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1. Introduction. It is well-known in the theory of modular forms and
functions that the group GL+

2 (R) acts on the complex upper half-plane H by
linear fractional transformation. When we need to emphasize we think of an
element γ of GL+

2 (R) not only as a matrix but also as a transformation, we
shall denote it by γ. For a suitable discrete subgroup Γ of GL+

2 (R) which is
commensurable with PSL2(Z) the orbit space Γ\H can be given a Riemann
surface structure, which can be compactified by adding the cusps to Γ\H∗
where H∗ = H ∪ P1(Q) ([3] or [12]). We call this compact Riemann surface
an arithmetic curve. A meromorphic function f on H invariant under the
action of all γ ∈ Γ is said to be weakly modular for Γ (or Γ ). If a weakly
modular function f for Γ is also meromorphic at all the cusps in the sense
of [12], we say that f is modular for Γ (or Γ ).

For a positive integer N we consider the following congruence subgroups:

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( ∗ ∗0 ∗ ) (mod N)

}
,

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 ∗

0 1 ) (mod N)
}
,

Γ (N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ ( 1 0

0 1 ) (mod N)
}
,

and let ΦN be the Fricke involution
(

0 −1
N 0

)
. We are mainly concerned

with the field of meromorphic functions on the compact Riemann surface
〈Γ ,ΦN 〉\H∗ where Γ is one of the above congruence subgroups. From now
on, for convenience we let

Γ
†
0(N) = 〈Γ 0(N), ΦN 〉,

X0(N) = Γ 0(N)\H∗,
X†0(N) = Γ

†
0(N)\H∗,

Γ
†
1(N) = 〈Γ 1(N), ΦN 〉,

X1(N) = Γ 1(N)\H∗,
X†1(N) = Γ

†
1(N)\H∗,

Γ
†(N) = 〈Γ (N), ΦN 〉,
X(N) = Γ (N)\H∗,
X†(N) = Γ

†(N)\H∗,
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and let K(R) be the field of meromorphic functions on any compact Riemann
surface R listed above. The function fields of our interest are classically de-
scribed in terms of the modular invariant j and the Fricke functions ([3] or
[12]), which requires good understanding of the theory of elliptic curves. In
general, the function field of a compact Riemann surface (viewed as an alge-
braic curve) can be generated by at most two functions ([10]). For instance,
Ishida–Ishii constructed in [5] these two generators of K(X1(N)) by using
certain products of Klein forms.

As preliminaries we review some arithmetic properties of Siegel functions
developed by Kubert–Lang ([8]) and Koo–Shin ([7]). We then find generators
of function fields in terms of j and Siegel functions (Theorems 3.2 and 3.5)
unlike in Ishida–Ishii’s approach.

On the other hand, Kim–Koo ([6]) gave a genus formula for the arith-
metic curve X†1(N). Using that formula they showed that X†1(N) has genus
zero exactly when 1 ≤ N ≤ 12 and N = 14, 15. Choi–Koo constructed in [1]
primitive generators of genus zero curves X†1(N) by using elliptic functions
and theta functions. However, their method seems to be too artificial and
inconvenient for other similar situations. Therefore we revisit this subject
and present a process of finding primitive generators in a more standard
and systematic way (Theorem 4.2 and Table 1) by means of Siegel functions
only. To this end we essentially follow the idea of Koo–Shin ([7]) who dealt
with various modifications of Siegel functions.

Next, we know that a classical generator of the ring class field of the
order of conductor N (≥ 2) over an imaginary quadratic field K is given
by a singular value of j. Moreover, we recently showed that any power of
a certain linear form of j also becomes a generator of the ring class field
over K (Lemma 5.1). As an application of previous sections and this fact
we shall further find a primitive generator of the ray class field modulo N
over K (6= Q(

√
−1),Q(

√
−3)) in terms of the singular values of j and Siegel

functions (Theorem 5.5) which is different from Ramachandra’s ray class
invariant ([11]) constructed from very complicated products of high powers
of singular values of Klein forms and singular values of the discriminant ∆.
We also describe Galois groups between the two class fields mentioned above
(Proposition 5.3) by adopting the idea of Gee ([4]).

