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1. Introduction. In 1950s, it was shown by Linnik [9, 10] that every
sufficiently large integer can be represented as the sum of two primes and
K powers of two, where K is an absolute number. In 1975, Gallagher [2] ob-
tained a stronger result via a different approach. An explicit value of K was
first obtained by Liu, Liu and Wang [12], who established that K = 54000 is
acceptable. This value was subsequently improved by Li [6], Wang [18] and
Li [7]. Recently, a rather different method was described by Heath-Brown
and Puchta [3], and independently by Pintz and Ruzsa [15]. In particular, it
was shown in [3] that K = 13 is acceptable, and it was claimed in [15] that
K = 8 is acceptable.

In 1938, Hua [5] proved that all large integers congruent to 5 modulo 24
can be represented as the sum of five squares of primes. It seems reasonable
to conjecture that every large integer congruent to 4 modulo 24 can be
expressed as the sum of four squares of primes. This problem is still open,
while Brüdern and Fouvry [1] established that every sufficiently large integer
n ≡ 4 (mod 24) is the sum of four squares of almost primes.

In 1999, Liu, Liu and Zhan [13] investigated the expression

(1.1) N = p2
1 + p2

2 + p2
3 + p2

4 + 2ν1 + · · ·+ 2νk ,

and proved that every sufficiently large even integer can be represented as
the sum of four squares of primes and k powers of two. It was shown in [11]
that k = 8330 is acceptable. This value was sharpened to k = 165 in [14]
and k = 151 in [8]. The purpose of this paper is to establish the following
result.

Theorem 1.1. Every sufficiently large even integer can be represented
as a sum of four squares of primes and 46 powers of 2.
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We establish Theorem 1.1 by means of the Hardy–Littlewood method in
combination with the linear sieve. In order to bound the contributions of the
minor arcs, in previous works [14, 8], an integral of the type

	1
0|T (α)G(α)|4 dα

was used, where T (α) and G(α) are defined in (2.2) below. The above inte-
gral is no more than the number of solutions for p2

1 + p2
2 − p2

3 − p2
4 = h with

h = 2ν1 + 2ν2 − 2ν3 − 2ν4 , where p2
j ≤ N and νi ≤ L. The contribution from

h = 0 can be obtained by Rieger’s result [16]. Then, as was pointed out in
[14], a crucial step is to bound from above the number of solutions of the
equation p2

1 + p2
2 − p2

3 − p2
4 = h with nonzero h. The machinery of Brüdern

and Fouvry was employed directly to provide such an estimate, while the
information on the powers of two was lost in the process.

Our approach is different. Instead of the integral
	1
0 |T (α)G(α)|4 dα, we

investigate a new integral
	1
0 |T (α)4G(α)14| dα. Now the loss is that we need

more variables for the powers of 2 in the mean value integral, while the gain
is a situation where we can apply a linear sieve procedure to the equation
involving four squares of primes and fourteen powers of two. This approach is
motivated by the works of Wooley [19] and of Tolev [17]. In view of [1, 4, 19],
it seems hard to solve the equation p2

1 +p2
2−p2

3−x2 = h for nonzero h, while
Wooley’s argument works well to establish the asymptotic formula for the
number of solutions of the equation p2

1 +p2
2−p2

3−x2 +
∑3

j=1(2uj−2vj ) = 0 in
a suitable box, where x is a natural number. Motivated by Wooley’s result,
Tolev considered the exceptional set for the equation p2

1 + p2
2 + p2

3 + x2 = n
with x an almost prime, and his argument works for the equation p2

1 + p2
2−

p2
3 − (dx)2 +

∑t
j=1(2νj − 2µj ) = 0 with a suitable t. The linear sieve was

employed in place of the four-dimensional vector sieve, hence the quantity
is comparable to one fourth of those in [14, 8].

