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On sums of two kth powers:
a mean-square asymptotics over short intervals

by

MANFRED KUHLEITNER and WERNER GEORG Nowak (Wien)

1. Introduction. For k£ > 2 a fixed integer, define the arithmetic func-
tion 7(n) as the number of ways to write n € N* as a sum of two kth powers
of absolute values of integers, i.e.,

rr(n) = #{(u1,u2) € Z* : [u|* + Jua|* = n}.

To describe its average behaviour, one is interested in asymptotic results
about the Dirichlet summatory function

Ry (u) = Z ri(n),

1<n<uk

where u is a large real variable (1).

For k = 2, the classic Gaussian circle problem, a detailed historical
exposition can be found in the monograph of Kratzel [10]. The sharpest
published results to date (?) read

(1.1) Ro(u) = mu® + Pa(u),
(1'2) PQ(U) — O(u46/73(10gu)315/146),
and (?)

(13) PQ(U) = (ul/Q(log U)1/4(10g lOg u)(log 2)/4

x exp(—cy/logloglogu))  (¢>0),
(1.4)  Py(u) = 24 (u"/? exp(c’ (loglog u) /4 (loglog log u) ~3/4)) (¢’ > 0).

2000 Mathematics Subject Classification: 11P21, 11N37, 11L07.

(1) Note that, in part of the relevant literature, ¢t = u? is used as the basic variable.

(2) Actually, M. Huxley has meanwhile improved further this upper bound, essentially
replacing the exponent 46/73 = 0.6301 ... by 131/208 = 0.6298. .. The author is indebted
to Professor Huxley for sending him a copy of his unpublished manuscript.

(3) We recall that Fi(u) = 2:«(F»(u)) means that limsup, . (+F1(u)/Fa(u)) > 0
where * is either + or —, and F2(u) is positive for u sufficiently large.

[191]
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While (1.2) is due to Huxley [5], [7], (1.3) has been established by Hafner [4],
and (1.4) by Corradi & Katai [2]. Most experts conjecture that

(1.5) inf{0 € R: Py(u) <p u’} =1/2.
This hypothesis is supported by the mean-square asymptotics
T
2 5 2 2
(1.6) (S)(Pg(u)) du = CyT? + O(T(log T)?), wz Z_: n3/2 :

which in this precise form is due to Katai [8].

The results (1.3), (1.4), (1.6) were obtained by means of the fact that the
generating function (Dirichlet series) of r2(n) is the Epstein zeta-function of
the quadratic form u? +u2, which satisfies a well known functional equation
and thus opens the possibility of an approach via complex integration.

For the general case k > 3, quite different methods must be employed.
Investigations in this direction have first been undertaken by van der Cor-
put [18] and Kritzel [9]. In Kréatzel’s textbook [10], an enlightening expo-
sition of the history of the problem including all results until 1988 can be
found. It turns out that

2
(1.7) Ry (u) = %tﬁ + Bp®p (u)u' "V 4 Py (u)

where
Bk — 231/k7r11/kk1/kp(1 + %)7

u) = Z n~ 1=k gin <27rnu - %)
n=1

and the new remainder term Pj(u) can essentially be bounded by (1.2), i.e
(1.8) Py(u) = O(u*%/™ (log u)315/146),
This was proved by Kuba [11], on the basis of Huxley’s method [5], [7].

For lower bounds, it was shown by the second named author [15] that,
for any fixed k > 3,

(1.9) Py(u) = 2 (u**(logu)'/*),
and by Kiihleitner, Nowak, Schoiflengeier & Wooley [13] that
(1.10) Ps(u) = 24 (u*/?(loglogu)'/%).

The analogy between these results and those for the case k = 2 might suggest
extending the classic conjecture (1.5) to arbitrary k > 2. In fact, this is true
again in mean-square: According to Nowak [14],

1 T
=V (Pe(u)?du < T

T
0

(1.11)
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for any fixed k > 3 and T large. Kiihleitner [12] refined this result, proving
an asymptotic formula
1 T
(1.12) - V(Pe(w)? du = Cp T+ O(T' ™),
0

with explicitly given gq(k) > 0 and

4 _ _
(113) Ck = m Z (h1m1h2m2) 1+q/2|(h17m1)|é 2q'
(h1,m1,ha,m2)€EZY

|(h1,m1)lq=|(h2,m2)lq

Here ¢ = k/(k—1) and |(h,m)|, = (|h|? + |m|?)'/9 denotes the g-norm
in R2.