2. Preliminaries. In this section we introduce Siegel functions and
briefly review their transformation formulas and criterions for determining
modularity which are developed in [8] and [7].

Let B2(X) = X2−X+1/6 be the second Bernoulli polynomial. For any
r = (r1, r2) ∈ Q2 \ Z2 we define the Siegel function gr(τ) for τ ∈ H by the
following qτ -product formula:
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(2.1) gr(τ) = −q
1
2
B2(r1)

τ eπir2(r1−1)(1− qz)
∞∏
n=1

(1− qnτ qz)(1− qnτ q−1
z )

where qτ = e2πiτ and qz = e2πiz with z = r1τ + r2. From the definition we
can deduce the simple order formula

(2.2) ordqτ gr =
1
2

B2(〈r1〉)

where 〈r1〉 is the fractional part of r1 so that 0 ≤ 〈r1〉 < 1. Here we remark
that this function is holomorphic and never vanishes on H. In the following
proposition we present basic transformation formulas for Siegel functions.

Proposition 2.1 (see [7, Proposition 2.4]). Let r = (r1, r2) ∈ Q2 \ Z2.
Then:

(i) g−r = −gr.
(ii) For S =

(
0 −1
1 0

)
and T = ( 1 1

0 1 ) we have

gr ◦ S = ζ9
12grS = ζ9

12g(r2,−r1), gr ◦ T = ζ12grT = ζ12g(r1,r1+r2),

where ζ12 = e2πi/12. Hence for γ ∈ SL2(Z), gr ◦ γ = εgrγ with ε a
12th root of unity.

(iii) For s = (s1, s2) ∈ Z2 we have

gr+s = ε(r, s)gr where ε(r, s) = (−1)s1s2+s1+s2e−πi(s1r2−s2r1).

Remark 2.2. We see from Proposition 2.1(ii) and the order formula
(2.2) that any product of Siegel functions is meromorphic at the cusps.
Hence it is not necessary to check the meromorphy of Siegel functions at
the cusps in what follows.

For a positive integer N we denote by FN the field of all modular func-
tions h for the principal congruence subgroup Γ (N) for which the Fourier
coefficients of h◦γ with respect to q1/Nτ for any γ ∈ SL2(Z) belong to Q(ζN )
with ζN = e2πi/N . Then FN is a Galois extension of F1 (= Q(j(τ))) with
Gal(FN/F1) ∼= GL2(Z/NZ)/±( 1 0

0 1 ) ([9] or [12]).
Kubert–Lang provided a condition for a product of Siegel functions to be-

long to FN . For N≥2 we say that a family of integers {m(r)}r=(r1,r2)∈ 1
N

Z2\Z2

with m(r) = 0 except finitely many r satisfies the quadratic relation mod-
ulo N if∑

r

m(r)(Nr1)2 ≡
∑
r

m(r)(Nr2)2 ≡ 0 (mod gcd(2, N) ·N),∑
r

m(r)(Nr1)(Nr2) ≡ 0 (mod N).
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Proposition 2.3 (see [8, Chapter 3, Theorems 5.2 and 5.3]). Let N ≥ 2.
A product of Siegel functions ∏

r∈ 1
N

Z2\Z2

gm(r)
r (τ)

belongs to FN if {m(r)}r satisfies the quadratic relation modulo N and
gcd(12, N) ·

∑
rm(r) ≡ 0 (mod 12). In particular, g12N

r lies in FN for
r ∈ 1

NZ2 \ Z2.

We further examine a condition for a product of Siegel functions to be
modular for Γ1(N). Note that for t ∈ Z \NZ we have the relation

(2.3)
N−1∏
n=0

g(t/N,n/N)(τ) = eπi
N−1

2
( t
N

+1)g(t/N,0)(Nτ)

from the identity 1−XN = (1−X)(1− ζNX) · · · (1− ζN−1
N X).

Proposition 2.4 (see [7, Theorem 6.2]). Let N ≥ 2. A product

g =
N−1∏
t=1

g
m(t)
(t/N,0)(Nτ)

is modular for Γ1(N) if the family of integers {m(t)}N−1
t=1 satisfies

(2.4)
∑
t

m(t) ≡ 0 (mod 12),
∑
t

m(t)t2 ≡ 0 (mod gcd(2, N) ·N).