2. Preliminary results. The letter ε denotes an arbitrary small posi-
tive constant. The letter N is a large integer and L = (log(N/logN))/log 2.
To apply the circle method, we set

P = N1/5−ε, Q = L−14N/P.

Define

(2.1) M =
⋃

1≤q≤P

⋃
1≤a≤q
(a,q)=1

M(q, a) and C(M) =

[
1

Q
, 1 +

1

Q

]
\M,

where

M(q, a) =

{
α :

∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qQ

}
.

Denote by B the interval [
√

(1/4− η)N,
√

(1/4 + η)N ], where η ∈
(
0, 1

1010

)
is a constant. Let
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T (α) =
∑
p∈B

(log p)e(p2α), G(α) =
∑

4≤ν≤L
e(2να).(2.2)

Then we have

Rk(N) :=
∑

p21+p22+p23+p24+2ν1+···+2νk=N
pj∈B (1≤j≤4), 4≤ν1,...,νk≤L

4∏
j=1

log pj

=

1�

0

T 4(α)Gk(α)e(−αN) dα

=
�

M
T 4(α)Gk(α)e(−αN) dα+

�

C(M)

T 4(α)Gk(α)e(−αN) dα.

Let

(2.3) C∗(q, a) =

q∑
m=1

(m,q)=1

e

(
am2

q

)
, B(n, q) =

q∑
a=1

(a,q)=1

C∗(q, a)4e

(
−an
q

)
,

and

(2.4) A(n, q) =
B(n, q)

φ4(q)
, S(n) =

∞∑
q=1

A(n, q).

For n ≡ 4 (mod 24), we have

(2.5) 1� S(n)� (log log n)11

and

(2.6) S(n) = 24
∏
p>3

(1 +A(n, p)).

Define

I(h) =

∞�

−∞

(√1/4+η�
√

1/4−η

e(x2β) dx
)4
e(−hβ) dβ.

For the major arcs, we quote

Lemma 2.1 ([14, Lemma 2.1]). For 2 ≤ n ≤ N , we have
�

M
T 4(α)e(−αn) dα = S(n)I

(
n

N

)
N +O

(
N

logN

)
,

where S(n) is given by (2.4).

The definition of T (α) in (2.2) is slightly different from that in [14], while
the above result can be proved by the same argument.
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3. An application of the linear sieve. Let

I =

1�

0

|T (α)4G(α)14| dα.(3.1)

The purpose of this section is to obtain an upper bound for I by using the
linear sieve. We first give an auxiliary lemma.

Lemma 3.1. Let

J =
∑

x21+x22=x23+x24
1≤x1,x2,x3,x4≤P

τ(x1)τ(x2)τ(x3)τ(x4),

where τ(n) denotes the divisor function. Then

J � P 2(logP )14.(3.2)

Proof. One has

J =
∑

x21+x22=x23+x24
x1 6=x3

τ(x1)τ(x2)τ(x3)τ(x4) +
(∑

x1

τ2(x1)
)2

=: Jo + Jd.

The diagonal contribution Jd is bounded by P 2(logP )6. It suffices to prove
Jo � P 2(logP )14. We have

Jo ≤
∑

x21+x22=x23+x24
x1 6=x3

τ2(x1)τ2(x3)

= 2
∑
x1<x3

τ2(x1)τ2(x3)
∑
x2,x4

(x2−x4)(x2+x4)=x23−x21

1

≤ 2
∑
x1<x3

τ2(x1)τ2(x3)τ(x2
3 − x2

1)

≤ 2
( ∑
x1<x3

τ3(x1)τ3(x3)
)2/3( ∑

x1<x3

τ3(x2
3 − x2

1)
)1/3

.

Note that
∑

1≤x1<x3≤P τ
3(x2

3 − x2
1) ≤

∑
1≤a,b≤2P τ

3(a)τ3(b). The desired

result follows from the above easily.

Let

g(β) =

√
1/4+η�
√

1/4−η

e(x2β) dx and g+(β) =

√
1/4+η+η2�
√

1/4−η−η2

e(x2β) dx.

