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On sums of two kth powers:
a mean-square asymptotics over short intervals
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Manfred Kühleitner and Werner Georg Nowak (Wien)

1. Introduction. For k ≥ 2 a fixed integer, define the arithmetic func-
tion rk(n) as the number of ways to write n ∈ N∗ as a sum of two kth powers
of absolute values of integers, i.e.,

rk(n) = #{(u1, u2) ∈ Z2 : |u1|k + |u2|k = n}.
To describe its average behaviour, one is interested in asymptotic results
about the Dirichlet summatory function

Rk(u) =
∑

1≤n≤uk
rk(n),

where u is a large real variable (1).
For k = 2, the classic Gaussian circle problem, a detailed historical

exposition can be found in the monograph of Krätzel [10]. The sharpest
published results to date (2) read

(1.1) R2(u) = πu2 + P2(u),

(1.2) P2(u) = O(u46/73(log u)315/146),

and (3)

P2(u) = Ω−(u1/2(log u)1/4(log log u)(log 2)/4(1.3)

× exp(−c√log log log u)) (c > 0),

P2(u) = Ω+(u1/2 exp(c′(log log u)1/4(log log log u)−3/4)) (c′ > 0).(1.4)

2000 Mathematics Subject Classification: 11P21, 11N37, 11L07.
(1) Note that, in part of the relevant literature, t = u2 is used as the basic variable.
(2) Actually, M. Huxley has meanwhile improved further this upper bound, essentially

replacing the exponent 46/73 = 0.6301 . . . by 131/208 = 0.6298 . . . The author is indebted
to Professor Huxley for sending him a copy of his unpublished manuscript.

(3) We recall that F1(u) = Ω∗(F2(u)) means that lim supu→∞(∗F1(u)/F2(u)) > 0
where ∗ is either + or −, and F2(u) is positive for u sufficiently large.
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While (1.2) is due to Huxley [5], [7], (1.3) has been established by Hafner [4],
and (1.4) by Corrádi & Kátai [2]. Most experts conjecture that

(1.5) inf{θ ∈ R : P2(u)�θ u
θ} = 1/2.

This hypothesis is supported by the mean-square asymptotics

(1.6)
T�

0

(P2(u))2 du = C2T
2 +O(T (log T )2), C2 =

1
4π2

∞∑

n=1

(r2(n))2

n3/2
,

which in this precise form is due to Kátai [8].
The results (1.3), (1.4), (1.6) were obtained by means of the fact that the

generating function (Dirichlet series) of r2(n) is the Epstein zeta-function of
the quadratic form u2

1 +u2
2, which satisfies a well known functional equation

and thus opens the possibility of an approach via complex integration.
For the general case k ≥ 3, quite different methods must be employed.

Investigations in this direction have first been undertaken by van der Cor-
put [18] and Krätzel [9]. In Krätzel’s textbook [10], an enlightening expo-
sition of the history of the problem including all results until 1988 can be
found. It turns out that

(1.7) Rk(u) =
2Γ 2(1/k)
kΓ (2/k)

u2 +BkΦk(u)u1−1/k + Pk(u)

where

Bk = 23−1/kπ−1−1/kk1/kΓ

(
1 +

1
k

)
,

Φk(u) =
∞∑

n=1

n−1−1/k sin
(

2πnu− π

2k

)
,

and the new remainder term Pk(u) can essentially be bounded by (1.2), i.e.,

(1.8) Pk(u) = O(u46/73(log u)315/146).

This was proved by Kuba [11], on the basis of Huxley’s method [5], [7].
For lower bounds, it was shown by the second named author [15] that,

for any fixed k ≥ 3,

(1.9) Pk(u) = Ω−(u1/2(log u)1/4),

and by Kühleitner, Nowak, Schoißengeier & Wooley [13] that

(1.10) P3(u) = Ω+(u1/2(log log u)1/4).