In particular, g12N
(t/N,0)(Nτ) is modular for Γ1(N) for t ∈ Z\NZ. Furthermore,

for γ =
(
a b
c d

)
∈ SL2(Z) we get

(2.5) ordqτ (g ◦ γ) =
gcd(c,N)2

2N

N−1∑
t=1

m(t)B2

(〈
at

gcd(c,N)

〉)
.

Now we investigate the action of Gal(FN/F1) on certain Siegel functions
for later use.

Proposition 2.5. Let N ≥ 2, s ∈ Z\NZ and t ∈ Z with gcd(t,N) = 1.
Then the action of the element ( t 0

0 t ) of Gal(FN/F1) is given by

g12N
(0,s/N)(τ)(

t 0
0 t ) = g12N

(0,〈st/N〉)(τ), g12N
(s/N,0)(Nτ)(

t 0
0 t ) = g12N

(〈st/N〉,0)(Nτ),

where 〈X〉 is the fractional part of a real number X with 0 ≤ 〈X〉 < 1.

Proof. See [8, p. 36, Proposition 2.1(iii)] and the relation (2.3).

3. Function fields of X†1(N). In this section we first describe the func-
tion field K(X1(N)) in terms of j and a product of Siegel functions. We can
then naturally extend it to K(X†1(N)). Here we do not intend to reduce the
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number of generators to be 2 as Ishida–Ishii did in [5]. From now on, unless
otherwise specified, N is always a positive integer ≥ 2.

Lemma 3.1. For N ≥ 6 let g = g12N
(0,1/N)(τ)g12N

(1/N,0)(Nτ). Then:

(i) g is modular for Γ1(N).
(ii) If g is invariant under the action of γ =

(
a b
c d

)
∈ SL2(Z), then

γ ≡ ±
(

1 ∗
0 1

)
(mod N).

Proof. (i) By Proposition 2.3 the function g12N
(0,1/N)(τ) is modular for

Γ (N). It is also invariant under the action of T =
(

1 1
0 1

)
by Proposition

2.1(ii). Since Γ1(N) = 〈Γ (N), T 〉, g12N
(0,1/N)(τ) is modular for Γ1(N). Fur-

thermore, g12N
(1/N,0)(Nτ) is also modular for Γ1(N) by Proposition 2.4, which

implies that g = g12N
(0,1/N)(τ)g12N

(1/N,0)(Nτ) is modular for Γ1(N).
(ii) Now we assume that g ◦ γ = g for some γ =

(
a b
c d

)
∈ SL2(Z). Then

obviously ordqτ (g ◦ γ) = ordqτ g. By (2.2) and (2.5),

ordqτ (g ◦ γ) = 6NB2

(〈
c

N

〉)
+ 6 gcd(c,N)2B2

(〈
a

gcd(c,N)

〉)
,(3.1)

ordqτ g = 6NB2(0) + 6N2B2

(
1
N

)
= N2 − 5N + 6.(3.2)

Suppose gcd(c,N) 6= N . The shape of the graph of Y = B2(X) over the
interval 0 ≤ X ≤ 1 indicates that the maximum value of B2(X) is 1/6 at
X = 0, 1. So

ordqτ (g ◦ γ) ≤ 6NB2(1/N) + 6(N/2)2B2(0) = 6/N − 6 +N +N2/4.

On the other hand, for N ≥ 6 we can easily check that

6/N − 6 +N +N2/4 < N2 − 5N + 6,

which contradicts ordqτ (g◦γ) = ordqτ (g). Thus gcd(c,N) = N , which yields
B2(〈a/N〉) = B2(1/N) from (3.1), (3.2) and the fact that ordqτ (g ◦ γ) =
ordqτ (g). Therefore a ≡ ±1 (mod N) from the shape of the graph Y =
B2(X). Now as det(α) = 1, we have a ≡ d ≡ ±1 (mod N), which proves
γ ≡ ±

(
1 ∗
0 1

)
(mod N) as desired.