Note that
g(β), g+(β)� min{1, |β|−1}.
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We introduce two integrals:

J+(h) =

∞�

−∞
g(β)2g(−β)g+(−β)e(−hβ) dβ,

J(h) =

∞�

−∞
|g(β)|4e(−hβ) dβ.

Note that J+(h) and J(h) are nonnegative constants depending on η. More-
over, I(1) ≤ J(0) ≤ J+(0) ≤ (1 +O(η))I(1), where the O-constant is abso-
lute. Let

S(h) =
∏
p>2

(
1 +

B(p, h)

(p− 1)4

)
,(3.3)

where

B(p, h) =

q∑
a=1

(a,q)=1

|C∗(p, a)|4e(ah/p).

Lemma 3.2. Let I be defined by (3.1). Then

I ≤ 8(16 + ε)J+(0)N
∑
h6=0

r7(h)S(h) +O(NL13),

where
rt(h) =

∑
4≤νj ,µj≤L∑t

j=1(2νj−2µj )=h

1, t ∈ N.

Proof. Note that

I =
∑
h∈Z

r7(h)
∑
pj∈B

p21+p22−p23−p24=h

4∏
j=1

log pj .(3.4)

Let us introduce a smooth function w : R+ → [0, 1] which is supported on
the interval [

√
1/4− η − η2,

√
1/4 + η + η2 ] and satisfies w(x) = 1 for all

x ∈ [
√

1/4− η,
√

1/4 + η ]. It is clear that

I ≤ Iw log
√
N,(3.5)

where

Iw =
∑
h∈Z

r7(h)
∑

p1,p2,p3∈B
p21+p22−p23−p24=h

w(p4/
√
N)

3∏
j=1

log pj .(3.6)

Consider Rosser’s weight λ+(d) of order D = N1/16−ε. Let z = D1/2 and
Πz =

∏
2<p<z p. Recalling the properties of Rosser’s weights, we know
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|λ+(d)| ≤ 1,
∑

d|(n,Πz) µ(d) ≤
∑

d|(n,Πz) λ
+(d), and

λ+(d) = 0 if µ(d) = 0 or d > D.

We have

Iw ≤
∑
h∈Z

r7(h)
∑

p1,p2,p3∈B, (y,Πz)=1
p21+p22−p23−y2=h

w(y/
√
N)

3∏
j=1

log pj

≤
∑
h∈Z

r7(h)
∑

p1,p2,p3∈B
p21+p22−p23−y2=h

w(y/
√
N)
( ∑
d|(y,Πz)

λ+(d)
) 3∏
j=1

log pj

=
∑
d|Πz

λ+(d)
∑
h∈Z

r7(h)
∑

p1,p2,p3∈B
p21+p22−p23−d2x2=h

w(dx/
√
N)

3∏
j=1

log pj

:= I+
w .

Define

fd(α) =
∑
x

w(dx/
√
N)e(d2x2α),

F (α) =
∑
d|Πz

λ+(d)fd(α).

Now I+
w can be represented as

I+
w =

1�

0

T 2(α)T (−α)F (−α)|G(α)|14 dα.(3.7)

Let

(3.8) M =
⋃

1≤q≤Nη

⋃
1≤a≤q
(a,q)=1

M(q, a),

where M(q, a) = {α : |qα− a| ≤ NηN−1}. Then we define

(3.9) m = [Nη/N, 1 +Nη/N ] \M.

So we have

I+
w =

∑
h6=0

r7(h)
�

M

T 2(α)T (−α)F (−α)e(−hα) dα(3.10)

+ r7(0)
�

M

T 2(α)T (−α)F (−α) dα

+
�

m

T 2(α)T (−α)F (−α)|G(α)|14 dα.
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We first consider the third integral on the right hand side of (3.10). By
Hölder’s inequality,

�

m

T 2(α)T (−α)F (−α)|G(α)|14 dα

≤
( 1�

0

|T (α)|4 dα
)3/4( �

m

|F (α)4G(α)56| dα
)1/4

.

