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1. Introduction. The concept of digital (t, s)-sequences in the sense
of Niederreiter (see e.g. [11]) or—more general—of digital (T, s)-sequences
(see [9]) is the most powerful technique to construct low-discrepancy point
sequences in an s-dimensional unit cube.

By a low-discrepancy sequence in [0, 1)s we mean a sequence (xn)n≥0

such that discrepancy D∗N of the first N elements of the sequence satisfies

D∗N = O((logN)s/N),

where

D∗N = D∗N (x0, . . . ,xN−1) := sup
B⊆[0,1)s

|AN (B)/N − λ(B)|,

where AN (B) denotes #{n | 0 ≤ n < N, xn ∈ B} and the supremum is
extended over all sub-boxes B of [0, 1)s of the form B =

∏s
i=1[0, ai) with

0 < ai ≤ 1 for i ∈ {1, . . . , s}.
A sequence is called uniformly distributed if limN→∞D

∗
N = 0. It is a

famous conjecture that (logN)s/N is the best possible order for the dis-
crepancy of a sequence in [0, 1)s. (An excellent introduction into the theory
of uniform distribution can be found in the book of Kuipers and Niederreiter
[8] or in the book of Drmota and Tichy [1].)

We give the definition of digital (T, s)-sequences.

Definition 1. Let s be a dimension and q be a prime. Let C1, . . . , Cs
be N × N-matrices in the finite field Zq. We construct a sequence (xn)n≥0,
xn = (x(1)

n , . . . , x
(s)
n ), n ∈ N0, by generating the ith coordinate of the nth

point, x(i)
n , as follows. Represent n = n0 + n1q + n2q

2 + · · · in base q. Then
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set
Ci · (n0, n1, . . .)> =: (y(i)

0 , y
(i)
1 , . . .)> ∈ ZN

q

and

x(i)
n :=

y
(i)
0

q
+
y

(i)
1

q2
+ · · · .

For every m ∈ N let T(m), satisfying 0 ≤ T(m) ≤ m, be such that for all
d1, . . . , ds ∈ N0 with d1 + · · ·+ ds = m−T(m) the (m−T(m))×m-matrix
consisting of

the upper left d1 ×m-submatrix of C1 together with
the upper left d2 ×m-submatrix of C2 together with
...

the upper left ds ×m-submatrix of Cs
has rank m−T(m). Then (xn)n≥0 is called a digital (T, s)-sequence over Zq.
If T is minimal with this property, we speak of a strict digital (T, s)-
sequence.

A strict digital (T, s)-sequence is uniformly distributed if and only if
limm→∞(m − T(m)) = +∞. If T(m) ≤ t for all m, then we speak of a
digital (t, s)-sequence and we know that such sequences are low-discrepancy
sequences.

The O-constant in the (low-) discrepancy estimate is—generally speak-
ing—smaller for smaller t (≥ 0).

In searching for further classes of uniformly distributed or even low-
discrepancy point sets, a method near at hand is to combine v different
digital (Ti, wi)-sequences in different prime bases q1, . . . , qv with w1 + · · ·
+ wv = s into a single sequence in [0, 1)s.

A basic example is the Halton sequence which is a combination of s
digital (0, 1)-sequences in different prime bases q1, . . . , qs generated by the
unit matrices in Zqi for each i. It has long been known that the Halton
sequences are low-discrepancy sequences.

Sequences of the above form will be called Niederreiter–Halton (NH) se-
quences. General NH sequences were first investigated in [6]. In [4] it was
shown that a NH sequence is uniformly distributed if and only if each com-
ponent digital (Ti, wi)-sequence is uniformly distributed.

It is the aim of this paper to make a first step in investigating the
discrepancy of these sequences and especially to investigate if there are
low-discrepancy sequences (apart from “trivial” cases) in the class of NH
sequences.

A first general discrepancy estimate was given in [6] for the special
class of “finite row” NH sequences. We say that a NH sequence is a “fi-
nite row” NH sequence if all generating matrices of the component digital
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(Ti, wi)-sequences have “finite rows”, i.e., each row contains only finitely
many entries different from zero. NH sequences which are not “finite row”
NH sequences will be called “infinite row” NH sequences.

It will turn out to be difficult to give a detailed and complete analysis
of the discrepancy of NH sequences.

Further, it will turn out that quite different techniques are needed for
“finite row” and “infinite row” NH sequences. Finally, for “infinite row” NH
sequences in most cases we will obtain rather negative results, i.e., we will
obtain non-low-discrepancy results. So searching for low-discrepancy NH
sequences seems to be more promising among “finite row” NH sequences.

Here one basic problem however is: to obtain low-discrepancy NH se-
quences we have to combine (ti, wi)-sequences (i.e. with bounded Ti). Until
now the only known digital (ti, wi)-sequences with “finite rows” have been
one-dimensional digital (ti, 1)-sequences. In Theorem 4 of this paper it is
shown that for every dimension s there exist “finite row” (0, s)-sequences.
In some sense best possible explicit examples of such sequences will be
given.

We start our investigations in Section 2 with a result on weighted sums
of digits of multiples of 3, which in some sense generalizes a result of New-
man [10] and which will be essential later on for our discrepancy analysis.

In Section 3 we state and prove our results on the discrepancy of “finite
row” and “infinite row” NH sequences. In particular, we give a quite general
lower bound for the discrepancy of “infinite row” NH sequences.

Finally, in Section 4 we provide the existence results and explicit con-
structions for “finite row” digital sequences.

2. Weighted sums of digits of arithmetic subsequences. In this
section we will prove a result on the distribution of weighted sums of digits
of multiples of 3 considered modulo 2. This partly generalizes a result of
Newman [10] given for the unweighted sum of digits.

Definition 2. Let γ := (γ0, γ1, γ2, . . .) with γj ∈ Z be a weight se-
quence, and q ≥ 2 be a given base. For a non-negative integer n let n =
n0 + n1q + · · ·+ nrq

r be the base q representation of n. Then the weighted
sum of digits of n is defined by

sγ,q(n) := n0γ0 + n1γ1 + · · ·+ nrγr.

It is a well-known result of Newman [10] for the unweighted sum of digits
s2(n) in base q = 2, i.e. for γj = 1 for all j, that

N−1∑
n=0

n≡0 (3)

(−1)s2(n) > cN log 3/log 4
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for some constant c > 0 and all N . Consequently,

#{0 ≤ n < N | n ≡ 0 (3) and s2(n) ≡ 0 (2)} −N/6 > cN log 3/log 4

for some constant c > 0 and all N .
We will now consider the above sum in the weighted case and for certain

values of N :

Πm,k :=
22m+1−1∑
n=0

n≡k (3)

(−1)sγ,2(n).

We will show

Theorem 1.