Inspired by a work of Huxley [6] on the lattice point discrepancy of a
convex disc, the second named author recently [16] proved a localized form
of (1.11), with only a logarithmic loss of accuracy, namely

T+1/2
(1.14) | (Pe(w)?du < T(logT)>.
T—1/2

In view of (1.9), this result seems pretty close to what might be possible.
Nevertheless, our aim in the present article is to shed some more light on
this short-interval behaviour of this remainder term. It will turn out that
the bound in (1.14) (even refined by a factor logT') remains valid for an
interval up to a length of order logT'. In fact, it will be shown that, for any
fixed ¢; > 0,

T+cilogT
(1.15) | (Pe(w)?du < TlogT.

T—cqlogT

Furthermore, we shall see that, as soon as the interval becomes a little

longer, we can observe essentially the same asymptotic behaviour as stated
in (1.12).

THEOREM. Let k > 3 be a fizxed integer, T a large real variable, and
T — A = A(T) an increasing function such that A(T) < 3T throughout and

. logT
(1.16) Tlgnoo AT =0.
Then, as T — o0,
T+A
(1.17) | (Pe(w)? du ~ 4Cy AT,
T—A

the constant C being defined in (1.13).
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2. Two pivotal lemmas

LEMMA 1 (Transition from fractional parts to trigonometric sums ac-
cording to Vaaler [17]; see also Graham & Kolesnik [3], p. 116). For arbitrary
w € R and H € N*, let

H .
w(w)zw—[w]—%7 Vi (w) _—%ZSIDQ;TM})( " >
h=1

H+1

where
T(§) =w&(1 — &) cot(m€) + &  for 0 <€ < 1.
Then
2 1

) il < g D (1 “H 1) cos(mh) + 5y

LEMMA 2. Let k > 3 be a positive integer, and q = k/(k —1). Then,
for M — oo,

— —14q/2 1—2¢ —1/2

S(M) = Z (h1hamims) [(ha,ma)|g ™ < M7

(h1,m1,h2,m2)€ZY
[(h1,m1)g=(h2,m2)|q =M

Proof. For positive integers hq, ha, mq, mg the condition |(hi,m1)|, =
|(h2, m2)|q is satisfied if and only if either (h1,m1)=(hg, m2) or hi, he, m1, mo
all have the same maximal (k — 1)-free divisor r, say, i.e.,

hy =a* v, mi=b""Yr, ho=c""tr, mg=dF i

with a,b, ¢, d € N* satisfying a® + b* = ¢* + d*. This follows from the fact
that, by a classic theorem of Besicovitch [1], the (k — 1)th roots of distinct
(k — 1)-free positive integers are linearly independent over the rationals.
Therefore, the sum in question is

< Ri(M) + Ry(M)

with
Ri(M) =Y (hama) " (hymy) =012,
h1:1
my1>>M
Ro(M) = Z (abcd)(k—l)(—lJrq/?)
a<b,c<d
bk—1p dk—1p>> M
X3 (@ BT (F T R T2,
since

|(h1,mu)lg = rl(a® 10" )y and  |(he,ma)lg = r](*7 d" ).
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Clearly,
RiM)< Y m*? < M2,
m1>>M
We estimate the contribution of Ro(M) in the cases k = 3,4, resp. k > 5 in
two different ways. In the first case we use
1