Theorem 3.2. Let N ≥ 6. Then

K(X0(N)) = C(j(τ), j(Nτ)),
K(X1(N)) = C(j(τ), g12N

(0,1/N)(τ)g12N
(1/N,0)(Nτ)),

K(X(N)) = C(j(τ), g12N
(0,1/N)(τ)g12N

(1/N,0)(Nτ), g12N
(1/N,0)(τ)).

Proof. For K(X0(N)) we refer to [3]. Here we concentrate on K(X1(N))
and K(X(N)). We see from [3] that

Gal(K(X(N))/K(X1(N))) ∼=
{
±
(

1 b
0 1

)
∈ SL2(Z/NZ)/±

(
1 0
0 1

)
: b ∈ Z/NZ

}
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as a subgroup of

Gal(K(X(N))/K(X(1))) ∼= SL2(Z/NZ)/± ( 1 0
0 1 ) ,

whose action is given by composition. Assume that g12N
(0,1/N)(τ)g12N

(1/N,0)(Nτ),
which belongs to K(X1(N)) by Lemma 3.1, is fixed by the action of some
γ ∈ SL2(Z/NZ)/± ( 1 0

0 1 ). Then by Lemma 3.1 we get γ ≡ ± ( 1 ∗
0 1 ) (mod N).

Since K(X(1)) = C(j(τ)) ([9] or [12]), we conclude by Galois theory that

K(X1(N)) = K(X(1))(g12N
(0,1/N)(τ)g12N

(1/N,0)(Nτ))

= C(j(τ), g12N
(0,1/N)(τ)g12N

(1/N,0)(Nτ)).

Next, we assume that g12N
(1/N,0)(τ) is fixed by the action of ±

(
1 b
0 1

)
∈

SL2(Z/NZ)/±( 1 0
0 1 ). Then g12N

(1/N,0)(τ) ◦
(

1 b
0 1

)
= g12N

(1/N,b/N)(τ) = g12N
(1/N,0)(τ)

by Proposition 2.1(ii). It follows from the action of the element
(

0 −1
1 0

)
on

both sides of g12N
(1/N,b/N)(τ) = g12N

(1/N,0)(τ) that g12N
(b/N,−1/N)(τ) = g12N

(0,−1/N)(τ).
Now we compare the orders via the formula (2.2) to obtain 6NB2(〈b/N〉) =
6NB2(0); hence b ≡ 0 (mod N) by the shape of the graph Y = B2(X).
Therefore

K(X(N)) = K(X1(N))(g12N
(1/N,0)(τ))

= C(j(τ), g12N
(0,1/N)(τ)g12N

(1/N,0)(Nτ), g12N
(1/N,0)(τ)).

We will extend the above results to the function fields K(X†0(N)),
K(X†1(N)) and K(X†(N)). Since ΦN

(
1 0
−N 1

)
ΦN = −N ( 1 1

0 1 ) and Γ1(N) =〈
Γ (N), ( 1 1

0 1 )
〉
, we have Γ †(N) = Γ

†
1(N), and so X†(N) = X†1(N). Thus we

are reduced to considering the first two cases.

Lemma 3.3. Let Γ be Γ0(N) or Γ1(N). If a function f on H is weakly
modular for Γ , then both f + f ◦ ΦN and f · f ◦ ΦN are weakly modular for
〈Γ ,ΦN 〉.

Proof. For any
(
a b
c d

)
∈ Γ we deduce

(3.3) ΦN

(
a b

c d

)
=
(

d −c/N
−Nb a

)
ΦN ,

which implies ΦNΓ = ΓΦN . Thus f ◦ ΦN is weakly modular for Γ .
On the other hand, since

(3.4) ΦN ◦ ΦN = −N
(

1 0
0 1

)
which is the identity as a transformation, it follows that (f +f ◦ΦN )◦ΦN =
f ◦ ΦN + f and (f · f ◦ ΦN ) ◦ ΦN = f ◦ ΦN · f . This proves the lemma.
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Lemma 3.4. For t ∈ Z \NZ we have

g(t/N,0)(Nτ) ◦ ΦN = −ζ9
12g(0,t/N)(τ).