In light of Rieger’s result [16],
	1
0 |T (α)|4 dα� N log2N . Note that

�

m

|F (α)4G(α)56| dα =
∑
h

r28(h)
�

m

|F (α)4|e(hα) dα

=
∑
h6=0

r28(h)
�

m

|F (α)4|e(hα) dα+ r28(0)
�

m

|F (α)4| dα.

In view of the work of Heath-Brown and Tolev [4] (see also [17]), for h 6= 0
one has �

m

|F (α)4|e(hα) dα� N1−δ,

where δ > 0 is a small constant depending on η. Considering the underlying
Diophantine equation, we have

�

m

|F (α)4| dα ≤
1�

0

|F (α)4| dα ≤ J,

where J is given by Lemma 3.1. Hence
	
m |F (α)4| dα� NL14 and

�

m

|F (α)4G(α)56| dα� NL42.

We conclude from the above that�

m

T 2(α)T (−α)F (−α)|G(α)|14 dα� NL12.

The second integral in (3.10) can be handled similarly (and is actually eas-
ier). In particular, we have

r7(0)
�

M

T 2(α)T (−α)F (−α) dα� NL12.

Now we turn to the first integral in (3.10), which is equal to∑
d|Πz

λ+(d)
�

M

T 2(α)T (−α)fd(−α)e(−hα) dα.

Let us introduce

Sd(h) =

∞∑
q=1

Ad(q, h)

qφ3(q)
, S(h) = S1(h),
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where

Ad(q, h) =

q∑
a=1

(a,q)=1

C∗(q, a)2C∗(q,−a)C(q,−ad2)e(−ah/q)

and

C(q, a) =

q∑
x=1

e(ax2/q).

Define Ω(d) = Sd(h)/S(h) provided that S(h) 6= 0, and Ω(d) = 1 otherwise.
Let

g+
w (β) =

√
1/4+η+η2�
√

1/4−η−η2

w(x)e(x2β) dx,

J+(h) =

∞�

−∞
g(β)2g(−β)g+

w (−β)e(−hβ) dβ.

The standard argument in the Waring–Goldbach problem implies the
asymptotic formula

�

M

T 2(α)T (−α)fd(−α)e(−hα) dα =
Ω(d)

d
S(h)J+

w(h/N)N

+O(d−1N log−AN).

In view of the properties of Rosser’s weights, we have∑
d|Πz

λ+(d)
�

M

T 2(α)T (−α)fd(−α)e(−hα) dα

≤ (Φ(2) + ε)
∏

2<p<z

(1−Ω(p)/p)S(h)J+
w(h/N)N +O(N log−AN),

where Φ(s) = 2eγ/s for 0 < s ≤ 3, and γ is Euler’s constant. Note that
Ω(2) = 0 when h is even. Therefore we finally obtain

I+
w ≤

∑
h6=0

r7(h)(Φ(2) + ε)
∏

2<p<z

(1−Ω(p)/p)S(h)J+
w(h/N)N +O(NL12).

For p > 2, one has(
1− Ω(p)

p

)(
1− 1

p

)−1(
1 +

A1(p, h)

p(p− 1)3

)
= 1 +

B(p, h)

(p− 1)4
.

One also has

1 +
∞∑
k=1

∑
a(2k)∗ C

∗(2k, a)2C∗(2k,−a)C(2k,−a)

2kφ3(2k)
= 4.



Squares and powers of 2 263

It is well-known that∏
2≤p<z

(
1− 1

p

)
=

e−γ

log z

(
1 +O

(
1

log z

))
.

Now we conclude that

I+
w ≤ 8(16 + ε)(log

√
N)−1

∑
h6=0

r7(h)S(h)J+
w(h/N)N +O(NL12)

≤ 8(16 + ε)J+(0)N(log
√
N)−1

∑
h6=0

r7(h)S(h) +O(NL12).

