x) dx. From

Theorem 1 we know that this is also not so for � T1 ∆k(x) dx (k = 5, 7, 9) since
numerical computation tells Bk(d) > 0 for k = 5, 7, 9. Maybe Bk(d) > 0
holds for any odd k ≥ 3.

The constant δ1(k,A0) is small for k small. If we combine Ivić’s argument
with the proof of Theorem 1, we get the following Theorem 2 for 3 ≤ k ≤ 9.
Note that the results for k = 3, 4 are weaker than those of [20]. Theorem 2
for k = 5 improves (1.16).

Theorem 2. For 3 ≤ k ≤ 9, the asymptotic formula (1.17) holds with
δ1(k,A0) replaced by δ2(k, 184/19).

In particular , for k = 5, 6, 7, 8, 9, we have
T�

1

∆5(x) dx =
5(2s5;2(d)− s5;1(d))

288π5 T 9/4 +O(T 9/4−1/64+ε),(1.18)

T�

1

∆6(x) dx =
5s6;3(d)− 3s6;1(d)

320π6 T 5/2 +O(T 5/2−35/4742+ε),(1.19)

T�

1

∆7(x) dx =
7(5s7;3(d)− 3s7;2(d)− s7;1(d))

2816π7 T 11/4(1.20)

+O(T 11/4−17/6312+ε),
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T�

1

∆8(x) dx =
7(5s8;4(d)− 4s8;2(d))

6144π8 T 3 +O(T 3−8/9433+ε),(1.21)

T�

1

∆9(x) dx =
3(3s9;1(d)− 12s9;2(d)− 28s9;3(d) + 42s9;4(d))

26624π9 T 13/4(1.22)

+O(T 13/4−13/75216+ε).

1.4. Higher-power moments of P (x), A(x) and E(t). The method of
proving Theorems 1 and 2 can also be applied to study the higher-power
moments of P (x), A(x) and E(t).

The conjectured bound of P (x) is

P (x) = O(x1/4+ε),(1.23)

which is supported by
T�

2

P 2(x) dx =
(

1
3π2

∞∑

n=1

r2(n)n−3/2
)
T 3/2 +O(T log2 T )(1.24)

proved by Kátai [14]. Tsang [18] also studied the third- and fourth-power
moments of P (x). His results were improved by the present author [20]. An
asymptotic formula for the fifth-power moment of P (x) was also obtained
in [20], which is further improved by the following (for k = 5):

Theorem 3. Let A0 > 9 be a real number such that
T�

1

|P (x)|A0 dx� T 1+A0/4+ε.(1.25)

Then for any integer 3 ≤ k < A0, the following asymptotic formula holds:
T�

1

P k(x) dx =
(−1)kBk(r)

(1 + k/4)2k−1πk
T 1+k/4 +O(T 1+k/4−δ1(k,A0)+ε).(1.26)

In particular , for 3 ≤ k ≤ 9, (1.26) holds with δ1(k,A0) replaced by
δ2(k, 184/19).

Remark 1.5. Ivić [7, Thm. 13.12] proved that the estimate (1.25) holds
for A0 = 35/4. If we insert the estimate P (x) = O(x23/73+ε) (see Huxley [6])
into his argument, we find that (1.25) holds for A0 = 184/19.

It is well known that A(x) has no main term and A(x) � xκ/2−1/6+ε.
From Deligne [4], we have |ã(n)| ≤ d(n).

The conjectured bound of A(x) is A(x) � xκ/2−1/4+ε. Ivić [9] proved
that

T�

1

A2(x) dx = B2T
κ+1/2 +O(T κ log5 T ),(1.27)
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where

B2 =
1

4κ+ 2

∞∑

n=1

a2(n)n−κ−1/2.

Ivić [9] also proved that
T�

1

|A(x)|A0 dx� T 1+A0(2κ−1)/4+ε(1.28)

for A0 = 8. Cai [3] studied the third- and fourth-power moments of A(x).
His results were improved in [20], where an asymptotic formula for the fifth-
power moment of A(x) was also obtained, which is further improved by the
case k = 5 of the following:

Theorem 4. Let A0 ≥ 8 be a real number such that (1.28) is true. Then
for any 3 ≤ k < A0, we have the asymptotic formula

T�

1

Ak(x) dx =
Bk(ã)

(
1 + k(2κ−1)

4

)
23k/2−1πk

T 1+ k(2κ−1)
4(1.29)

+O(T 1+ k(2κ−1)
4 −δ1(k,A0)+ε).