Πm,0 =

{
(22m+1 + 1)/3 if ρ(2m) = 0,

3ρ(2m)/2κ otherwise,

where ρ(2m) := #{0 ≤ j ≤ 2m | γj ≡ 1 (2)} and κ ∈ {±1/
√

3,±1/3}.
Proof. By the structure of the problem we can restrict to γj ∈ {0, 1}. If

γj = 0 for all 0 ≤ j ≤ 2m, then
22m+1−1∑
n=0

n≡0 (3)

(−1)sγ,2(n) =
22m+1−1∑
n=0

n≡0 (3)

1 =
22m+1 + 1

3
.

In the following we assume that there exists at least one j ∈ {0, 1, . . . , 2m}
such that γj = 1. Using the relation

1
q

q−1∑
l=0

e2πinl/q =
{ 1 if n ≡ 0 (q),

0 otherwise,
we obtain

22m+1−1∑
n=0

n≡0 (3)

(−1)sγ,2(n) =
1
3

2∑
l=0

22m+1−1∑
n=0

e2πi(3sγ,2(n)+2ln)/6

=
1
3

2∑
l=0

22m+1−1∑
n=0

e
2πi(s

γ(l),2
(n))/6

=
1
3

2∑
l=0

2m∏
j=0

(1 + e2πiγ
(l)
j /6),

where γ(l)
j := 3γj + 2l · 2j for 0 ≤ j ≤ 2m, l ∈ {0, 1, 2}. Hence the problem

reduces to the computation of
2m∏
j=0

(1 + e2πiγ
(l)
j /6) =

2m∏
j=0

z
(l)
j ,
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where we set 1+e2πiγ
(l)
j /6 =: z(l)

j = |z(l)
j |e

iφ
(l)
j . The value of z(l)

j is determined
by the residue of γ(l)

j modulo 6:

γ
(l)
j mod 6 |z(l)

j | φ
(l)
j

0 2 0

1
√

3 π/6

2 1 π/3

3 0 0

4 1 −π/3
5

√
3 −π/6

In the following we investigate the residue of γ(l)
j modulo 6 for the different

values of j, l and γj . We obtain:

l j γj γ
(l)
j mod 6 |z(l)

j | φ
(l)
j

0 — 1 3 0 0

0 — 0 0 2 0

1 even 1 5
√

3 −π/6
1 odd 1 1

√
3 π/6

1 even 0 2 1 π/3

1 odd 0 4 1 −π/3
2 even 1 1

√
3 π/6

2 odd 1 5
√

3 −π/6
2 even 0 4 1 −π/3
2 odd 0 2 1 π/3

We have assumed that there is at least one γj = 1, which implies
2m∏
j=0

z
(0)
j = 0.

It remains to compute
22m+1−1∑
n=0

n≡0 (3)

(−1)sγ,2(n) =
1
3

2m∏
j=0

z
(1)
j +

1
3

2m∏
j=0

z
(2)
j .

By the table above we have |z(1)
j | = |z

(2)
j | and φ(1)

j = −φ(2)
j for all possible

values of j and γj . Therefore we get
22m+1−1∑
n=0

n≡0 (3)

(−1)sγ,2(n) =
1
3

( 2m∏
j=0

|z(1)
j |
)

(ei
P2m
j=0 φ

(1)
j + e−i

P2m
j=0 φ

(1)
j )

=
1
3

√
3
ρ(2m)

2 cos
( 2m∑
j=0

φ
(1)
j

)
,
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where ρ(2m) := #{0 ≤ j ≤ 2m | γj = 1}. For
∑2m

j=0 φ
(1)
j we get

2m∑
j=0

φ
(1)
j = −π

6

2m∑
j=0

γj(−1)j +
π

3

2m∑
j=0

(1− γj)(−1)j

=
π

3

2m∑
j=0

(−1)j − π

2

2m∑
j=0

γj(−1)j =
π

3
− π

2

2m∑
j=0

γj(−1)j .

So it is easy to check that

2
3

cos
( 2m∑
j=0

φ
(1)
j

)
∈ {±1/

√
3,±1/3}

and the result follows.

3. Discrepancy bounds for NH sequences. From the general proof
of the uniform distribution of NH sequences with uniformly distributed com-
ponents, given in [4], and from the quantitative versions of the results from
[7] used in this proof, it is possible to derive discrepancy estimates for NH
sequences. However, these estimates, also in the best case, are of the form

DN = O(1/N δ)

with some very small δ > 0. So, if we are interested in searching for low-
discrepancy sequences, then we have to improve the general result (if pos-
sible) by using other techniques or to study the sequences individually in
more detail.

We already know that there exist non-trivial (i.e., generated by more
than one component) low-discrepancy NH sequences, namely the Halton
sequences (which are “finite row” NH sequences).

On the other hand, we know from [6] that there exist NH sequences com-
bined from digital (0, wi)-sequences which definitely are not low-discrepancy
sequences, for example the two-dimensional NH sequence generated by the
unit matrix in Z3 and by

C :=


1 1 1 1 . . .

0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .

 ∈ ZN×N
2

(an “infinite row” NH sequence).
We start our analysis with a more general “negative” result on the dis-

crepancy of “infinite row” NH sequences.
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Theorem 2. Let (xn)n≥0 be a NH sequence generated by the unit matrix
C(1) in Z3 and by a matrix C(2) = (cr,j)r,j≥0 in Z2 which is arbitrary but
contains at least one row with positive upper density d of ones, i.e.,

lim sup
k→∞

1
k

#{0 ≤ j ≤ k − 1 | cr,j = 1} = d > 0

for at least one r. Then for the discrepancy D∗N of this sequence we have

ND∗N = Ω(N δ)

for every δ < d · log 3/log 4 (i.e., ND∗N ≥ cN δ for a fixed constant c > 0 and
infinitely many N).

Proof. For ε > 0 let k = 2m+ 1 be such that

#{0 ≤ j ≤ k − 1 | cr,j = 1} =: e > (d− ε)k.
There are infinitely many such k. We consider the set

J := [0, 1/3)×
2r−1−1⋃
a=0

[
a

2r−1
,
a

2r−1
+

1
2r

)
and N = 2k. Let the indices j1 < · · · < je be such that cr,ji = 1. Then
xn ∈ J for 0 ≤ n < 2k if and only if n ≡ 0 (3) and nj1 + · · · + nje ≡ 0 (2).
Hence

|#{0 ≤ n < N | xn ∈ J} −N · λ(J)|
= |#{0 ≤ n < N | n ≡ 0 (3) and sγ,2(n) ≡ 0 (2)} −N/6|,

where γ = (γ0, . . . , γ2m) with γj = 1 iff j = ji for i = 1, . . . , e. By Theorem 1
the above difference is at least ≥ 1

33e/2. Therefore for at least one a ∈
{0, 1, . . . , 2r−1 − 1} and for Ja := [0, 1/3)× [a/2r−1, a/2r−1 + 1/2r) we have

|#{0 ≤ n < N | xn ∈ Ja} −N · λ(Ja)| ≥
1

2r−1

1
3

3e/2

> cN (d−ε) log 3/log 4,

and the result follows.