The desired conclusion now follows from (3.5) easily.

Lemma 3.3. One has�

C(M)

|T (α)4G(α)14| dα ≤ 8(15 + ε)(1 +O(η))J(0)N
∑
h6=0

r7(h)S(h)

+O(NL13).

Proof. Recalling (2.1) and (3.9), one has C(M) ⊆ m and�

C(M)

|T (α)4G(α)14| dα ≤
�

m

|T (α)4G(α)14| dα.

Note that�

M

|T (α)4G(α)14| dα =
∑
h6=0

r7(h)
�

M

|T (α)4|e(hα) dα+O(NL9).

For h 6= 0, the standard argument provides�

M

|T (α)4|e(hα) dα = 8S(h)J(h/N)N +O(NL−100).

Therefore�

M

|T (α)4G(α)14| dα = 8
∑
h6=0

r7(h)S(h)J(h/N)N +O(NL9).

Recalling that h ≤ NL−1, one has�

M

|T (α)4G(α)14| dα = 8J(0)(1 +O(L−1))N
∑
h6=0

r7(h)S(h) +O(NL9).

By Lemma 3.2, we obtain

�

m

|T (α)4G(α)14| dα =

1�

0

−
�

M

≤ 8(15 + ε)
∑
h6=0

r7(h)S(h)(1 +O(η))J(0)N +O(NL13).

The desired conclusion is established.
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4. Numerical computations. Throughout this section, we use h to
denote

∑7
j=1(2uj − 2vj ). For odd q, denote by %(q) the smallest positive

integer % such that 2%(q) ≡ 1 (mod q).

Define

a(p) =

{
−(p+ 1)2 if p ≡ 3 (mod 4),

3p2 − 2p− 1 if p ≡ 1 (mod 4),

b(p) =

{
(p− 1)(p+ 1)2 if p ≡ 3 (mod 4),

(p− 1)(p2 + 6p+ 1) if p ≡ 1 (mod 4).

Then we define the multiplicative function c(d) by

1 +
1

c(p)
=

1 + b(p)
(p−1)4

1 + a(p)
(p−1)4

,

where d is square-free and (30, d) = 1.

Lemma 4.1. Let c0 = 25
32c1 +

(
3
2 −

25
32

)
c2, where

c1 :=
∑

p|d⇒p>5

µ2(d)

c(d)%14(3d)

∑
1≤uj ,vj≤%(3d), 1≤j≤7

3d|h

1,

c2 :=
∑

p|d⇒p>5

µ2(d)

c(d)%14(15d)

∑
1≤uj ,vj≤%(15d), 1≤j≤7

15d|h

1.

Then c0 < 0.69.

Proof. The proof follows the lines of [12]. Set

β(d) =

(
1

%14(3d)

∑
1≤uj ,vj≤%(3d), 1≤j≤7

3d|h

1

)−1

.

Then

c1 =
∑

p|d⇒p>5

µ2(d)

c(d)

∞�

β(d)

dx

x2
=

∞�

2

∑
p|d⇒p>5
β(d)≤x

µ2(d)

c(d)

dx

x2
.

Clearly β(d) ≥ %(3d), so∑
p|d⇒p>5
β(d)≤x

µ2(d)

c(d)
≤

∑
p|d⇒p>5
%(3d)≤x

µ2(d)

c(d)
.
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Let m(x) =
∏
e≤x(2e − 1). Then for x ≥ 3 we have∑

p|d⇒p>5
β(d)≤x

µ2(d)

c(d)
≤

∑
p|d⇒p>5
3d|m(x)

µ2(d)

c(d)
≤

∏
p>5
p|m(x)

(
1 +

1

c(p)

)

≤
∏
p>5

1 + 1
c(p)

1 + 1
p−1

∏
p>5
p|m(x)

(
1 +

1

p− 1

)
.