In particular , for 3 ≤ k ≤ 7, (1.29) holds with δ1(k,A0) replaced by
δ2(k, 8).

Many results for E(t) parallel to those for ∆(x) have been obtained; see
Ivić [8] for a survey. The conjectured bound for E(t) is E(t)� t1/4+ε, which
is supported by

T�

2

E2(t) dt =
2ζ4(3/2)

3ζ(3)
√

2π
T 3/2 +O(T log5 T ),(1.30)

proved by Meurman [15]. It has been proved (see Huxley [6]) that

E(t)� t72/227(log t)629/227, t > 2.(1.31)

Ivić [7, Thm. 15.7] proved that
T�

1

|E(t)|A0 dt� T 1+A0/4+ε(1.32)

for A0 = 35/4. Inserting (1.31) into Ivić’s argument, we find that (1.32) is
true for A0 = 576/61.

Tsang [18] studied the third- and fourth-power moment of E(t) by using
the Atkinson formula [1]. His results were further improved by Ivić [10] in a
different way. The author [20] obtained new results on the third- and fourth-
power moments of E(t). An asymptotic formula for the fifth-power moment
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of E(t) was also obtained in [20], which is further improved by the case
k = 5 of the following:

Theorem 5. Let A0 > 9 be a real number such that the estimates (1.10)
and (1.32) hold. Then for any 3 ≤ k < A0, we have the asymptotic formula

(1.33)
T�

1

Ek(t) dt =
Bk(d)

(1 + k/4)23k/4−1πk/4
T 1+k/4 +O(T 1+k/4−δ1(k,A0)+ε).

In particular , for 3 ≤ k ≤ 9, (1.33) holds with δ1(k,A0) replaced by
δ2(k, 576/61).

Acknowledgements. The author deeply thanks the referee for his
warm and valuable comments. The author also thanks Prof. Isao Wak-
abayashi for helpful discussions, through which the proof of Lemma 3.1
was further improved.

2. Some preliminary lemmas. We need the following lemmas.

Lemma 2.1. The square roots of squarefree numbers are linearly inde-
pendent over the integers.

Proof. This is a classical result of Besicovitch [2].

Lemma 2.2. Suppose k ≥ 3 and (i1, . . . , ik−1) ∈ {0, 1}k−1 are such that
√
n1 + (−1)i1

√
n2 + (−1)i2

√
n3 + . . .+ (−1)ik−1

√
nk 6= 0.

Then

|√n1 + (−1)i1
√
n2 + (−1)i2

√
n3 + . . .+ (−1)ik−1

√
nk|

� max(n1, . . . , nk)−(2k−2−2−1).

Proof. The cases k = 3, 4 are Lemmas 1 and 2 of Tsang [18], respectively.
The proof for the general case is the same as the proof of Lemma 1 of [18].
We note that Heath-Brown [5] stated a similar result for k even.

Lemma 2.3. Suppose A,B ∈ R, A 6= 0. Then
2T�

T

cos(A
√
t+B) dt� T 1/2|A|−1.

Lemma 2.4. Suppose k ≥ 3, (i1, . . . , ik−1) ∈ {0, 1}k−1, (i1, . . . , ik−1) 6=
(0, . . . , 0), N1, . . . , Nk > 1, 0 < ∆� E1/2, E = max(N1, . . . , Nk). Let

A = A(N1, . . . , Nk; i1, . . . , ik−1;∆)

denote the number of solutions of the inequality

|√n1 + (−1)i1
√
n2 + (−1)i2

√
n3 + . . .+ (−1)ik−1

√
nk| < ∆(2.1)
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with Nj < nj ≤ 2Nj , 1 ≤ j ≤ k. Then

A � ∆E−1/2N1 . . .Nk + E−1N1 . . .Nk.

Proof. Without loss of generality, suppose E = Nk. If (n1, . . . , nk) sat-
isfies (2.1), then
√
n1 +(−1)i1

√
n2 +(−1)i2

√
n3 + . . .+(−1)ik−2

√
nk−1 = (−1)ik−1+1√nk+θ∆

for some |θ| < 1, whence we get

(
√
n1 + (−1)i1

√
n2 + (−1)i2

√
n3 + . . .+ (−1)ik−2

√
nk−1)2 = nk +O(∆N1/2

k ).

Hence for fixed (n1, . . . , nk−1), the number of nk is � 1 +∆N
1/2
k and thus

A � ∆N
1/2
k N1 . . . Nk−1 +N1 . . .Nk−1.