This result does not give much hope to find large classes of low-dis-
crepancy point sequences within the class of “infinite row” NH sequences,
and it seems reasonable to study “finite row” NH sequences. A first step
in this direction was already done in [6] where a general upper bound for
the discrepancy of “finite row” NH sequences was provided. This is a rather
technical bound which was not discussed further in [6]. For our purposes it
suffices to give a slightly simplified form of this bound.

Let C1, . . . , Cs be the generating matrices of a “finite row” NH sequence.
For arbitrary non-negative integers d1, . . . , ds let L(d1, . . . , ds) be minimal
such that for all i ∈ {1, . . . , s} each of the first di rows of Ci has length less
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than or equal to L(d1, . . . , ds). By the length of the row (cj,1 cj,2 cj,3 . . .) we
mean max{k ≥ 1 | cj,k 6= 0}, respectively 0 for the zero row. With the help
of this length parameter L we can formulate the discrepancy estimate for
“finite row” NH sequences given in [6, Theorem 3.1].

Let (xn)n≥0 be a “finite row” NH sequence formed by uniformly dis-
tributed digital (Ti, wi)-sequences in base qi. Then for the discrepancy of
this sequence we have

(1) DN ≤
2c
N

∑
k

Q(k)≤N

Q(k)P (k) + R,

where

k = (k1,1, . . . , k1,w1 , k2,1, . . . , k2,w2 , . . . , kv,1, . . . , kv,wv) ∈ Ns
0,

P (k) :=
v∏
i=1

wi∏
j=1

q
−ki,j
i , Q(k) :=

v∏
i=1

q
L(ki,1,...,ki,wi )

i ,

c =
v∏
i=1

qwii ,

and R is a positive remainder term which will be needed only in the proof
of Theorem 3 and hence will be dealt with there.

Remark 1. In searching for low-discrepancy point sequences the esti-
mate (1) can only help when all generating digital (Ti, wi)-sequences are of
dimension 1, i.e., wi = 1 for all i. This is because we will show that for a
NH sequence with v ≥ 2 and wi ≥ 2 for at least one i, for the right hand
side (RHS) of (1) we always have

RHS ≥ c′ 1√
N

for infinitely many N with a positive constant c′.

Proof. We may only show this for v = 2, w1 = 2, w2 = 1 since (xn)n≥0

contains at least one such three-dimensional projection. We can assume that
the projection of (xn)n≥0 to the first two coordinates corresponding to w1

is a digital (T, 2)-sequence with limm→∞(m − T(m)) = +∞. Otherwise
the projection and consequently (xn)n≥0 itself would not be uniformly dis-
tributed.

So there are sequences u1 < u2 < · · · and m1 < m2 < · · · of positive
integers with mi − T(mi) = ui. Let d1, d2 ≥ 0 be arbitrary integers such
that d1 + d2 = ui. Then the first d1 rows of C(1) and the first d2 rows of
C(2) (C(1) and C(2) are the generator matrices of the digital sequence) are
together linearly independent and therefore L(d1, d2) ≥ ui.



Certain digital Niederreiter–Halton sequences 377

In particular, L(dui/2e, 0) ≥ ui or L(0, dui/2e) ≥ ui, say the former.
Then for all (infinitely many) N = q

L(dui/2e,0)
1 we have

RHS ≥ 2c
N

∑
k

k=(dui/2e,0,0)

Q(k)P (k) =
2c

q
L(dui/2e,0)
1

q
L(dui/2e,0)
1 q

−dui/2e
1

=
2c

q
dui/2e
1

≥ 2c

q
(L(dui/2e,0)+1)/2
1

=
2c
√
q1
· 1√

N
.

For the case of wi = 1 for all i, to obtain a uniformly distributed NH
sequence we trivially must have

L(i)(d) := L(0, . . . , 0, d︸ ︷︷ ︸
i

, 0, . . . , 0) ≥ d

for all i and d.
The discrepancy bound in (1) will give us useful (low-discrepancy) results

for the case that L(i)(d) ≤ d+ v for all i and d and a fixed constant v. (For
example for the Halton sequence we have v = 0 and for the Halton sequence
based on Gray Code digits (see [5] or [3]) we have v = 1.)

Theorem 3. Let (xn)n≥0 be a NH sequence with wi = 1 for all i and
L(i)(d) ≤ d+v for all i and d, with fixed constant v. Then for the discrepancy
D∗N of (xn)n≥0, for all N large enough we have

D∗N ≤ c′(q1 · · · qs)2v(logN)s/N

with c′ depending only on s, q1, . . . , qs.

Proof. If wi = 1 for all i and L(i)(d) ≤ d+ v for all i and d it can easily
be seen by checking the rather technical definition of the remainder term R
of the RHS in (1) given in [6], that R can be absorbed by the first term of
RHS, i.e.,

(2) D∗N (ω) ≤ c′′(q1 · · · qs)v
1
N

∑
k

Q(k)≤N

Q(k)P (k)

with a certain constant c′′ depending only on s, q1, . . . , qs. (We will not
go into the technical details of this fact here, but for the reader who will
undertake this task we just note that in this special case

L(ζ̃(i0, j0, θ + 1)) ≤ L(ζ̃(i0, j0, θ)) + v + 1,

Q(ζ̃(i0, j0, θ + 1)) ≤ Q(ζ̃(i0, j0, θ)) · qv+1
i0

,

and since by definition of θ,

Q(ζ̃(i0, j0, θ)) ≤ N ≤ Q(ζ̃(i0, j0, θ + 1)),

we have N/Q(ζ̃(i0, j0, θ)) ≤ qv+1
i0

.) Now the result immediately follows by
inserting in (2).
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But already if L(i)(d) grows slightly faster than d, for example if L(i)(d) =
d(1 + ε) for infinitely many d, then the RHS of (1) is not helpful any more.

Remark 2. For example, if (xn)n≥0 is a NH sequence with wi = 1 for
all i, L(1)(d) = d(1 + ε) for all d and L(i)(d) = d for all i ≥ 2 and all d, then
for the RHS of (1) we get

RHS ≥ 2c
N

∑
k1,k2,...,ks

q
k1(1+ε)
1 q

k2
2 ···q

ks
s ≤N

qεk11 ≥ 2c
N

∑
k1

q
k1(1+ε)
1 ≤N

qεk11

≥ c′ 1
N1/(1+ε)

(with c′ > 0 depending only on s, q1, . . . , qs).

The RHS of (1) shows a strong dependence on the length of the rows
of the generator matrices, which is quite astonishing. So of course we have
to ask if the discrepancy bound (1) is too weak, and whether it could be
improved so as to get rid of the essential dependence on L in this bound.
However, we will show by examples that this is not possible in general, and
that the dependence of the discrepancy of a NH sequence on the parameter
L is essential.

Example 1. Let (xn)n≥0 be a NH sequence generated by the unit matrix
in Z3 and a matrix C(2) = (c(2)

i,j )i,j≥1 in Z2 with finite rows of the following
form.