Proof. Observe by Proposition 2.1 that

g(t/N,0)(Nτ) ◦ ΦN = g(t/N,0) ◦
(
N 0
0 1

)
◦
(

0 −1
N 0

)
(τ) = g(t/N,0) ◦

(
0 −N
N 0

)
(τ)

= g(t/N,0) ◦
(

0 −1
1 0

)
(τ) = ζ9

12g(0,−t/N)(τ) = −ζ9
12g(0,t/N)(τ).

Theorem 3.5. For N ≥ 6 we have

K(X†0(N)) = C(j(τ) + j(Nτ), j(τ)j(Nτ)),

K(X†1(N)) = C(j(τ) + j(Nτ), j(τ)j(Nτ), g12N
(0,1/N)(τ)g12N

(1/N,0)(Nτ)).

Proof. By Proposition 2.4 the function g = g12N
(1/N,0)(Nτ) is modular

for Γ1(N). Moreover, by Lemma 3.4 we have g ◦ ΦN = g12N
(0,1/N)(τ). Hence

the function g12N
(0,1/N)(τ)g12N

(1/N,0)(Nτ) = (g ◦ ΦN ) · g lies in K(X†1(N)) by
Lemma 3.3.

Let Γ be Γ0(N) or Γ1(N). Note that j(τ) is not invariant under the
action of ΦN because j(τ) ◦ ΦN = j ◦

(
0 −1
1 0

)
◦
(
N 0
0 1

)
(τ) = j(Nτ), and

observe that j(τ) is a root of the quadratic equation

X2 − (j(τ) + j(Nτ))X + j(τ)j(Nτ) = 0.

Now since [〈Γ ,ΦN 〉 : Γ ] = 2 by (3.3) and (3.4), we deduce the assertions
from Theorem 3.2.

We summarize all the results in the following diagram of a tower of
function fields, with g = g12N

(0,1/N)(τ)g12N
(1/N,0)(Nτ):

K(X(N)) = C(j(τ), g, g12N
(1/N,0)(τ))

K(X†(N)) = K(X
†
1 (N)) K(X1(N)) = C(j(τ), g)

K(X
†
1 (N)) = C(j(τ) + j(Nτ), j(τ)j(Nτ), g) K(X0(N)) = C(j(τ), j(Nτ))

K(X
†
0 (N)) = C(j(τ) + j(Nτ), j(τ)j(Nτ))
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4. Primitive generators of K(X†1(N)) of genus zero. Kim–Koo ([6])
showed that the curves X†1(N) have genus zero for 1 ≤ N ≤ 12 and N =
14, 15, and for such curves Choi–Koo ([1]) found primitive generators of the
function fields by using elliptic functions and theta functions. However, their
method seems to be artificial and inconvenient for other similar situations.
Therefore we propose a more systematic and standard way to find primitive
generators in terms of Siegel functions only. First we develop an analogue
of Proposition 2.4 motivated by Lemma 3.3.

Proposition 4.1. Let N≥2. Assume that a family of integers {m(t)}Nt=1

satisfies the condition (2.4). Then the product

g† =
N−1∏
t=1

(g(0,t/N)(τ)g(t/N,0)(Nτ))m(t)

is an element of K(X†1(N)). Furthermore, for γ =
(
a b
c d

)
∈ SL2(Z) we have

(4.1) ordqτ (g† ◦ γ)

=
1
2

N−1∑
t=1

m(t)
{

B2

(〈
ct

N

〉)
+

gcd(c,N)2

N
B2

(〈
at

gcd(c,N)

〉)}
.

Proof. Let

g =
N−1∏
t=1

g
m(t)
(t/N,0)(Nτ) and g′ =

N−1∏
t=1

g
m(t)
(0,t/N)(τ).

Then we see from Proposition 2.4 that g is modular for Γ1(N), and we
further establish

g ◦ ΦN =
N−1∏
t=1

(−ζ9
12g(0,t/N)(τ))m(t) = (−ζ9

12)
P
tm(t)

N−1∏
t=1

g
m(t)
(0,t/N)(τ) = g′

by Lemma 3.4 and the condition
∑

tm(t) ≡ 0 (mod 12). Hence g† = g′ · g =
(g ◦ ΦN ) · g, which implies that g† lies in K(X†1(N)) by Lemma 3.3.