It was proved in [12] that m(x)/φ(m(x)) ≤ eγ log x for x ≥ 9. If x ≥ 9, then∑
p|d⇒p>3
β(d)≤x

µ2(d)

c(d)
≤ 8c3

15
eγ log x,

where c3 =
∏
p>5

1+ 1
c(p)

1+ 1
p−1

≤ 1.3904. Let M = 40. We have

c1 =

M�

2

∑
p|d⇒p>5
β(d)≤x

µ2(d)

c(d)

dx

x2
+

∞�

M

∑
p|d⇒p>5
β(d)≤x

µ2(d)

c(d)

dx

x2

≤
∑

p|d⇒p>5
β(d)<M

µ2(d)

c(d)

M�

β(d)

dx

x2
+

∞�

M

8c3

15
eγ log x

dx

x2

=
∑

p|d⇒p>3
β(d)<M

µ2(d)

c(d)

(
1

β(d)
− 1

M

)
+

8c3

15
eγ

1 + logM

M
.

The constant c2 can be handled in a similar way. Then numerical computa-
tions provide the desired result.

In the following lemma, the condition (h) in
∑

(h) means that the sum-

mation is taken over all (u1, . . . , u7, v1, . . . , v7) satisfying 4 ≤ uj , vj ≤ L and

h =
∑7

j=1(2uj − 2vj ) 6= 0.

Lemma 4.2. Let

κ(h) =


25 + 15

(
h
5

)
32

if 5 - h,

3

2
if 5 |h.

Then

(4.1)
∑
(h)

h≡0 (mod 3)

κ(h)
∏
p>5
p|h

(
1 +

1

c(p)

)
≤
(

25

32
c1 +

(
3

2
− 25

32

)
c2 + ε

)
L14.
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Proof. The left hand side of (4.1) is equal to∑
(h)

h≡0 (mod 3)
5-h

25 + 15
(
h
5

)
32

∏
p>5
p|h

(
1 +

1

c(p)

)
+

3

2

∑
(h)

h≡0 (mod 15)

∏
p>5
p|h

(
1 +

1

c(p)

)

=
∑
(h)

h≡0 (mod 3)
5-h

25

32

∏
p>5
p|h

(
1 +

1

c(p)

)
+

3

2

∑
(h)

h≡0 (mod 15)

∏
p>5
p|h

(
1 +

1

c(p)

)
+ o(L14)

=
25

32

∑
(h)

h≡0 (mod 3)

∏
p>5
p|h

(
1 +

1

c(p)

)
+

(
3

2
− 25

32

) ∑
(h)

h≡0 (mod 15)

∏
p>5
p|h

(
1 +

1

c(p)

)

+ o(L14)

=:
25

32
Σ1 +

(
3

2
− 25

32

)
Σ2 + o(L14).

Let us consider Σ1. One has

Σ1 =
∑
(h)

h≡0 (mod 3)

∑
d|h

p|d⇒p>5

µ2(d)

c(d)
=

∑
(h)

h≡0 (mod 3)

∑
d<Nε

d|h
p|d⇒p>5

µ2(d)

c(d)
+O(N−ε)

≤
∑
d<Nε

p|d⇒p>5

µ2(d)

c(d)

∑
1≤uj ,vj≤L

3d|h

1 +O(N−ε) =: Σ′1 +O(N−ε),

where

Σ′1 ≤
∑
d<Nε

p|d⇒p>5
%(3d)<L

µ2(d)

c(d)

∑
1≤uj ,vj≤%(3d)

3d|h

(
L

%(3d)
+O(1)

)14

+
∑
d<Nε

p|d⇒p>5
%(3d)≥L

µ2(d)

c(d)
L13

≤ L14
∑
d<Nε

p|d⇒p>5

µ2(d)

c(d)%(3d)14

∑
1≤uj ,vj≤%(3d)

3d|h

1 +O(ε)L14.