Assume there are row indices r1 < r2 < · · · , a ρ > log 4/log 3, an ε > 0
and for each ri an odd ki such that

ei := #{1 ≤ j ≤ ki | c(2)
ri,j

= 1} > max{ρri, εki}.

That means: there are infinitely many rows in which the number of 1s is
“not too small” (> ρri) and “not too thin” (> εki).

A concrete example is given by C(2) with

c
(2)
i,j =

{
1 for i ≤ j ≤ (1 + κ)i,
0 otherwise,

with some κ > log 4/log 3.
We show that for the discrepancy of such sequences we have

ND∗N ≥ N δ

for infinitely many N and

δ :=
(

1− 1
ρ

log 4
log 3

)
· ε > 0.
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Proof. Consider N = 2ki (note that ki ≥ ri) and the set

J := [0, 1/3)×
2ri−1−1⋃
a=0

[
a

2ri−1
,

a

2ri−1
+

1
2ri

)
=:

2ri−1−1⋃
a=0

Ja,

a union of 2ri−1 intervals of total volume 1/(3 · 2ri).
Let j1 < · · · < jei ≤ ki be such that cri,jl = 1. Then xn ∈ J if and only

if n ≡ 0 (3) and nj1 + · · ·+ njei ≡ 0 (2).
By Theorem 1 we have

|#{0 ≤ n < N | n ≡ 0 (3) and nj1 + · · ·+ njei ≡ 0 (2)} −N/6| > 1
3

3ei/2.

Hence for at least one a we have∣∣∣∣#{0 ≤ n < N | xn ∈ Ja} −
N

3 · 2ri

∣∣∣∣ > 2
3

1
2ri

3ei/2 >
(

31/2

21/ρ

)ε·ki
= N δ.

It is plausible that the discrepancy does not depend on the length of the
rows of the generator matrices but on the number of 1s in the rows. Until
now, we have not been able to decide this question. The above results leave
the following problems open.

Open Problem 1. Determine whether the following two-dimensional
NH sequences in bases 3 and respectively 2 are low-discrepancy sequences or
not (respectively: give good lower and upper bounds for their discrepancy):

1. C(1) the unit matrix in Z3 and

C(2) =



1 00 . . . 0︸ ︷︷ ︸
l1

1 0 0 . . .

0 1 00 . . . . . . 0︸ ︷︷ ︸
l2

1 0 0 . . .

0 0 1 00 . . . . . . . . . 0︸ ︷︷ ︸
l3

1 0 0 . . .

...
...

...
. . .

...


in Z2 with l1, l2, l3, . . . arbitrary but lim supi→∞ li = +∞.

2. C(1) the unit matrix in Z3 and

C(2) =


1

l1︷ ︸︸ ︷
00 . . . 0 1

l2︷ ︸︸ ︷
00 . . . 0 1 0 . . .

0 1 0 0 0 0 . . .

0 0 1 0 0 0 . . .
...

...
...

. . .
...

 ∈ ZN×N
2 .

The first row contains infinitely many 1s but with density 0. (l1, l2, . . .
can be chosen such that the 1s are arbitrarily thin in the first row).
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3.

C(1) = C(2) =


1 1 1 1 . . .

0 1 0 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .
...

...
...

...
. . .


but C(1) in Z3 and C(2) in Z2. We conjecture that ND∗N =Ω(N δ) for
some δ > 0. A proof would need lower bounds for the results of Kim
in [7] on the joint distributions of sums of digits in different bases.

Even if it is possible to give sharper discrepancy estimates for “finite
row” NH sequences which are applicable also for the general case of wi ≥ 2
for some i, we would still have the following problem. Until now, we do not
know any digital (t, s)-sequence in dimension s ≥ 2 which is generated by
matrices with finite rows exclusively.

All low-discrepancy digital (t, s)-sequences in dimension s ≥ 2 provided
until now by Sobol’ [12], Faure [2], Niederreiter [11], Niederreiter–Xing [13],
et al. have been generated by matrices with infinite rows also.

So until now we also do not know if there exist low-discrepancy “finite
row” NH sequences with wi ≥ 2 for some i. This gap will be filled in the
next section by proving for arbitrary dimension s the existence of digital
(0, s)-sequences generated by matrices with finite rows of—in some sense—
shortest possible length. We will also give concrete examples.

4. Digital (0, s)-sequences generated by matrices with finite
rows. Since we have claimed to provide in some sense shortest possible
row lengths, we first give a lower bound for the row lengths.

Proposition 1. Let C1, . . . , Cs be the generator matrices of a digital
(0, s)-sequence in prime base q ≥ s. Then for every positive integer d there
exists i ∈ {1, . . . , s} such that

L(0, . . . , 0︸ ︷︷ ︸
i−1

, d, 0, . . . , 0) ≥ sd.

Proof. Assume that there is a d > 0 such that for all i ∈ {1, . . . , s},
L(0, . . . , 0︸ ︷︷ ︸

i−1

, d, 0, . . . , 0) < sd.

We consider the sd× sd-matrix consisting of

the upper left d× sd-submatrix of C1 together with
the upper left d× sd-submatrix of C2 together with
...

the upper left d× sd-submatrix of Cs.
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This matrix does not have rank sd, since the last column is a zero column.
This contradicts T ≡ 0.

If we assume that for a digital (0, s)-sequence in prime base q ≥ s we
have L(d, 0, . . . , 0) = sd for all d ∈ N, we can deduce by a similar argument
that for all d ∈ N there exists i ∈ {2, . . . , s} such that

L(0, . . . , 0︸ ︷︷ ︸
i−1

, d, 0, . . . , 0) ≥ sd− 1.

In the next step we assume that L(d, 0, . . . , 0) = sd and L(0, d, 0, . . . , 0) =
sd− 1 for all d ∈ N and deduce that for all d ∈ N there exists i ∈ {3, . . . , s}
such that L(0, . . . , 0︸ ︷︷ ︸

i−1

, d, 0, . . . , 0) ≥ sd− 2 and so on.

Step by step we get a certain lower bound for the parameter L.
In the following we search for in a certain sense “optimal” digital (0, s)-

sequences in prime base q ≥ s with generator matrices C1, . . . , Cs such that
for every i ∈ {1, . . . , s} we have

L(0, . . . , 0︸ ︷︷ ︸
i−1

, d, 0, . . . , 0) = sd− (i− 1)

for all d ∈ N. We call such digital (0, s)-sequences generated by matrices with
lowest possible row lengths.

4.1. On existence of digital (0, s)-sequences generated by ma-
trices with lowest possible row lengths. In order to ensure that there
exist digital (0, s)-sequences generated by matrices with lowest possible row
lengths, we modify digital (0, s)-sequences in prime base q ≥ s. The latter se-
quences exist: examples were introduced by Faure [2] and also by Sobol’ [12]
for q = 2 based on the Pascal matrices given in the following example.