3. On the series sk;l(d). Suppose y > 1 is a large parameter, and define

sk;l(d; y) :=
∑

√
n1+...+

√
nl=
√
nl+1+...+

√
nk

n1,...,nk≤y

d(n1) . . . d(nk)
(n1 . . . nk)3/4

, 1 ≤ l < k.

We shall prove

Lemma 3.1. We have

|sk;l(d)− sk;l(d; y)| � y−1/2+ε, 1 ≤ l < k.

Remark. Lemma 3.1 is still true if the divisor function d is replaced by
any function f : N→ R with f(n)� nε.

Proof. We shall prove Lemma 3.1 by induction in k. The case k = 2 is
easy. The case k = 3 is contained in [18, p. 70]. Later we suppose k ≥ 4.
Since sk;l(d) = sk;k−l(d), we suppose l ≤ k/2.

By symmetry, we get

|sk;l(d)− sk;l(d; y)| �
∑

√
n1+...+

√
nl=
√
nl+1+...+

√
nk

n1>y

d(n1) . . . d(nk)
(n1 . . . nk)3/4

(3.1)

� U1(d; y) + U2(d; y),

say, where

U1(d; y) :=
k∑

j=l+1

∑
√
n1+...+

√
nl=
√
nl+1+...+

√
nk

n1=nj>y

d(n1) . . . d(nk)
(n1 . . . nk)3/4

,

U2(d; y) :=
∑

√
n1+...+

√
nl=
√
nl+1+...+

√
nk

n1>y, n1 6=nj , l+1≤j≤k

d(n1) . . . d(nk)
(n1 . . . nk)3/4

.
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If l = 1, then obviously U1(d; y) = 0. If l > 1, then by induction we get

U1(d; y)�
∑

n>y

d2(n)
n3/2

sk−2;l−1(d)� y−1/2+ε.(3.2)

Now we estimate U2(d; y). Let I = {1, . . . , l}, J = {l+1, . . . , k}. Suppose
(n1, . . . , nk) ∈ Nk are such that

(∗) √
n1 + . . .+

√
nl =

√
nl+1 + . . .+

√
nk, n1 6= nj , l + 1 ≤ j ≤ k.

Then there exist two sets I0 ⊂ I, J0 ⊂ J with the following properties:

(1) 1 ∈ I0;
(2)

∑
i∈I0
√
ni =

∑
j∈J0

√
nj ;

(3) For any real subset I ′0 ⊂ I0, J
′
0 ⊂ J0, we have

∑

i∈I′0

√
ni 6=

∑

j∈J ′0

√
nj .

If (I0, J0) = (I, J), then we say (n1, . . . , nk) is a primitive (k, l)-point. Let
Nk;l denote the set of all points in Nk which satisfy (∗) and N∗k;l the set of
all primitive (k, l)-points. Let Gk;l denote the set of all possible pairs (I0, J0)
when (n1, . . . , nk) runs through Nk;l. Note that if l = 1, then Gk;l = {(I, J)}.

Suppose (I0, J0) ∈ Gk;l. Let l1 = #I0, l2 = l − l1, k1 = #I0 + #J0, k2 =
k − k1. From (∗), we know that k1 ≥ 3. Define

R
(I0,J0)
1 (d; y) :=

∑
√
n1+...+√nl1=√nl1+1+...+√nk1

n1>y, (n1,...,nk1 )∈N∗k1;l1

d(n1) . . . d(nk1)
(n1 . . . nk1)3/4

.

If (I0, J0) 6= (I, J), then l1 < l, k1 < k and we define

R
(I0,J0)
2 (d) :=

∑
√
m1+...+√ml2=√ml2+1+...+√mk2

d(m1) . . . d(mk2)
(m1 . . .mk2)3/4

.

By the induction assumption, R(I0,J0)
2 (d)� 1.

If (n1, . . . , nk1) ∈ N∗k1;l1 , then by Lemma 2.1 we have

nj = s2
jh, s1 + . . .+ sl1 = sl1+1 + . . .+ sk1 , µ(h) 6= 0.