The analogy between these results and those for the case k = 2 might suggest
extending the classic conjecture (1.5) to arbitrary k ≥ 2. In fact, this is true
again in mean-square: According to Nowak [14],

(1.11)
1
T

T�

0

(Pk(u))2 du� T
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for any fixed k ≥ 3 and T large. Kühleitner [12] refined this result, proving
an asymptotic formula

(1.12)
1
T

T�

0

(Pk(u))2 du = Ck T +O(T 1−ε0(k)),

with explicitly given ε0(k) > 0 and

(1.13) Ck :=
4

π2(k−1)

∑

(h1,m1,h2,m2)∈Z4
+

|(h1,m1)|q=|(h2,m2)|q

(h1m1h2m2)−1+q/2|(h1,m1)|1−2q
q .

Here q = k/(k − 1) and |(h,m)|q = (|h|q + |m|q)1/q denotes the q-norm
in R2.

Inspired by a work of Huxley [6] on the lattice point discrepancy of a
convex disc, the second named author recently [16] proved a localized form
of (1.11), with only a logarithmic loss of accuracy, namely

(1.14)
T+1/2�

T−1/2

(Pk(u))2 du� T (log T )2.

In view of (1.9), this result seems pretty close to what might be possible.
Nevertheless, our aim in the present article is to shed some more light on
this short-interval behaviour of this remainder term. It will turn out that
the bound in (1.14) (even refined by a factor log T ) remains valid for an
interval up to a length of order log T . In fact, it will be shown that, for any
fixed c1 > 0,

(1.15)
T+c1 log T�

T−c1 log T

(Pk(u))2 du� T log T.

Furthermore, we shall see that, as soon as the interval becomes a little
longer, we can observe essentially the same asymptotic behaviour as stated
in (1.12).

Theorem. Let k ≥ 3 be a fixed integer , T a large real variable, and
T 7→ Λ = Λ(T ) an increasing function such that Λ(T ) ≤ 1

2T throughout and

(1.16) lim
T→∞

log T
Λ(T )

= 0.

Then, as T →∞,

(1.17)
T+Λ�

T−Λ
(Pk(u))2 du ∼ 4Ck ΛT,

the constant Ck being defined in (1.13).
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2. Two pivotal lemmas

Lemma 1 (Transition from fractional parts to trigonometric sums ac-
cording to Vaaler [17]; see also Graham & Kolesnik [3], p. 116). For arbitrary
w ∈ R and H ∈ N∗, let

ψ(w) = w − [w]− 1
2
, ψ∗H(w) = − 1

π

H∑

h=1

sin(2πhw)
h

τ

(
h

H + 1

)
,

where
τ(ξ) = πξ(1− ξ) cot(πξ) + ξ for 0 < ξ < 1.

Then

|ψ(w)− ψ∗H(w)| ≤ 1
H + 1

H∑

h=1

(
1− h

H + 1

)
cos(2πhw) +

1
2H + 2

.

Lemma 2. Let k ≥ 3 be a positive integer , and q = k/(k − 1). Then,
for M →∞,

S(M) :=
∑

(h1,m1,h2,m2)∈Z4
+

|(h1,m1)|q=|(h2,m2)|q≥M

(h1h2m1m2)−1+q/2|(h1,m1)|1−2q
q �M−1/2.

Proof. For positive integers h1, h2,m1,m2 the condition |(h1,m1)|q =
|(h2,m2)|q is satisfied if and only if either (h1,m1)=(h2,m2) or h1, h2,m1,m2

all have the same maximal (k − 1)-free divisor r, say, i.e.,

h1 = ak−1r, m1 = bk−1r, h2 = ck−1r, m2 = dk−1r,

with a, b, c, d ∈ N∗ satisfying ak + bk = ck + dk. This follows from the fact
that, by a classic theorem of Besicovitch [1], the (k − 1)th roots of distinct
(k − 1)-free positive integers are linearly independent over the rationals.
Therefore, the sum in question is