Example 2. The Pascal matrices P (0), P (1), . . . , P (q−1) in prime base q
are defined by

P (i) :=


1
(
1
0

)
i1

(
2
0

)
i2

(
3
0

)
i3 . . .

0 1
(
2
1

)
i1

(
3
1

)
i2 . . .

0 0 1
(
2
1

)
i1 . . .

...
...

...
. . .

...

 ∈ ZN×N
q

modulo q, where i ∈ {0, 1, . . . , q − 1}. It is well known that the matrices
P (0), P (1), . . . , P (q−1) generate a digital (0, q)-sequence in base q. Note that
each Pascal matrix is a non-singular upper triangular matrix (NUT matrix)
and P (0) is the unit matrix in Zq.
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The following theorem yields existence of a digital (0, s)-sequence in
prime base q ≥ s generated by matrices consisting of rows with lowest
possible lengths.

Theorem 4. For all s ≥ 1 and all primes q ≥ s there exist matri-
ces C ′1, . . . , C

′
s ∈ ZN×N

q that are generator matrices with lowest possible row
lengths of a (0, s)-sequence in base q.

We prove the existence of such matrices by scrambling the digital (0, s)-
sequence in prime base q ≥ s. Thereby we also provide a construction prin-
ciple for such sequences.

Our method of scrambling is based on the following result of Faure and
Tezuka [3, Proposition 1]:

Lemma 1. Let C1, . . . , Cs ∈ ZN×N
q be the generator matrices of a digital

(0, s)-sequence in prime base q ≥ s. If M is a NUT matrix in Zq, then
the matrices C1M, . . . , CsM generate a digital (0, s)-sequence in prime base
q ≥ s.

Proof of Theorem 4. Let q ∈ P and s ≤ q be fixed. We choose matrices
C1, . . . , Cs ∈ ZN×N

q which generate a digital (0, s)-sequence in prime base
q ≥ s. Such matrices exist by Example 2. In the following we search for a
scrambling NUT matrix M such that C ′1 := C1M, . . . , C ′s := CsM are gen-
erator matrices with lowest possible row lengths of a digital (0, s)-sequence
in prime base q ≥ s. Hence

L(d, 0, 0, . . . , 0, 0) = sd ∀d ∈ N,
L(0, d, 0, . . . , 0, 0) = sd− 1 ∀d ∈ N,

...
L(0, 0, 0, . . . , 0, d) = sd− (s− 1) ∀d ∈ N.

By the structure of the problem we can determine the matrix M column-
wise.

Fix m ∈ N. In the following we determine the mth column of M , denoted
by cm. Since M is an UT matrix, we just have to determine the first m
entries of cm (all others are 0). Since M is non-singular as well, we set the
mth entry of cm equal to 1. Thus all diagonal entries of M are 1. In order
to determine the remaining m − 1 unknown entries of cm we consider the
desired parameter L of the above form.

• The dth row of C ′1 = C1M should have length (≤) ds for all d ∈ N.
This is guaranteed if at least the first b(m− 1)/sc-entries of the mth
column of C ′1 are zero. (Here and later on bxc denotes the integer part
of a real x.)
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• Analogously, we set the first bm/sc-entries of the mth column of C ′2
equal to zero to guarantee that the dth row of C ′2 has length (≤) ds−1
for all d ∈ N.
...
• Finally, we set the first b(m+ s− 2)/sc-entries of the mth column of
C ′s equal to zero to guarantee that the dth row of C ′s has length (≤)
ds− (s− 1) for all d ∈ N.

Altogether, we get m−1 fixed zero entries in the mth columns of C ′1, . . . , C
′
s,

since
s∑
i=1

⌊
m+ i− 2

s

⌋
= m− 1.

This can be easily checked by setting m = qs + r where q ∈ N0 and r ∈
{0, 1, . . . , s− 1}.

Hence the first m− 1 unknown entries of the mth column of M can be
determined from the following system of equations:

D · (c1,m, c2,m, . . . , cm−1,m, 1, 0, 0, . . .)> = (0, 0, . . . , 0︸ ︷︷ ︸
m−1

)>,

where D is the matrix ∈ Z(m−1)×N
q formed by

the first b(m− 1)/sc rows of C1 together with
the first bm/sc rows of C2 together with
...
the first b(m+ s− 2)/sc rows of Cs.

Since C1, . . . , Cs are generator matrices of a digital (0, s)-sequence in
prime base q ≥ s, the left (m− 1)× (m− 1)-submatrix of D has full rank.
Hence the m− 1 unknown entries of cm, namely c1,m, c2,m, . . . , cm−1,m, are
uniquely determined.

Sincem was arbitrarily chosen, the matrixM with the properties claimed
above can be determined columnwise and the matrices C ′1, . . . , C

′
s with “low-

est possible parameter L” can be computed by matrix multiplication.

The proof above already provides an algorithm to obtain matrices
C ′1, . . . , C

′
s consisting of rows of lowest possible lengths which generate a

(0, s)-sequence.
In the next subsection we give explicit examples. We investigate digi-

tal (0, s)-sequences in prime base q ≥ s generated by s Pascal matrices in
base q for s = 1, s = 2 and s = q. The aim is to determine scrambling
matrices which lead to digital (0, s)-sequences in prime base q ≥ s gener-
ated by matrices with lowest possible row lengths. Furthermore, we discover
some interesting properties of these scrambling matrices and the generator
matrices with lowest possible row lengths.
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4.2. Concrete examples. In the previous subsection we proved ex-
istence of digital (0, s)-sequences in any prime base q ≥ s such that the
generator matrices have best possible L parameter and we provided a gen-
eral construction principle. In this subsection, we give explicit examples by
applying the above method to Pascal matrices.

We redefine the ith Pascal matrix in base q by P (i) := (p(i)
j,k)j,k≥1. The

kth entry of the jth row in P (i) is given by

p
(i)
j,k =


(
k−1
j−1

)
ik−j , 1 ≤ j ≤ k,

0, j > k,
0, j ≤ 0,

modulo q, where k ∈ N, j ∈ Z and 00 := 1. Here we extend the domain of j,
because this will be useful for the investigations in this subsection. In the
following, P (i) will sometimes be denoted by P (i) = (col(i)1 , col(i)2 , col(i)3 , . . .),
where col(i)k is the kth column of P (i).

Proposition 2. Let q ∈ P. The set P (0), P (1), . . . , P (q−1) with matrix
multiplication ◦ forms an abelian group with P (i) ◦ P (j) = P (i+j (q)) for all
i, j ∈ Zq.