Therefore Σ1 ≤ (c1 + ε)L14. Similarly, Σ2 ≤ (c2 + ε)L14. Now the desired
conclusion is established.

Lemma 4.3. Let S(h) be given by (3.3). Then∑
h6=0

r7(h)S(h) ≤ 3c0L
14,

where c0 is given by Lemma 4.1.
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Proof. Note that

B(p, h) =


−(p+ 1)2 if p ≡ 3 (mod 4) and p - h,

−(p2 + 6p+ 1)− 4p(p+ 1)
(
h
p

)
if p ≡ 1 (mod 4) and p - h,

(p− 1)(p+ 1)2 if p ≡ 3 (mod 4) and p |h,

(p− 1)(p2 + 6p+ 1) if p ≡ 1 (mod 4) and p |h.

Then we have

S(h) ≤ 3κ̃(h)
∏
p>5

(
1 +

a(p)

(p− 1)4

)∏
5<p
p|h

1 + b(p)
(p−1)4

1 + a(p)
(p−1)4

,

where κ̃(h) = κ(h) if 3 |h and zero otherwise. One has

c4 =
∏
p>5

(
1 +

a(p)

(p− 1)4

)
≤ 0.9743.

Therefore,

S(h) ≤ 3c4 κ̃(h)
∏
5<p
p|h

(
1 +

1

c(p)

)
.

The conclusion now follows from Lemmas 4.1–4.2.

Let

Ξ(N, k) = {n ≥ 2 : n = N − 2ν1 − · · · − 2νk , 4 ≤ ν1, . . . , νk ≤ L}
for positive integer k.

Lemma 4.4. For k ≥ 35 and N ≡ 4 (mod 8), one has

1

8

∑
n∈Ξ(N,k)

n≡4 (mod 24)

S(n) ≥ 0.9NLk.

Proof. As shown in [14], for p ≡ 1 (mod 4),

1 +A(n, p) ≥ 1− 5p2 + 10p+ 1

(p− 1)4
,

while for p ≡ 3 (mod 4),

1 +A(n, p) ≥ 1− 5p2 − 2p+ 1

(p− 1)4
.

We have the numerical inequalities∏
17≤p<p5000
p≡1 (mod 4)

(
1− 5p2 + 10p+ 1

(p− 1)4

) ∏
17≤p<p5000
p≡3 (mod 4)

(
1− 5p2 − 2p+ 1

(p− 1)4

)
≥ 0.904923,
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where pr denotes the rth prime. Moreover∏
p≥p5000

(1 +A(n, p)) ≥
∏

p≥p5000

(
1− 1

(p− 1)2

)6

≥
∏

m≥p5000

(
1− 1

(m− 1)2

)6

=

(
1− 1

p5000 − 1

)6

> 0.99994271.

Thus ∏
p≥17

(1 +A(n, p)) ≥ C1 := 0.904811.

Set m0 = 14. Now we have∑
n∈Ξ(N,k)

n≡4 (mod 24)

S(n) ≥ 24C1

∑
n∈Ξ(N,k)

n≡4 (mod 24)

∏
3<p<m0

(1 +A(n, p))

= 24C1

∑
1≤j≤q

∑
n∈Ξ(N,k)

n≡4 (mod 24)
n≡j (mod q)

∏
3<p<m0

(1 +A(n, p))

= 24C1

∑
1≤j≤q

∏
3<p<m0

(1 +A(j, p))
∑

n∈Ξ(N,k)
n≡4 (mod 24)
n≡j (mod q)

1,

where q =
∏

3<p<m0
p. For the inner sum, we have

S :=
∑

n∈Ξ(N,k)
n≡4 (mod 24)
n≡j (mod q)

1 =

(
L

%(3q)
+O(1)

)k ∑
1≤ν1,...,νk≤%(3q)

2ν1+···+2νk≡aj (mod 3q)

1,

where aj is the natural number in [1, 3q] satisfying aj ≡ 0 (mod 3) and
aj ≡ j (mod q). Note that

S =

(
L

%(3q)
+O(1)

)k 1

3q

3q−1∑
t=0

e

(
taj
3q

)( ∑
1≤s≤%(3q)

e

(
t2s

3q

))k
.