Now n1 > y implies that there exists at least one nj (l1 + 1 ≤ j ≤ j1) such
that nj � y. We suppose nk1 � y. So we have

R
(I0,J0)
1 (d; y)�

∑

h

∑

s1+...+sl1=sl1+1+...+sk1
s21h>y, s

2
k1
h�y

d(s2
1h) . . . d(s2

k1
h)

h3k1/4(s1 . . . sk1)3/2
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�
∑

h

∑

s1+...+sl1=sl1+1+...+sk1
s21h>y, s

2
k1
h�y

d2(s1) . . . d2(sk1)dk1(h)
h3k1/4(s1 . . . sk1)3/2

�
∑

h

dk1(h)
h3k1/4

∑

s1>(y/h)1/2

d2(s1)

s
3/2
1

∑

sk1�(y/h)1/2

d2(sk1)

s
3/2
k1

�
∑

h

dk1(h)
h3k1/4

(
y

h

)−1/2+ε

� y−1/2+ε

if we notice k1 ≥ 3.
If Gk;l = (I, J), we have

U2(d; y)� R
(I,J)
1 (d; y)� y−1/2+ε.(3.3)

If Gk;l 6= (I, J), we have

U2(d; y)� R
(I,J)
1 (d; y) +

∑

(I0,J0)∈Gk;l
(I0,J0)6=(I,J)

R
(I0,J0)
1 (d; y)R(I0,J0)

2 (d)(3.4)

� y−1/2+ε.

Now Lemma 3.1 follows from (3.1)–(3.4).

4. Proofs of Theorems 1 and 2. Suppose T ≥ 10 is a real number.
It suffices to evaluate the integral � 2T

T ∆k(x) dx. Suppose y is a parameter
such that T ε < y ≤ T 1/3. For any T ≤ x ≤ 2T, define

R1 = R1(x, y) := (
√

2π)−1x1/4
∑

n≤y

d(n)
n3/4

cos(4π
√
xn− π/4),

R2 = R2(x, y) := ∆(x)−R1.

We shall show that the higher-power moment of R2 is small and hence the
integral � 2T

T ∆k(x) dx can be well approximated by � 2T
T Rk1 dx, which is easy

to evaluate.

4.1. Evaluation of the integral � 2T
T Rh1 dx. Suppose h ≥ 3 is any fixed

integer. By the elementary formula

cos a1 . . . cos ah

=
1

2h−1

∑

(i1,...,ih−1)∈{0,1}h−1

cos(a1 + (−1)i1a2 + (−1)i2a3 + . . .+ (−1)ih−1ah),
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we have

Rh1 = (
√

2π)−hxh/4
∑

n1≤y
. . .
∑

nh≤y

d(n1) . . . d(nh)
(n1 . . . nh)3/4

h∏

j=1

cos(4π
√
njx− π/4)

=
xh/4

(
√

2π)h2h−1

∑

(i1,...,ih−1)∈{0,1}h−1

∑

n1≤y
. . .
∑

nh≤y

d(n1) . . . d(nh)
(n1 . . . nh)3/4

× cos
(

4π
√
xα(n1, . . . , nh; i1, . . . , ih−1)− π

4
β(i1, . . . , ih−1)

)
,

where

α(n1, . . . , nh; i1, . . . , ih−1)

:=
√
n1 + (−1)i1

√
n2 + (−1)i2

√
n3 + . . .+ (−1)ih−1

√
nh,

β(i1, . . . , ih−1) := 1 + (−1)i1 + (−1)i2 + . . .+ (−1)ih−1 .

Thus we can write

Rh1 =
1

(
√

2π)h2h−1
(S1(x) + S2(x)),(4.1)

where

S1(x) := xh/4
∑

(i1,...,ih−1)∈{0,1}h−1

cos
(
−πβ

4

) ∑

nj≤y, 1≤j≤h
α=0

d(n1) . . . d(nh)
(n1 . . . nh)3/4

,

S2(x) := xh/4
∑

(i1,...,ih−1)∈{0,1}h−1

∑

nj≤y, 1≤j≤h
α6=0

d(n1) . . . d(nh)
(n1 . . . nh)3/4

× cos(4πα
√
x− πβ/4),

α := α(n1, . . . , nh; i1, . . . , ih−1), β := β(i1, . . . , ih−1).

First consider the contribution of S1(x). We have

(4.2)
2T�

T

S1(x) dx

=
∑

(i1,...,ih−1)∈{0,1}h−1

cos
(
−πβ

4

) ∑

nj≤y, 1≤j≤h
α=0

d(n1) . . . d(nh)
(n1 . . . nh)3/4

2T�

T

xh/4 dx.