Proof. It suffices to prove P (i) ◦ P (j) = P (i+j (q)) for all i, j ∈ Zq.
We define C := P (i) ◦P (j), compute cm,n and compare it to p(i+j)

m,n . Since
all P (k) are NUT matrices it suffices to check the case m ≤ n (otherwise we
get the trivial equation 0 = 0):

cm,n =
∞∑
l=1

p
(i)
m,lp

(j)
l,n =

n∑
l=m

(
l − 1
m− 1

)
il−m

(
n− 1
l − 1

)
jn−l,

p(i+j)
m,n =

(
n− 1
m− 1

)
(i+ j)n−m =

n−m∑
l=0

(
n− 1
m− 1

)(
n−m
l

)
iljn−m−l

=
n∑

l=m

(
n− 1
m− 1

)(
n−m
l −m

)
il−mjn−l.

It is easy to check the equality of
(
n−1
m−1

)(
n−m
l−m

)
and

(
l−1
m−1

)(
n−1
l−1

)
, which con-

cludes the proof.

For each i ∈ {0, . . . , q−1} we can scramble the (0, 1)-sequence generated
by P (i) using its inverse P (q−i) as scrambling matrix. Hence the resulting
matrix fulfills L(d) = d for all d ∈ N. Columnwise construction, as in the
proof of Theorem 4, would provide the same scrambling matrix.

In the next theorem we define for each i ∈ {1, . . . , q − 1} a NUT matrix
M ∈ ZN×N

q such that the matrices M = P (0)M and P (i)M satisfy L(d, 0) =
2d and L(0, d) = 2d− 1 for all d ∈ N.
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Theorem 5. Let i ∈ {1, . . . , q − 1}. The matrix M ∈ ZN×N
q defined by

M :=

col(q−i)1 col(q−i)2

(
0

col(q−i)2

) (
0

col(q−i)3

)  0
0

col(q−i)3

 . . .


and the matrix P (i)M ∈ ZN×N

q generate a digital (0, 2)-sequence in prime
base q and satisfy L(d, 0) = 2d and L(0, d) = 2d− 1 for all d ∈ N. Further-
more,

P (i)M =


1 0 0 . . .
0
0 M
...

 ,

where

M =

col(i)1 col(i)2

(
0

col(i)2

) (
0

col(i)3

)  0
0

col(i)3

  0
0

col(i)4

 . . .

 .

Example 3. In the special case of s = q = 2 the following matrices with
lowest possible row lengths generate a digital (0, 2)-sequence in base 2:

1 1 0 0 0 0 0 0 . . .
0 1 1 1 0 0 0 0 . . .
0 0 1 0 1 1 0 0 . . .
0 0 0 1 0 1 1 1 . . .
0 0 0 0 1 1 1 0 . . .
0 0 0 0 0 1 1 1 . . .
0 0 0 0 0 0 1 0 . . .
0 0 0 0 0 0 0 1 . . .
...

...
...

...
...

...
...

...
. . .


and



1 0 0 0 0 0 0 0 . . .
0 1 1 0 0 0 0 0 . . .
0 0 1 1 1 0 0 0 . . .
0 0 0 1 0 1 1 0 . . .
0 0 0 0 1 0 1 1 . . .
0 0 0 0 0 1 1 1 . . .
0 0 0 0 0 0 1 1 . . .
0 0 0 0 0 0 0 1 . . .
...

...
...

...
...

...
...

...
. . .


.

Theorem 5 can be derived from the following proposition.

Proposition 3. For all i ∈ {1, . . . , q − 1} and all m ∈ N,

(3) P (i)


0
...
0

m− 1

col(q−i)m

 =


0
...
0

m− 1

col(i)m

 ∈ ZN
q

and

(4) P (i)


0
...
0

m− 1

col(q−i)m+1

 =


0
...
0

m

col(i)m

 ∈ ZN
q .
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Proof of Theorem 5. Proposition 3 implies

P (i)M =


1 0 0 . . .

0
0 M
...

 .

Note that the first entry of col(i)1 is 1 for all i ∈ {0, 1, . . . , q − 1}, since
p
(i)
1,1 =

(
0
0

)
i0 = 1. If M is used as scrambling matrix (note that by the

definition of M it is an UT matrix and its diagonal entries are all non-zero,
hence it is a NUT matrix), we get a pair of matrices M = P (0)M and P (i)M
in Zq which generate a (0, 2)-sequence in prime base q with L(d, 0) = 2d and
L(0, d) = 2d− 1 for all d ∈ N.

For the proof of Proposition 3 we need the following lemma, which is
easy to check.

Lemma 2. Let i ∈ {0, . . . , q − 1}. Then

(5) p
(i)
j+1,k+1 = ip

(i)
j+1,k + p

(i)
j,k for all k ∈ N, j ∈ Z.

Proof of Proposition 3. The proof is by induction.

Proof of (3).

m = 1: Since P (q−i) is inverse to P (i) (see Proposition 2) and col(i)1 is
equal to the first column in I, this holds trivially.

m→ m+ 1: It is easy to check that (3) holds for any fixed m ∈ N if and
only if

(6)
∞∑
j=1

p
(i)
r,jp

(q−i)
j−m+1,m ≡ p

(i)
r−m+1,m (q)

for all r ∈ N. (Note that (6) is trivially fulfilled for all integers r ≤ 0.) We
assume that (6) holds (for all r ∈ N) for all natural 1, . . . ,m and prove (6)
for m+ 1. Fix r ∈ N. By Lemma 2 we have

(∗) :=
∞∑
j=1

p
(i)
r,jp

(q−i)
j−m,m+1 =

∞∑
j=1

p
(i)
r,jp

(q−i)
j−m,m(q − i) +

∞∑
j=1

p
(i)
r,jp

(q−i)
j−m−1,m.

An index shift together with the fact that p(q−i)
j,k = 0 for j ≤ 0 yields

(∗) =
∞∑
j=1

(p(i)
r,j+1(q − i) + p

(i)
r,j+2)p(q−i)

j−m+1,m.

Twofold application of Lemma 2 leads to

p
(i)
r,j+1(q− i) + p

(i)
r,j+2 = p

(i)
r,j+1(q− i) + p

(i)
r,j+1i+ p

(i)
r−1,j+1 ≡ p

(i)
r−1,ji+ p

(i)
r−2,j (q)
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and we get

(∗) ≡
∞∑
j=1

(p(i)
r−1,ji+ p

(i)
r−2,j)pj−m+1,m (q).

By the induction hypothesis we obtain

(∗) ≡ p(i)
r−m,mi+ p

(i)
r−m−1,m (q).

Application of Lemma 2 one more time leads to the desired result
∞∑
j=1

p
(i)
r,jp

(q−i)
j−m,m+1 ≡ p

(i)
r−m,m+1 (q).