—L(k-1)(qg—1/2)
s, <0 ’

to conclude that

Ry(M) < Z Z (abed) F~D(1+0/2) =3 (gped) 2 (h=1)(a=1/2)
bk=1lp dk=1r>M a,c=1

<y Y i) ey (S
r=1 b>(M/r)t/(k=1) r=1

< M~V2,

In the case k > 5 we use the fact that

>2/(k—1)—3/2

oo
Z (ac)(kfl)(*lJrQ/Q) <1,

a,c=1
to infer

Ry(M) < Z (bd) (= D(=1+a/2-a+1/2) .3
bkilT,dk*1r>>M

< ir3( Z b—lc+1/2)2

r=1 b>>(M/r)1/(k_1)
00 M (3—2k)/(k—1)
-3 —7/4
E — M .
< TZlT’ < . ) <K

3. Proof of the Theorem. Throughout what follows, let T" and M be
large real parameters, independent of each other. All constants implied in
the symbols O, <, or < do not depend on M and T, but may depend on k.
Suppose that u € [T — A, T + A] C [4T,3T], thus u < T as T — oo.

For any complex-valued function f : u — f(u) which is square-integrable
on [T'— A, T + A], we shall write

T+A

(3.1) Q(f) = Qralf):== | If(w)]*du.

T—A
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By Cauchy’s inequality, for arbitrary fi, fo € L?[T — A, T + A],
(3:2) Qf1 + f2) < 2(Q(f1) + 2(f2)),

which will be used frequently in what follows.
We start from formulae (3.57), (3.58) (and the asymptotic expansion
below) of Krétzel [10], p. 148. In our notation, this reads

(3.3) Pw)=-8 3wk —n)) +0(),
2-1/ky<n<u

with ¢ (w) = w — [w] — 1/2 throughout. We define ¢ by 1/k+1/q =1, i.e.,
qg=k/(k—1), and thus 1 < ¢ < 3/2. We break up the range of summation
into subintervals (*) NVj(u) = ]N;, Nj11], where N; = u (1 + 2799)71/F
j=0,1,...,J, with J minimal such that u—N; < 1 forallu € [T—A, T+A].
It is clear that J < logT. Furthermore, the length of any N (u) is equal to
N1 — N;j =< 27797, By means of Lemma 1, ¢ will be approximated by v},
with H := [T]. Thus overall Py (u) is approximated by

J
(3.4) Pr(w) =83 S (k- nk) /),

J=0 neN;(u)

By the definition in Lemma 1,

(35) > W —nf)F)

neN; (u)
1 1 h
- E hT<H+1) E sin(2h(u® — n™)* /%)

1<h<T neN; (u)

The innermost sum on the right hand side is now subject to a van der
Corput transformation (“B-step”). See Kiihleitner [12], Lemmas 2 and 3,
for details. In particular, we use formula (3.5) from [12] which reads (with
u instead of v/#, and e(z) = e2™* as usual)

(3.6) D> e(=h(uF —nF)H)

neN; (u)
e(1/8) " _ _
= ﬁhul/z Z (hm) 1+q/2’(h7m)\qq+1/2€(—u|(h,m)’q)

meM;(h)

+ O(j +1og(1+ h)),

(*) The idea of this special choice of subdivision points is that %((uk — wk)l/k)

assumes integer values at w = Nj;. This is useful for the van der Corput transformation
of the exponential sums involved.
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where M (h) = [27h,27%1R), |[(h,m)|, = (Jh|? + |m|?)}/? denotes the g-
norm in R?, and Z" means that the terms corresponding to m = 27h and
m = 2/T1h get a factor 1/2.

Using the imaginary part of (3.6) in (3.5), we obtain

B7) > vk —af)h

nGN(u)
" (hm)*1+Q/2 .
— > (b, T) —————— 75 sin(w/4 = 2mul(h, m)|q)
1<h<T meM;(h) [(h,m)]g Y
+O(logT)

with

vo(h, T) = %(#)

In fact, the main contribution to our mean-square asymptotics will come
from a truncation of the double sum here, namely (°)

wl/2

Z ’YU(ha T)
VEk —1 1<h<T

(3.8) Xi(M,u):=

" (hm)—1+Q/2 )
X Z WSID(W/Z,l—QWu’(h,m)’q)
meM; (k) 1) q
[(h,m)[q<M

What about the errors we commit by these approximations? First of all,
evidently,

(39) > Wi ="V = 25(M,u)

neN; (u)
Z Z” y1(hym,T)