Finally, for γ =
(
a b
c d

)
∈ SL2(Z) we deduce the order formula

ordqτ (g† ◦ γ) = ordqτ (g′ ◦ γ) + ordqτ (g ◦ γ)

=
N∑
t=1

m(t)
1
2

B2

(〈
ct

N

〉)
+ ordqτ (g ◦ γ) by Proposition 2.1(ii) and (2.2)

=
1
2

N−1∑
t=1

m(t)
{

B2

(〈
ct

N

〉)
+

gcd(c,N)2

N
B2

(〈
at

gcd(c,N)

〉)}
by (2.5).

The following theorem gives us a criterion for determining whether a
given product of Siegel functions is a primitive generator or not. This is
similar to those for the modular curves X1(N) shown in [7] or [13].
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Theorem 4.2. Suppose that X†1(N) has genus zero and a product

g† =
N−1∏
t=1

(g(0,t/N)(τ)g(t/N,0)(Nτ))m(t)

lies in K(X†1(N)). For each cusp s = a/c ∈ Q with gcd(a, c) = 1 which is
inequivalent to ∞, if

1
2

N−1∑
t=1

m(t)
(

1
6

+NB2

(
t

N

))
= −1,(4.2)

1
2

N−1∑
t=1

m(t)
{

B2

(〈
ct

N

〉)
+

gcd(c,N)2

N
B2

(〈
at

gcd(c,N)

〉)}
≥ 0,(4.3)

then g† is a generator of K(X†1(N)).

Proof. The width of ∞ on X†1(N) is 1 ([1]). From the order formula
(4.1) in Proposition 4.1 and the hypothesis in the theorem it follows that
g† has a simple pole at ∞ and is holomorphic elsewhere. Therefore X†1(N)
is isomorphic to the projective line P1(C) through the map τ 7→ [1 : g†(τ)],
and hence K(X†1(N)) = C(g†).

Table 1. Primitive generators of K(X†1(N))

N Inequivalent cusps of X†1(N) Primitive generators of K(X†1(N))

2 ∞ ·
3 ∞ ·
4 ∞, 1

2
( 1
4
)−8( 2

4
)8

5 ∞, 1
2

( 1
5
)−5( 2

5
)5

6 ∞, 1
2

( 1
6
)−3( 3

6
)3

7 ∞, 1
2
, 1

3
( 1
7
)−3( 2

7
)2( 3

7
)1

8 ∞, 1
2
, 1

3
( 1
8
)−2( 3

8
)2

9 ∞, 1
2
, 1

3
, 1

4
( 1
9
)−2( 2

9
)1( 4

9
)1

10 ∞, 1
2
, 1

3
, 1

4
( 1
10

)−1( 2
10

)−1( 3
10

)1( 4
10

)1

11 ∞, 1
2
, 1

3
, 1

4
, 1

5
( 1
11

)−3( 2
11

)−3( 3
11

)−3( 4
11

)−2( 5
11

)−1

12 ∞, 1
2
, 1

3
, 1

4
, 1

5
( 1
12

)−1( 5
12

)1

14 ∞, 1
2
, 1

3
, 1

4
, 1

5
, 1

6
( 1
14

)1( 2
14

)−2( 4
14

)−2( 5
14

)1( 7
14

)2

15 ∞, 1
2
, 1

3
, 1

4
, 1

5
, 1

6
, 1

7
, 1

9
( 1
15

)−1( 3
15

)1( 5
15

)−2( 6
15

)2

From [7, Theorem 6.4] we can readily determine the inequivalent cusps
of X1(N), from which we get the inequivalent cusps of X†1(N) (Table 1).
Furthermore, [1, Lemmas 3.2 and 3.3] enable us to estimate the widths of
the cusps. However, these values are not necessary to apply Theorem 4.2. So
we only provide the table for all the inequivalent cusps of X†1(N) without
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finding their widths for 2 ≤ N ≤ 12 and N = 14, 15. Then we can find
families of integers {m(t)}N−1

t=1 satisfying (2.4), (4.2) and (4.3) to accomplish
our goal. In the table we use the notation

N−1∏
t=1

(
t

N

)m(t)

=
N−1∏
t=1

(g(0,t/N)(τ)g(t/N,0)(Nτ))m(t).