Proof of (4).
m = 1: Since P (q−i) is inverse to P (i) it follows that P (i)col(q−i)2 is the

second column of the unit matrix I, which is equal to (0, col(i)1 )>.
We multiply (4) with P (q−i) and obtain an equivalent version:

P (q−i)


0
...
0

m

col(i)m

 =


0
...
0

m− 1

col(q−i)m+1

 ∈ ZN
q .

m → m + 1: It is easy to check that (4) holds for a fixed m ∈ N if and
only if

(7)
∞∑
j=1

p
(q−i)
r,j p

(i)
j−m,m ≡ p

(q−i)
r−m+1,m+1 (q)

for all r ∈ N. (Note that (7) is trivially fulfilled for all integers r ≤ 0.) We
assume that (7) holds (for all r ∈ N) for all natural 1, . . . ,m and consider
(7) for m+ 1. Let r ∈ N and

∞∑
j=1

p
(q−i)
r,j p

(i)
j−m−1,m+1 =: (∗∗).

By Lemma 2 we get

(∗∗) =
∞∑
j=1

ip
(q−i)
r,j p

(i)
j−m−1,m +

∞∑
j=1

p
(q−i)
r,j p

(i)
j−m−2,m.

An index shift and the fact that p(i)
j,k = 0 if j ≤ 0 yields

(∗∗) =
∞∑
j=1

(ip(q−i)
r,j+1 + p

(q−i)
r,j+2)p(i)

j−m,m.
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By applying Lemma 2 twice we get

ip
(q−i)
r,j+1 +p

(q−i)
r,j+2 = ip

(q−i)
r,j+1 +(q− i)p(q−i)

r,j+1 +p
(q−i)
r−1,j+1 ≡ (q− i)p(q−i)

r−1,j +p
(q−i)
r−2,j (q).

Using the induction hypothesis we obtain

(∗∗) ≡
∞∑
j=1

((q − i)p(q−i)
r−1,j + p

(q−i)
r−2,j)p

(i)
j−m,m (q)

≡ (q − i)p(q−i)
r−m,m+1 + p

(q−i)
r−m−1,m+1 = p

(q−i)
r−m,m+2 (q).

In the case of s = q = 2 the freedom of choosing the UT generator
matrices is very limited.

Proposition 4. Let C1, C2 ∈ ZN×N
2 be NUT matrices generating a

(0, 2)-sequence. Then C2 = PC1, where P denotes the first Pascal matrix in
base 2.

Proof. Assume that there is C1 ∈ ZN×N
2 (NUT!) such that we can choose

two different C2, C
′
2 ∈ ZN×N

2 (both NUT!) such that both C1, C2 and C1, C
′
2

generate a digital (0, 2)-sequence. By our assumption that C2 and C ′2 are
different we find c

(2)
i,j , c

′(2)
i,j with minimal i and then minimal j such that

c
(2)
i,j 6= c

′(2)
i,j . We know that j ≥ i since all matrices are UT matrices. We

combine the upper left (j − i) × j-submatrix of C1 with the upper left
i× j-submatrix of C2 to get a non-singular j × j-matrix. If we do the same
using C ′2 we get another non-singular j× j-matrix which is equal to the one
obtained using C2 except for the bottom right entry. This is not possible in
the finite field with just two elements Z2, so C2 = C ′2. The relation C2 = PC1

follows since the UT matrices P and I in Z2 generate a (0, 2)-sequence.

Note that the NUT condition is essential here, since scrambling the Pas-
cal matrices by multiplying by NLT (non-singular lower triangular) matrices
from the left has more degrees of freedom for the componentwise choice of
the scrambling matrices (see [3] and the references therein).

Furthermore, the following corollary can be deduced from Theorem 4,
which is already a consequence of Proposition 2.

Corollary 1. The first Pascal matrix in base 2 is its own inverse, i.e.
P · P = I ∈ ZN×N

2 .

Proof. By Proposition 4 the matrices I and P are uniquely paired, since
both are NUT matrices. If we use P as a (NUT!) scrambling matrix we
will get a new pair of NUT matrices PI and PP . By the symmetry of the
problem it follows that PP = I, as otherwise I, P would not be uniquely
paired.

In the following we search for generator matrices with lowest possible row
lengths in the case of maximal number of dimensions s = q. We consider the
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(0, q)-sequence in prime base q generated by P (0), P (1), . . . , P (q−1) ∈ ZN×N
q

and define a scrambling NUT matrix M columnwise.

Definition 3. We define a matrix M = (c1, c2, . . . , cd, cd+1, . . .), where
the dth column, cd, is given by the following recursion: c1 := (1, 0, 0, 0, . . .)>

and

cd+1 =
(
P (1) +

(
0

P (1)

))
cd for d ∈ N.

Here and below, a zero on top of a matrix in brackets denotes a zero
row, and a zero in front denotes a zero column.

Note that by Lemma 2 the recursion above can be given by the following
equivalent form:

cd+1 = P (1)

(
0
cd

)
.

First of all we have to check if M is a NUT matrix in order to apply
Lemma 1.

Lemma 3. M defined by Definition 3 is a NUT matrix in Zq.

Proof. Denote the dth entry in the lth row of M by cl,d. It suffices to
prove that cd,d = 1 and cl,d = 0 if l > d. We do this by induction on d.

For d = 1 we have c1,1 = 1 and cl>1,1 = 0 by the definition of the first
column of M .

d→ d+ 1: Using

cd+1 =
(
P (1) +

(
0

P (1)

))
cd

we get cl,d+1 = 0 if l > d + 1 and cd+1,d+1 = p
(1)
d,dcd,d = 1 by the induc-

tion hypothesis and the fact that P (1) is a NUT matrix with all diagonal
entries 1.

Theorem 6. For M given in Definition 3 as scrambling matrix from the
right, the matrices P (0)M,P (1)M, . . . , P (q−1)M generate a (0, q)-sequence
and satisfy

L(0, . . . , 0︸ ︷︷ ︸
i−1

, d, 0, . . . , 0) = qd− (i− 1)

for all d ∈ N and i ∈ {1, . . . , q}. Hence the matrices P (0)M,P (1)M, . . . ,
P (q−1)M have lowest possible row lengths.

To prove Theorem 6 we need further auxiliary results.
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Lemma 4. For every k ∈ {1, . . . , q},

P (q−k)
(
P (1) +

(
0

P (1)

))k
=

k∑
i=1

ci,k


0
...
0

 i

I

 ∈ ZN×N
q

with some ci,k ∈ {0, 1, . . . , q − 1} for i ∈ {1, . . . , k}.

Proof. We prove this by induction.
k = 1: Using the equivalent form of the recursion in Definition 3 we

obtain

P (q−1)

(
P (1) +

(
0

P (1)

))1

I = P (q−1)P (1)

(
0
I

)
=
(

0
I

)
.

k → k + 1:

P (q−k−1)

(
P (1) +

(
0

P (1)

))k+1

= P (q−k−1)

(
P (1) +

(
0

P (1)

))(
P (1) +

(
0

P (1)

))k
= P (q−k)

(
P (1) +

(
0

P (1)

))k
+ P (q−k−1)

(
0

P (1)

)(
P (1) +

(
0

P (1)

))k
.

By Lemma 2 the following relation is easy to verify:

P (q−k−1) = (q − k − 1)(0 P (q−k−1)) +
(

1 0
0 P (q−k−1)

)
.