It is easily seen that if α = 0, then 1 ∈ {i1, . . . , ih−1}. Let l = i1 + . . .+ ih−1.
Then ∑

nj≤y, 1≤j≤h
α=0

d(n1) . . . d(nh)
(n1 . . . nh)3/4

= sh;l(d; y),

where sh;l(d; y) was defined in the last section.
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By Lemma 3.1 we get

2T�

T

S1(x) dx = B∗h(d)
2T�

T

xh/4 dx+O(T 1+h/4+εy−1/2),(4.3)

where

B∗h(d) :=
∑

(i1,...,ih−1)∈{0,1}h−1

cos
(
−πβ

4

) ∑

(n1,...,nh)∈Nh
α=0

d(n1) . . . d(nh)
(n1 . . . nh)3/4

.

For any (i1, . . . , ih−1) ∈ {0, 1}h−1 \ {(0, . . . , 0)}, let

S(d; i1, . . . , ih−1) :=
∑

(n1,...,nh)∈Nh
α=0

d(n1) . . . d(nh)
(n1 . . . nh)3/4

,

l(i1, . . . , ih−1) := i1 + . . .+ ih−1.

It is easily seen that if l(i1, . . . , ih−1) = l(i′1, . . . , i
′
h−1) or l(i1, . . . , ih−1) +

l(i′1, . . . , i
′
h−1) = h, then

S(d; i1, . . . , ih−1) = S(d; i′1, . . . , i
′
h−1) = sh;l(i1,...,ih−1)(d).

From (−1)i = 1− 2i (i = 0, 1) we also have

β(i1, . . . , ih−1) = h− 2l(i1, . . . , ih−1).

So we get

B∗h(d) =
h−1∑

l=1

∑

l(i1,...,ih−1)=l

cos
(
−πβ

4

)
S(d; i1, . . . , ih−1)(4.4)

=
h−1∑

l=1

sh;l(d) cos
π(h− 2l)

4

∑

l(i1,...,ih−1)=l

1

=
h−1∑

l=1

(
h− 1
l

)
sh;l(d) cos

π(h− 2l)
4

= Bh(d).

Now we consider the contribution of S2(x). By Lemma 2.3 we get

(4.5)
2T�

T

S2(x) dx

� T 1/2+h/4
∑

(i1,...,ih−1)∈{0,1}h−1

∑

nj≤y, 1≤j≤h
α6=0

d(n1) . . . d(nh)
(n1 . . . nh)3/4|α| .
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It suffices to estimate the sum

Σ(y; i1, . . . , ih−1) =
∑

nj≤y, 1≤j≤h
α6=0

d(n1) . . . d(nh)
(n1 . . . nh)3/4|α|

for fixed (i1, . . . , ih−1) ∈ {0, 1}h−1. If (i1, . . . , ih−1) = (0, . . . , 0), then

Σ(y; 0, . . . , 0)�
∑

nj≤y, 1≤j≤h

d(n1) . . . d(nh)
(n1 . . . nh)3/4(

√
n1 + . . .+

√
nh)

�
∑

nj≤y, 1≤j≤h

d(n1) . . . d(nh)
(n1 . . . nh)3/4+1/2h

� y(h−2)/4 logh y,

where we used the estimates
∑

n≤u
d(n)� u log u, x1 + . . .+ xh � (x1 . . . xh)1/h.

For (i1, . . . , ih−1) 6= (0, . . . , 0), by a splitting argument we deduce that there
exist a collection of numbers 1 < N1, . . . , Nh < y such that

Σ(y; i1, . . . , ih−1)� Σ∗1 logh y,

where

Σ∗1 =
∑

Nj<nj≤2Nj , 1≤j≤h
α6=0

d(n1) . . . d(nh)
(n1 . . . nh)3/4|α| .

Without loss of generality, we suppose N1 ≤ . . . ≤ Nh ≤ y. By Lemma 2.2
we have |α| � N

−(2h−2−2−1)
h . Then by a splitting argument and Lemma 2.4,

for some N−(2h−2−2−1)
h � ∆ < y1/2 we get

Σ∗1 �
yε

(N1 . . . Nh)3/4∆
A(N1, . . . , Nh; i1, . . . , ih−1;∆)

� yε

(N1 . . . Nh)3/4∆
(∆N1/2

h N1 . . . Nh−1 +N1 . . . Nh−1)

� yε
(

(N1 . . .Nh−1)1/4

N
1/4
h

+
(N1 . . .Nh−1)1/4

N
3/4
h ∆

)

� yε(N (h−2)/4
h +N

b(h)
h )� yb(h)+ε,

where b(h) was defined in Section 1.1. Thus we get

2T�

T

S2(x) dx� T 1/2+h/4+εyb(h).(4.6)
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Hence from (4.1)–(4.6) we get

Lemma 4.1. For any fixed h ≥ 3, we have

2T�

T

Rh1 dx =
Bh(d)

(
√

2π)h2h−1

2T�

T

xh/4 dx(4.7)

+O(T 1+h/4+εy−1/2 + T 1/2+h/4+εyb(h)).