� R1(M) +R2(M)

with

R1(M) =
∞∑

h1=1
m1�M

(h1m1)−2+q(h1m1)−q+1/2,

R2(M) =
∑

a≤b, c≤d
bk−1r, dk−1r�M

(abcd)(k−1)(−1+q/2)

× r−3(|(ak−1, bk−1)|q|(ck−1, dk−1)|q)−q+1/2,

since

|(h1,m1)|q = r|(ak−1, bk−1)|q and |(h2,m2)|q = r|(ck−1, dk−1)|q.
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Clearly,

R1(M)�
∑

m1�M
m
−3/2
1 �M−1/2.

We estimate the contribution of R2(M) in the cases k = 3, 4, resp. k ≥ 5 in
two different ways. In the first case we use

1

|(uk−1, vk−1)|q−1/2
q

� (uv)−
1
2 (k−1)(q−1/2),

to conclude that

R2(M)�
∑

bk−1r,dk−1r�M

∞∑

a,c=1

(abcd)(k−1)(−1+q/2)r−3(abcd)−
1
2 (k−1)(q−1/2)

�
∞∑

r=1

r−3
( ∑

b�(M/r)1/(k−1)

b−
3
4 (k−1)

)2
�

∞∑

r=1

r−3
(
M

r

)2/(k−1)−3/2

�M−1/2.

In the case k ≥ 5 we use the fact that
∞∑

a,c=1

(ac)(k−1)(−1+q/2) � 1,

to infer

R2(M)�
∑

bk−1r,dk−1r�M
(bd)(k−1)(−1+q/2−q+1/2)r−3

�
∞∑

r=1

r−3
( ∑

b�(M/r)1/(k−1)

b−k+1/2
)2

�
∞∑

r=1

r−3
(
M

r

)(3−2k)/(k−1)

�M−7/4.

3. Proof of the Theorem. Throughout what follows, let T and M be
large real parameters, independent of each other. All constants implied in
the symbols O, �, or � do not depend on M and T , but may depend on k.
Suppose that u ∈ [T − Λ, T + Λ] ⊆

[
1
2T,

3
2T
]
, thus u � T as T →∞.

For any complex-valued function f : u 7→ f(u) which is square-integrable
on [T − Λ, T + Λ], we shall write

(3.1) Q(f) = QT,Λ(f) :=
T+Λ�

T−Λ
|f(u)|2 du.
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By Cauchy’s inequality, for arbitrary f1, f2 ∈ L2[T − Λ, T + Λ],

(3.2) Q(f1 + f2) ≤ 2(Q(f1) +Q(f2)),

which will be used frequently in what follows.
We start from formulae (3.57), (3.58) (and the asymptotic expansion

below) of Krätzel [10], p. 148. In our notation, this reads

(3.3) Pk(u) = −8
∑

2−1/ku<n≤u
ψ((uk − nk)1/k) +O(1),

with ψ(w) = w − [w]− 1/2 throughout. We define q by 1/k + 1/q = 1, i.e.,
q = k/(k − 1), and thus 1 < q ≤ 3/2. We break up the range of summation
into subintervals (4) Nj(u) = ]Nj , Nj+1], where Nj = u (1 + 2−jq)−1/k,
j = 0, 1, . . . , J , with J minimal such that u−NJ < 1 for all u ∈ [T−Λ, T+Λ].
It is clear that J � log T . Furthermore, the length of any Nj(u) is equal to
Nj+1−Nj � 2−jqT . By means of Lemma 1, ψ will be approximated by ψ∗H ,
with H := [T ]. Thus overall Pk(u) is approximated by

(3.4) P ∗k (u) := −8
J∑

j=0

∑

n∈Nj(u)

ψ∗H((uk − nk)1/k).

By the definition in Lemma 1,

(3.5)
∑

n∈Nj(u)

ψ∗H((uk − nk)1/k)

= − 1
π

∑

1≤h≤T

1
h
τ

(
h

H + 1

) ∑

n∈Nj(u)

sin(2πh(uk − nk)1/k).