—1/2
1SR ment(h) [(hym)| 2

(h ) 14+q/2

<12 e(ul(h,m)],)| +1og T

with )
v (hym,T) ::{"yo(h,T) if |(h,m)|q > M,
T 0 else.
Furthermore, by Lemma 1,

) (A T R R A (CA D R

neN; (u)

1 ,
< Z —H Z cos(2mh(uF — n®)1/k) 4 2779,

1<h<T neN; (u)

(®) Recall that M is another large parameter independent of T'.
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Applying again (3.6) to the cosine sum here, we see that this is

(3.10) <T'?| ) Z (h,m,T) (o) 0> e(ul(h,m)|,)|+2774
| Bty o et
me

with

_ @=nr/(T]+1))h
Yo (h,m,T) := T+1 .

The great similarity of the main parts of the expressions (3.9) and (3.10)
enables us to estimate their mean-square by essentially the same calculation.
( hm)*1+q/ 2

Let
- > Y am ey <l

1<h<T meM;(h) |(

where 7y is either of v1, 2.
We want to bound Q(R;). To this end, we employ an ingenious trick
due to Huxley [6] which involves the Fejér kernel

o) = ()

By Jordan’s inequality, ¢(w) > 4/m? for |w| < 1/2, and the Fourier trans-
form has the simple shape

B(y) = | e(w)e(yw) dw = max(0,1 - [y]).

R

Therefore,
(3.11) Q(Ry)

1/2 2
=24 | [R;(T + 24w)|* dw < EAgw(w)\Rj(TqLZAw)\zdw

—1/2 R

w2 " (h1,m1, T)y(ha, ma, T)(hymyhomy)~t+a/2
:_AZ Z y, ma, L)y, Ma, 1M1 N21M2
(I(h1,m1) gl (h2, ma)|q) 71 /2

1<hy,ha<T m, eEM; (h1)
mo EMJ' (hz)

x e(=T(|(h1;m1)lq — [(h2, m2)lq))

x | p(w)e(=24w(|(hy, m1)lg — (ha,m2)],)) dw
R

T T —1+q/2
<4 > S (b1, ma, T)y(ha, ma, T) (hima hamo)

—1/2
1<h1,ha<T myeM;(hy) (1(ha, 1) lg| (h2y ma) )=/

moEM; (hg)

x max(0,1 — 2A][(h1,m1)|q — |(h2,m2)|q|).
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We recall that m € M;(h) implies that |(h,m)|, < m < 2/h. Further-
more, for a term of the last multiple sum to be nonzero it is necessary that
||(h1,m1)|q—(h2,m2)|4] < (24)7!, hence hy < hy and my < ma. Therefore,
the last expression in (3.11) is

(312) < A2 N prt Ny (hym, T)
1<h,<T mi1EM;(hy1)

X Z ’)’(hg, ma, T)
(hz,mz)GZi
[[(h1,ma1)lq—|(h2,m2)|q]<(24) =1

We now have to distinguish if we are dealing with +; or 7., recalling the
respective definitions: For ~;(h,m,T), we know that this is bounded and
vanishes for |(h,m)|, < M. Further, denote by A7(U) the number of lattice
points v € Z? with |v|, < U; then it is known that

P - 2/3
(3.13) AL(U) T 2/0) U*+0(U”)
for any fixed ¢ with 1 < ¢ < 2. This asymptotic formula is contained in
Theorem 3.6 of Krétzel [10], p. 116. From this it is immediate that, for any
fixed (hy,mq),

(3.14) > 1<

(h2,m2)€Z?
[[(h1,m1)|q—[(h2,m2)|q|<(24) 71

[(h1,ma)lg

1 + |(ha,ma) 273,

Thus, for v = 71, the expression in (3.12) is

) 2h )
g —2 1 ip \2/3
(3.15) < A2 N ( T+ (2T >
1<h, <T
29hy>M
< 273 160 T + AM~Y/62-i(a-5/6) E hy /e

1<h, <T

< 279D (log T + AMY/9).
For v = 72, we may use that vy (h,m,T) < hT~L. Thus (3.12) is now, again
by (3.14),