4.2. Higher-power moments of R2. We first study the mean-square
of R2. We begin with the truncated Voronöı formula [9, (2.25)]

∆(x) = (π
√

2)−1x1/4
∑

n≤N

d(n)
n3/4

cos(4π
√
nx− π/4)(4.8)

+O(x1/2+εN−1/2),

where 1 < N � x. Taking N = T, we get

R2 = (π
√

2)−1x1/4
∑

y<n≤T

d(n)
n3/4

cos(4π
√
nx− π/4) +O(T ε)

�
∣∣∣∣x1/4

∑

y<n≤T

d(n)
n3/4

e(2
√
nx)

∣∣∣∣+ T ε,

which implies

2T�

T

R2
2 dx� T 1+ε +

2T�

T

∣∣∣∣x1/4
∑

y<n≤T

d(n)
n3/4

e(2
√
nx)

∣∣∣∣
2

dx(4.9)

� T 1+ε + T 3/2
∑

y<n≤T

d2(n)
n3/2

+ T
∑

y<m<n≤T

d(n)d(m)
(mn)3/4(

√
n−√m)

� T 1+ε +
T 3/2 log3 T

y1/2
� T 3/2 log3 T

y1/2
,

where we used the estimates
∑

n≤u
d2(n)� u log3 u,

∑

y<m<n≤T

d(n)d(m)
(mn)3/4(

√
n−√m)

� T ε.

Now suppose y satisfies y2b(K0) ≤ T. Hence from Lemma 4.1 we get

2T�

T

|R1|K0 dx� T 1+K0/4+ε,
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which implies
2T�

T

|R1|A0 dx� T 1+A0/4+ε(4.10)

since A0 ≤ K0. From (1.10) and (4.10) we get

2T�

T

|R2|A0 dx�
2T�

T

(|∆(x)|A0 + |R1|A0) dx� T 1+A0/4+ε.(4.11)

For any 2 < A < A0, from (4.9), (4.11) and Hölder’s inequality we get

2T�

T

|R2|A dx =
2T�

T

|R2|
2(A0−A)
A0−2 +A0(A−2)

A0−2 dx(4.12)

�
( 2T�

T

R2
2 dx

)A0−A
A0−2

( 2T�

T

|R2|A0 dx
) A−2
A0−2

� T 1+A/4+εy
− A0−A

2(A0−2) .

Thus, we have proved the following

Lemma 4.2. Suppose T ε ≤ y ≤ T 1/2b(K0), 2 < A < A0. Then

2T�

T

|R2|A dx� T 1+A/4+εy−(A0−A)/2(A0−2).(4.13)

4.3. Proof of Theorem 1. Suppose 3 ≤ k ≤ K(A0) and T ε ≤ y ≤
T 1/2b(K0). By the elementary formula (a+ b)k − ak � |ak−1b|+ |b|k, we get

2T�

T

∆k(x) dx =
2T�

T

Rk1 dx+O
( 2T�

T

|Rk−1
1 R2| dx

)
+O

( 2T�

T

|R2|k dx
)
.(4.14)

If k − 1 < A0/2, then from (4.9), (4.10) and Cauchy’s inequality we get

2T�

T

|Rk−1
1 R2| dx�

( 2T�

T

|R1|2(k−1) dx
)1/2( 2T�

T

|R2|2 dx
)1/2

� T 1+k/4+εy−1/4.

If k − 1 ≥ A0/2, then from (4.10), Lemma 4.2 and Hölder’s inequality we
get

2T�

T

|Rk−1
1 R2| dx�

(2T�

T

|R1|A0 dx
)(k−1)/A0

(2T�

T

|R2|A0/(A0−k+1) dx
)(A0−k+1)/A0

� T 1+k/4+εy−(A0−k)/2(A0−2).
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Thus we have
2T�

T

|Rk−1
1 R2| dx+

2T�

T

|R2|k dx� T 1+k/4+εy−σ(k,A0),(4.15)

where σ(k,A0) was defined in Section 1.1.
From (4.14) and (4.15) we get

2T�

T

∆k(x) dx =
2T�

T

Rk1 dx+O(T 1+k/4+εy−σ(k,A0)).(4.16)

Now take y = T 1/2b(K0). From Lemma 4.1 and (4.16) we get

2T�

T

∆k(x) dx =
Bk(d)

(
√

2π)k2k−1

2T�

T

xk/4 dx+O(T 1+k/4−σ(k,A0)/2b(K0)+ε)(4.17)

=
Bk(d)

(
√

2π)k2k−1

2T�

T

xk/4 dx+O(T 1+k/4−δ1(k,A0)+ε).