Observe that for N = 2, 3 the curve X†1(N) has only one cusp. Since our
Siegel functions are supported on the cusps, it is not possible to find primi-
tive generators of K(X†1(N)) in these two cases.

5. Application to class fields. As an application we shall construct
a primitive generator of the ray class field modulo N (≥ 2) over any imag-
inary quadratic field other than Q(

√
−1) and Q(

√
−3). To this end we

shall utilize the singular values of j and Siegel functions which are mod-
ular for Γ †1 (N).

Let K (6= Q(
√
−1),Q(

√
−3)) be any imaginary quadratic field with dis-

criminant dK (≤ −7). Define

θ =

{√
dK/2 if dK ≡ 0 (mod 4),

(−1 +
√
dK)/2 if dK ≡ 1 (mod 4),

which is a generator of the ring of integers OK of K and let min(θ,Q) =
X2+BθX+Cθ ∈ Z[X]. We denote by H and K(N) the Hilbert class field and
the ray class field modulo N (≥ 2) of K, respectively. It is then well-known
that

(5.1) K(N) = K(h(θ) : h ∈ FN is defined and finite at θ)

by the main theorem of complex multiplication ([9] or [12]). Furthermore,
by Shimura’s reciprocity law we have an isomorphism

WN,θ/±( 1 0
0 1 ) ∼→ Gal(K(N)/H),(5.2)

γ 7→ (h(θ) 7→ hγ(θ)),

where h ∈ FN is defined and finite at θ, and

WN,θ =
{(

t−Bθs −Cθs
s t

)
∈ GL2(Z/NZ) : t, s ∈ Z/NZ

}
([12] or [4]). Now, let HO be the ring class field of the order O of conductor
N (≥ 2) in K. Then we get

(5.3) HO = K(j(Nθ))

([9] or [12]). Moreover, we have
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Lemma 5.1 (see [7, Lemma 9.9]). For any nonzero integer m, the value
(3j(Nθ) + 1)m generates HO over K.

Lemma 5.2 (see proof of [7, Theorem 9.8]). Let N ≥ 2. Then each
element ( t 0

0 t ) of WN,θ/±( 1 0
0 1 ) fixes the value j(Nθ).

Proposition 5.3. For N ≥ 2, Gal(K(N)/HO) is isomorphic to the sub-
group

{
( t 0

0 t ) : t ∈ (Z/NZ)∗
}
/±( 1 0

0 1 ) of WN,θ/±
(

1 0
0 1

)
.

Proof. First, we have the degree formula

(5.4) [K(N) : H] =
ϕ(NOK)w(NOK)

wK

where ϕ is the Euler function for ideals,

ϕ(pn) = (NK/Qp− 1)NK/Qpn−1

for a power of prime ideal p, w(NOK) is the number of roots of unity in K
which are ≡ 1 (mod NOK), and wK is the number of roots of unity in K
([8]). We also have the formula

[HO : H] =
N

[O∗K : O∗]
∏
p|N

(
1−

(
dK
p

)
1
p

)

where
(
dK
p

)
is the Legendre symbol for an odd prime p and

(
dK
2

)
is the

Kronecker symbol ([2]). Thus one can readily check that

[K(N) : HO] =
[K(N) : H]
[HO : H]

=
∣∣{( t 0

0 t ) : t ∈ (Z/NZ)∗
}
/±( 1 0

0 1 )
∣∣.

Therefore by Lemma 5.2 the assertion follows by Galois theory.

Lemma 5.4. If N ≥ 4 and 1 < t ≤ [N/2], then:

(i)
∣∣∣∣1− ζN1− ζtN

∣∣∣∣ ≤ 1√
2

.

(ii)
1

1− e−π
√
−dKX

< 1 + e−
π
√
−dK

1.03
X for all X ≥ 1.

(iii) 1 +X < eX for all X > 0.
(iv) |g(1/N,0)(Nθ)| < |g(t/N,0)(Nθ)|.
(v) |g(0,1/N)(θ)| < |g(0,t/N)(θ)|.