, hq,
(3.16) < A2 @2 N gt Y (%H(hhml)!ﬁ/g)
lghlgT m1€./\/lj(h1)
| 2% |
< A2 3 (% +259/3p2/ 3)
1<h1 <T
< Q*j(Q*l)(l + AT*1/3)‘



200 M. Kihleitner and W. G. Nowak

Let us summarize what we have proved so far: The remainder term in
question can be represented as

J
(3.17) Prp(u) = (=8%;(M,u) + A;(M, u)),
=0

where X;(M,u) has been defined in (3.8) and A;(M,u) satisfies (in view
of (3.9), (3.10), (3.15), (3.16))

Q(A;(M,u)) < 279N (Tlog T 4+ ATM~Y® + AT?*/3) + A(log T)>.

To proceed further, let § be a positive constant, less than %(q —1) and small
compared to (logT)/J. Then, by Cauchy’s inequality,

T+A J

J
Q(ZAj(M,u)) < S 22_752275|A M, u)|* du
=0

TA]O

< Zwég (M, u)) < TlogT + ATM ™6 4 AT?/3,

Adding up the main terms X; (M, u), we arrive at:
PROPOSITION. Uniformly in T — A <u <T+ A,
Py(u) = X (M,u) + A(M,u),
with
Q(A(M,u)) < TlogT + ATM ™6 4 AT?/3

and

w00 = i1, 2, )

, (hm)71+q/2
o 1

q

cos(m /4 + 2mul(h,m)|q),

[(h,m)|q<M
h<m<h2J+1

where Z/ means that the terms corresponding to m = h and m = h2’/t!
get a factor 1/2.

Next we infer from the definition in Lemma 1 that 7(w) = 1 + O(w?).
Therefore, defining

SO(M, u)

—8ul/? / (hm)~1+a/2
== 2 2 oy cos(n/d o+ 2mul(h m)lo),
™k=1 5% o molg<m (7 m)[d~"

h<m<h2J+1
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it is immediate that
(3.18) (M, u) = ZO(M,u) + O(K(M)T~3/?),

where K1(M), Ko(M), ... will denote appropriate bounds depending on M
(but not on T). If we keep M fixed and make T" (and thus ) large, the sum-
mation conditions h < T and m < h27*! ultimately become meaningless,
and X (M, u) becomes equal to

—4q1/2 (hm)_1+‘1/2
E(l)(M U) B Z —COS(ﬂ'/4—|- 27TU|(h m)’ )
’ —1/2 , q
k-1 I(’Zm)quSM ‘(}%m)g /
)me *

We now square out (XM (M, u))?, using the elementary formula
1
cos Acos B = §(COS(A — B) + cos(A + B)),

and integrate over u € [T'— A, T+ A]. The main contribution comes from the
diagonal terms, i.e. those with |(h1,m1)|y = |(h2, m2)|q, and reads altogether

16 (hlmlhngg)_1+q/2

72 (k — 1)AT 2 |(hy,mp) |22

[(h1,m1)]q=|(h2,m2)|q<M ’ a
h1,m1,h2,ma€N*

By Lemma 2 and the definition of the constant C}, in (1.13), this is equal to
4AT(Cx + O(M~Y?)).

All the other terms are pretty small: In fact,

T+A cos
IS @mu( b, ma)ly  |(heyma)ly)) udu

sin
T—A

T
|[(h1,m1)|q £ [(h2,m2)|q]

which contributes altogether < Ko(M)T to Q(X™ (M, u)). Going back
to (3.18) and to the Proposition, and applying Cauchy’s inequality one more
time, we end up with

<

(3.19) Q(Py) = 4C, AT + O(K3(M)T) + O(T(Alog T)Y/?)
+ O(ATM Y12y 4 O(AT®/S).
Therefore, for any fixed M,
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1
limsup |— Q(P;) — 4C, | < M~1/12,
T—o0 AT
if we recall our condition (1.16). Since M can be chosen arbitrarily large,
the proof of our Theorem is thereby complete.

We finally establish (1.15). To this end, it suffices to choose M =1/2 in
the above argument; then all sums over 0 < [(h,m)|, < M are empty, and
(3.19) yields what we claimed, since now A < logT.
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