Theorem 1 follows from (4.17) immediately.

4.4. Proof of Theorem 2. Suppose T ε ≤ y ≤ T 1/3. By the truncated
Voronöı formula (4.8), we have

R2 = (
√

2π)−1x1/4
∑

y<n≤N

d(n)
n3/4

cos(4π
√
nx− π/4) +O(x1/2+εN−1/2),

where y < N � T. Using Ivić’s large-value technique directly to R2 without
modifications, we get the estimate

2T�

T

|R2|A0 dx� T 1+A0/4+ε(4.18)

with A0 = 184/19, T ε ≤ y ≤ T 1/3. We omit the details since the argument
is completely the same as that of Ivić. Combining (4.18) and (1.10) we get

2T�

T

|R1|A0 dx� T 1+A0/4+ε(4.19)

with A0 = 184/19, T ε ≤ y ≤ T 1/3.

By the same argument as in the last subsection, we deduce that for
T ε ≤ y ≤ T 1/3,

2T�

T

∆k(x) dx =
2T�

T

Rk1 dx+O(T 1+k/4+εy−σ(k,184/19)).(4.20)
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Take y = T 1/(2b(k)+2σ(k,184/19)). From Lemma 4.1 again we get
2T�

T

∆k(x) dx =
Bk(d)

(
√

2π)k2k−1

2T�

T

xk/4 dx+O(T 1+k/4− σ(k,184/19)
2b(k)+2σ(k,184/19) +ε)(4.21)

=
Bk(d)

(
√

2π)k2k−1

2T�

T

xk/4 dx+O(T 1+k/4−δ2(k,184/19)+ε),

and Theorem 2 follows.

5. Proofs of other theorems. P (x) has the following truncated Voro-
nöı formula:

P (x) = − 1
π

∑

n≤N
r(n)n−3/4x1/4 cos(4π

√
nx+π/4)+O(x1/2+εN−1/2)(5.1)

for 1 ≤ N � x, which follows from Lemma 3 of Müller [16]. Moreover, A(x)
has the following truncated Voronöı formula:

A(x) =
1

π
√

2
xκ/2−1/4

∑

n≤N
a(n)n−κ/2−1/4 cos(4π

√
nx− π/4)(5.2)

+O(xκ/2+εN−1/2)

for 1 ≤ N � x, which is a special case of Theorem 1.1 of Jutila [13]. So in
the same way as in the last section, we get Theorems 3 and 4.

Now we prove Theorem 5. We shall follow Ivić [10]. Define

∆∗(x) :=
1
2

∑

n≤4x

(−1)nd(n)− x(log x+ 2γ − 1), x > 0.

Jutila [12] proved that

T�

0

(
E(t)− 2π∆∗

(
t

2π

))2

dt� T 4/3 log3 T,(5.3)

which means that E(t) is well approximated by 2π∆∗(t/2π) at least in the
mean square sense.

Suppose A0 > 9 is a real number such that both (1.10) and (1.32) hold.
Since (see Jutila [11])

∆∗(x) = −∆(x) + 2∆(2x)− 1
2
∆(4x),

from (1.10) we get
T�

0

|∆∗(t)|A0 dt� T 1+A0/4+ε.(5.4)
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Then from (1.32), (5.3), (5.4) and Hölder’s inequality, for any 3 ≤ k < A0
we get

(5.5)
T�

0

Ek(t) dt− (2π)k+1
T/2π�

0

(∆∗(t))k dt

=
T�

0

(
Ek(t)−

(
2π∆∗

(
t

2π

))k)
dt

�
T�

0

∣∣∣∣E(t)− 2π∆∗
(
t

2π

)∣∣∣∣
(
|E(t)|k−1 +

∣∣∣∣∆∗
(
t

2π

)∣∣∣∣
k−1)

dt

� T 1+k/4−σ(k,A0)/3+ε,

where σ(k,A0) was defined in Section 1.1. By (5.5) the problem is reduced
to evaluating the integral � T0 (∆∗(t))k dt. For 1� N � x, we have [10, (7)]