Hence
P (q−k−1)

(
0

P (1)

)
= (q − k − 1)P (q−k) +

(
0

P (q−k)

)
.

Using the induction hypothesis we obtain

P (q−k−1)

(
P (1) +

(
0

P (1)

))k+1

= (q − k)
k∑
i=1

ci,k


0
...
0

 i

I

+
k∑
i=1

ci,k


0
...
0

 i+ 1

I


and the result follows by setting ck+1,k+1 = ck,k and ci,k+1 = (q − k)ci,k
+ ci−1,k for i ≤ k, with c0,k := 0.

Lemma 4 for k = q and induction on n yield the following corollary.
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Corollary 2. For all n ∈ N,

(
P (1) +

(
0

P (1)

))nq
=

qn∑
i=n

c′i,n


0
...
0

 i

I

 ∈ ZN×N
q

with some c′i,n ∈ {0, 1, . . . , q − 1} for i ∈ {n, . . . , qn}.

Proof of Theorem 6. We know that P (0)M, . . . , P (q−1)M generate a
(0, q)-sequence by Lemma 1, since M is a NUT matrix by Lemma 3. We
just have to prove that these matrices have best possible row lengths, i.e.,

L(0, . . . , 0︸ ︷︷ ︸
i

, d, 0, . . . , 0) = qd− i

for all d ∈ N and i ∈ {0, 1, . . . , q − 1}.
Fix i ∈ {0, 1, . . . , q−1}. To guarantee the upper bound on the lengths of

the rows it suffices to show that cl,m = 0 for all m ≥ ql − i + 1
where (cl,m)l,m≥1 := P (i)M . Therefore, we have to prove that the first
b(m+ i− 1)/qc entries of the mth column of P (i)M are zero (here and
below, bxc denotes the integer part and {x} the fractional part of a real x).
By Definition 3 the mth column of M is determined by

P (i)

(
P (1) +

(
0

P (1)

))m−1

1
0
...

 .

We distinguish the following cases.
m− 1 < q − i: This is a trivial case since b(m+ i− 1)/qc = 0.
m − 1 ≥ q − i: In this case we can apply Lemma 4 and Corollary 2 to

get

P (i)

(
P (1) +

(
0

P (1)

))m−1

= P (i)

(
P (1) +

(
0

P (1)

))q−i(
P (1) +

(
0

P (1)

))qb(m+i−1)/q−1c

×
(
P (1) +

(
0

P (1)

))q{(m+i−1)/q−1}

=


qb(m+i−1)/qc−i∑
j=b(m+i−1)/qc

c′′(j)


0
...
0

 j

I



(
P (1) +

(
0

P (1)

))q{(m+i−1)/q−1}
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with some c′′(j) ∈ {0, 1, . . . , q − 1}. Hence the first column of the resulting
matrix contains at least b(m+ i− 1)/qc zero entries at the top, and the
result follows.

Remark 3. Note that for base 2 the cases s = 2 and s = q are equal.
In this case, M as defined in Theorem 5 equals the scrambling matrix M
given in Definition 3:

M =

col(1)
1 col(1)

2

(
0

col(1)
2

) (
0

col(1)
3

)  0
0

col(1)
3

  0
0

col(1)
4

 . . .

 .

This can be easily checked using the equivalent form of the recursion in
Definition 3 and the statements in Proposition 3.

We recall the two-dimensional case as considered in Theorem 5 and dis-
cover symmetries concerning the generator matrices with lowest possible row
lengths. One is the relation between the generator matrices M and P (i)M :

P (i)M =


1 0 0 . . .

0
0 M
...

 .

Furthermore, we get repetition at the “edges”, i.e. the column just before
and the column for which the number of zeros at the top increases by one
are equal except for “adding a zero shift”.

For the case where the dimension is equal to the base we find similar
symmetries given in the following remark. These properties could be useful
in case of implementation.

Remark 4. For the sequence generated by P (0)M,P (1)M, . . . , P (q−1)M ,
where M is the scrambling matrix given in Definition 3, we achieve a sym-
metry concerning M = P (0)M and P (q−1)M similar to the two-dimensional
case:

P (q−1)M =


1 0 0 . . .

0
0 M
...

 .

If we take a look at the “edges” in the matrices P (0)M, . . . , P (q−1)M , we
discover repetitions as in the two-dimensional case. For every i ∈ {0, 1, . . . ,
q − 1} the following relation holds for all n ∈ N:(

0
c
(i)
nq−i

)
= c

(i)
nq−i+1,

where c(i)m denotes the mth column of P (i)M .
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Proof. The symmetry concerning M = P (0)M and P (q−1)M can be eas-
ily checked using the equivalent form of the recursion in Definition 3 which
immediately implies

P (q−1)c
(0)
d+1 =

(
0
c
(0)
d

)
.

For the proof of the repetition at the “edges” we recall the following
terms as considered in the proof of Theorem 6:

P (i)

(
P (1) +

(
0

P (1)

))q−i (
P (1) +

(
0

P (1)

))qb(m+i−1)/q−1c

×
(
P (1) +

(
0

P (1)

))q{(m+i−1)/q−1}
.

By Lemma 4 and Corollary 2 the leading terms can be written as a special
linear combination of shifted unit matrices, hence it suffices to prove the
repetition at the first “edge” in M , which can be done by verifying

(8)

(
0
c
(0)
q

)
= c

(0)
q+1.

If we prove that c(0)
q is of the form (q − 1, 0, . . . , 0︸ ︷︷ ︸

q−2

, 1, 0, . . .)>, then (8)
will follow:

c
(0)
q+1 = P (1)

(
0
c
(0)
q

)
= (q − 1)col(1)

2 + col(1)
q+1

= (q − 1, q − 1, 0, . . .)> + (1, 0, . . . , 0︸ ︷︷ ︸
q−1

, 1, 0, . . .)> =

(
0
c
(0)
q

)
.

It remains to prove that c(0)
q has the above form. By the restriction on the

lengths of the rows in P (i)M the vector c(0)
q has to solve the following system

of congruences:
D · (x1, x2, . . . , xq−1, 1, 0, . . .)> = (0, . . . , 0)> ∈ Zq−1

q

where D is the (q− 1)×N-matrix in Zq formed by the first row of P (1), the
first row of P (2), . . . and the first row of P (q−1).

Since P (1), . . . , P (q−1) generate a (0, q − 1)-sequence, the left (q − 1) ×
(q− 1)-submatrix of D has full rank. Thus there exists a unique solution in
the finite field Zq. We verify that

(q − 1, 0, . . . , 0︸ ︷︷ ︸
q−2

, 1, 0, . . .)>

solves the system above, by the following computation for i ∈ {1, . . . , q−1}:

(q − 1)p(i)
1,1 + p

(i)
1,q = (q − 1)

(
0
0

)
i0 +

(
q − 1

0

)
iq−1 ≡ (q − 1) + 1 ≡ 0 (q).
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