We arrive at

S ≥
(

L

%(3q)
+O(1)

)k 1

3q

(
%(3q)k − (3q − 1)(max)k

)
=
Lk

3q

(
1− (3q − 1)

(
max

%(3q)

)k)
+O(Lk−1),
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where

max = max

{∣∣∣∣ ∑
1≤s≤%(3q)

e

(
j2s

3q

)∣∣∣∣ : 1 ≤ j ≤ 3q − 1

}
.

Note that 3q = 15015 and %(3q) = 60. With the help of a computer, it is
not hard to check that

max = 34.5 . . . < 34.6 and (3q − 1)

(
max

%(3q)

)35

< 10−7.

Therefore

S ≥ (1− 10−7)Lk

3q
+O(Lk−1),

and∑
n∈Ξ(N,k)

n≡4 (mod 24)

S(n) ≥ 24C1

p∑
j=1

∏
3<p<m0

(1 +A(j, p))
(1− 10−7)Lk

3q
+O(Lk−1)

=
8C1(1− 10−7)Lk

q

∏
3<p<m0

( p∑
j=1

(1 +A(j, p))
)

+O(Lk−1).

Observing that

p∑
j=1

(1 +A(j, p)) = p+
1

(p− 1)4

∑
1≤a≤p−1

C4(p, a)

p∑
j=1

e(−aj/q) = p,

one has ∑
n∈Ξ(N,k)

n≡4 (mod 24)

S(n) ≥ 8C1(1− 10−7)Lk +O(Lk−1).

The proof is complete since L is sufficiently large.

5. Proof of Theorem 1.1. As in [14], it suffices to prove that large
even integers N ≡ 4 (mod 8) can be represented as the sum of four squares
of primes and 44 powers of 2, since for every even integer N , there exist
u1, u2 ∈ {1, 2, 3} such that N − 2u1 − 2u2 ≡ 4 (mod 8). We set k = 44. Let

E(λ) = {α ∈ (0, 1] : |G(α)| ≥ λL}.

By [14, Lemma 5.3], we know

|E(0.887167)| � N−3/4−10−10
.

Let

m1 = C(M) ∩ E(0.887167), m2 = C(M) \m1.
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Following the lines of [14], we have∣∣∣ �

C(M)

T 4(α)Gk(α)e(−αN) dα
∣∣∣

≤
�

m1

|T 4(α)Gk(α)| dα+
�

m2

|T 4(α)Gk(α)| dα

≤ O(N1−ε) + (0.887167L)k−14
1�

0

|T (α)4G(α)14| dα.

By Lemmas 3.3 and 4.3,∣∣∣ �

C(M)

∣∣∣ ≤ O(N) + (0.887167L)k−14 3c0 × 8(15 +O(η) + ε)J(0)NL14.

On the major arcs, we have by Lemma 2.1,�

M
T 4(α)Gk(α)e(−αN) dα =

∑
n∈Ξ(N,k)

n≡8 (mod 24)

S(n)I(n/N)N +O(NLk−1).

For n ∈ Ξ(N, k), one has n/N = 1 +O(L−1). Applying Lemma 4.4, we get
�

M
T 4(α)Gk(α)e(−αN) dα

=
∑

n∈Ξ(N,k)
n≡8 (mod 24)

S(n)I(1)(1 +O(L−1))N +O(NLk−1)

≥ 0.9× 8I(1)NLk +O(NLk−1).

Therefore we have

R44(N) ≥ 8NL44
(
0.9I(1)− (0.887167)30(45 + ε)c0(1 +O(η))J(0)

)
> 0.00001J(0)NL44

provided that η is sufficiently small. The proof of Theorem 1.1 is complete.
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