∆∗(x) =
1

π
√

2

∑

n≤N
(−1)nd(n)n−3/4x1/4 cos(4π

√
nx− π/4)(5.6)

+O(x1/2+εN−1/2),

which is similar to (4.8). Let d∗(n) = (−1)nd(n). Then in the same way as
in the proof of Theorem 1, we get the asymptotic formula

T�

1

(∆∗(t))k dt =
Bk(d∗)

(1 + k/4)23k/2−1πk
T 1+k/4 +O(T 1+k/4−δ1(k,A0)+ε)(5.7)

for any 3 ≤ k < A0.

We shall use

Lemma 5.1. Suppose 1 ≤ l < k are fixed integers and (n1, . . . , nk) ∈ Nk.
If √

n1 + . . .+
√
nl =

√
nl+1 + . . .+

√
nk,

then 2 | (n1 + . . .+ nk).

Proof. For any n ∈ N, let h(n) denote the squarefree part of n. Let
S = {h(n1), . . . , h(nk)} ∩ N and s = #S. For convenience, write

S = {h1, . . . , hs}, I = {1, . . . , l}, J = {l + 1, . . . , k}.
From Lemma 2.1 we can write I =

⋃s
e=1 Ie, J =

⋃s
e=1 Je so that for each

1 ≤ e ≤ s, ∑

i∈Ie

√
ni =

∑

j∈Je

√
nj

and all ni (i ∈ Ie) and nj (j ∈ Je) have the same squarefree part he. Namely
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we have (1 ≤ e ≤ s)

ni = m2
ihe (i ∈ Ie), nj = m2

jhe (j ∈ Ie),
∑

i∈Ie
mi =

∑

j∈Je
mj .

Thus we get

n1 + . . .+ nk =
s∑

e=1

(∑

i∈Ie
ni +

∑

j∈Je
nj

)

=
s∑

e=1

(∑

i∈Ie
m2
ihe +

∑

j∈Je
m2
jhe

)
≡

s∑

e=1

(∑

i∈Ie
mi +

∑

j∈Je
mj

)
he

= 2
s∑

e=1

he
∑

i∈Ie
mi ≡ 0 (mod 2),

where we used the simple congruence n2 ≡ n (mod 2).

From Lemma 5.1, for any 1 ≤ l < k we get

sk;l(d∗) =
∑

√
n1+...+

√
nl=
√
nl+1+...+

√
nk

(−1)n1+...+nk d(n1) . . . d(nk)
(n1 . . . nk)3/4

=
∑

√
n1+...+

√
nl=
√
nl+1+...+

√
nk

d(n1) . . . d(nk)
(n1 . . . nk)3/4

= sk;l(d).

Hence we conclude that

Bk(d∗) = Bk(d).(5.8)

From (5.5), (5.7) and (5.8) we get (1.33).
Similarly to Theorem 2, we can prove the asymptotic formula

(5.9)
T�

1

(∆∗(t))k dt =
Bk(d)

(1 + k/4)23k/2−1πk
T 1+k/4 +O(T 1+k/4−δ2(k,576/61)+ε)

for any 3 ≤ k ≤ 9, which combined with (5.5) yields the second part of
Theorem 3.

Note added in proof. Recently M. N. Huxley, Exponential sums and lattice points
III, Proc. London Math. Soc. 87 (2003), 591–609, proved

∆(x)� x131/416(log x)26957/8320,

which implies that the exponent 184/19 for which the formula (1.10) holds can be im-
proved to A0 = 262/27. Correspondingly, the exponent δ2(k, 184/19) in Theorem 2 can be
improved to δ2(k, 262/27) for k = 6, 7, 8, 9. The author deeply thanks Professor A. Schinzel
for informing him about M. N. Huxley’s new result.
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Sect. Math. 8 (1965), 39–60 (in Russian).

[15] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math.
Oxford Ser. (2) 38 (1987), 337–343.

[16] W. Müller, On the asymptotic behaviour of the ideal counting function in quadratic
number fields, Monatsh. Math. 108 (1989), 301–323.

[17] K. C. Tong, On divisor problem III, Acta Math. Sinica 6 (1956), 515–541.
[18] K. M. Tsang, Higher-power moments of ∆(x), E(t) and P (x), Proc. London Math.

Soc. (3) 65 (1992), 65–84.
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