Proof. (i)–(iii) are almost trivial and (iv) is proved in [7, Lemma 9.3].
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Hence we only prove (v). Putting

A = |e2πiθ| = e−π
√
−dK

we get∣∣∣∣g(0,1/N)(θ)
g(0,t/N)(θ)

∣∣∣∣ ≤ ∣∣∣∣1− ζN1− ζtN

∣∣∣∣ ∞∏
n=1

(1 +An)2

(1−An)2
by the definition (2.1)

≤ 1√
2

∞∏
n=1

(1 +An)2(1 +An/1.03)2 by (i) and (ii)

≤ 1√
2

∞∏
n=1

e2A
n+2An/1.03 by (iii)

=
1√
2
e

2A
1−A+ 2A1/1.03

1−A1/1.03 ≤ 1√
2
e

2e−
√

7π

1−e−
√

7π
+ 2e−

√
7π/1.03

1−e−
√

7π/1.03 < 1 since dK ≤ −7,

which proves (v).

Theorem 5.5. For N ≥ 2, define

G(τ) = (3j(Nτ) + 1)(g(0,1/N)(τ)g(1/N,0)(Nτ))12Nφ(N)

×
∏

1≤s≤N−1
gcd(s,N)=1

(g(0,s/N)(τ)g(s/N,0)(Nτ))−12N

where φ is the Euler φ-function for positive integers. Then the singular value
G(θ) generates K(N) over K.

Proof. The above function without the factor 3j(Nτ) + 1 is in FN ∩
K(X†1(N)) by Propositions 2.3, 2.4 and 4.1. So its singular value G(θ) be-
longs to K(N) by (5.1) and (5.3). As a subfield of K(N), the field K(G(θ))
is an abelian extension of K. Hence K(G(θ)) contains the element∏

1≤t≤N−1
gcd(t,N)=1

G(θ)(
t 0
0 t ).

It then follows from (5.2) that the action of each element ( t 0
0 t ) is given by

(3j(Nθ) + 1)(
t 0
0 t ) = 3j(Nθ) + 1 by Lemma 5.2,

((g(0,1/N)(θ)g(1/N,0)(Nθ))
12Nφ(N))(

t 0
0 t ) = (g(0,t/N)(θ)g(t/N,0)(Nθ))

12Nφ(N)

by Proposition 2.5,
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( ∏
1≤s≤N−1
gcd(s,N)=1

(g(0,s/N)(θ)g(s/N,0)(Nθ))
−12N

)( t 0
0 t )

=
∏

1≤s≤N−1
gcd(s,N)=1

(g(0,〈st/N〉)(θ)g(〈st/N〉,0)(Nθ))
−12N by Proposition 2.5,

=
∏

1≤s≤N−1
gcd(s,N)=1

(g(0,s/N)(θ)g(s/N,0)(Nθ))
−12N .

Thus we derive ∏
1≤t≤N−1
gcd(t,N)=1

G(θ)(
t 0
0 t ) = (3j(Nθ) + 1)φ(N).

This implies that K(G(θ)) contains HO by Lemma 5.1. Now, by Proposition
5.3 and Galois theory, it suffices to prove that if the element ( t 0

0 t ) for some
t ∈ Z with 1 ≤ t ≤ [N/2] and gcd(t,N) = 1 fixes G(θ), then t = 1. So
assume that ( t 0

0 t ) fixes G(θ). If N = 2, 3, then obviously t = 1. So, we may
assume N ≥ 4. Then by the above description of the action of ( t 0

0 t ) we
deduce that

1 =
∣∣∣∣ G(θ)

G(θ)(
t 0
0 t )

∣∣∣∣ =
∣∣∣∣g(0,1/N)(θ)g(1/N,0)(Nθ)
g(0,t/N)(θ)g(t/N,0)(Nθ)

∣∣∣∣12Nφ(N)

=
∣∣∣∣g(0,1/N)(θ)
g(0,t/N)(θ)

∣∣∣∣12Nφ(N)∣∣∣∣g(1/N,0)(Nθ)
g(t/N,0)(Nθ)

∣∣∣∣12Nφ(N)

.

But this equality holds only when t = 1 by Lemma 5.4(iv), (v), which
concludes the proof.
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