The innermost sum on the right hand side is now subject to a van der
Corput transformation (“B-step”). See Kühleitner [12], Lemmas 2 and 3,
for details. In particular, we use formula (3.5) from [12] which reads (with
u instead of

√
t, and e(z) = e2πiz as usual)

(3.6)
∑

n∈Nj(u)

e(−h(uk − nk)1/k)

=
e(1/8)√
k − 1

hu1/2
∑′′

m∈Mj(h)

(hm)−1+q/2|(h,m)|−q+1/2
q e(−u|(h,m)|q)

+O(j + log(1 + h)),

(4) The idea of this special choice of subdivision points is that d
dw ((uk − wk)1/k)

assumes integer values at w = Nj . This is useful for the van der Corput transformation
of the exponential sums involved.
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where Mj(h) = [2jh, 2j+1h], |(h,m)|q = (|h|q + |m|q)1/q denotes the q-
norm in R2, and

∑′′ means that the terms corresponding to m = 2jh and
m = 2j+1h get a factor 1/2.

Using the imaginary part of (3.6) in (3.5), we obtain

(3.7)
∑

n∈Nj(u)

ψ∗H((uk − nk)1/k)

=
u1/2
√
k− 1

∑

1≤h≤T
γ0(h, T )

∑′′

m∈Mj(h)

(hm)−1+q/2

|(h,m)|q−1/2
q

sin(π/4− 2πu|(h,m)|q)

+O(log T )

with

γ0(h, T ) :=
1
π
τ

(
h

[T ] + 1

)
.

In fact, the main contribution to our mean-square asymptotics will come
from a truncation of the double sum here, namely (5)

Σj(M,u) :=
u1/2
√
k − 1

∑

1≤h≤T
γ0(h, T )(3.8)

×
∑′′

m∈Mj(h)
|(h,m)|q≤M

(hm)−1+q/2

|(h,m)|q−1/2
q

sin(π/4− 2πu|(h,m)|q).

What about the errors we commit by these approximations? First of all,
evidently,

(3.9)
∑

n∈Nj(u)

ψ∗H((uk − nk)1/k)−Σj(M,u)

� T 1/2

∣∣∣∣
∑

1≤h≤T

∑′′

m∈Mj(h)

γ1(h,m, T )
(hm)−1+q/2

|(h,m)|q−1/2
q

e(u|(h,m)|q)
∣∣∣∣+ log T

with
γ1(h,m, T ) :=

{
γ0(h, T ) if |(h,m)|q > M ,
0 else.

Furthermore, by Lemma 1,
∑

n∈Nj(u)

(ψ((uk − nk)1/k)− ψ∗H((uk − nk)1/k))

�
∑

1≤h≤T

1− h/([T ] + 1)
[T ] + 1

∑

n∈Nj(u)

cos(2πh(uk − nk)1/k) + 2−jq.

(5) Recall that M is another large parameter independent of T .
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Applying again (3.6) to the cosine sum here, we see that this is

(3.10) �T 1/2

∣∣∣∣
∑

1≤h≤T

∑′′

m∈Mj(h)

γ2(h,m, T )
(hm)−1+q/2

|(h,m)|q−1/2
q

e(u|(h,m)|q)
∣∣∣∣+2−jq

with

γ2(h,m, T ) :=
(1− h/([T ] + 1))h

[T ] + 1
.

The great similarity of the main parts of the expressions (3.9) and (3.10)
enables us to estimate their mean-square by essentially the same calculation.
Let

Rj(u) :=
∑

1≤h≤T

∑′′

m∈Mj(h)

γ(h,m, T )
(hm)−1+q/2

|(h,m)|q−1/2
q

e(u|(h,m)|q)

where γ is either of γ1, γ2.
We want to bound Q(Rj). To this end, we employ an ingenious trick

due to Huxley [6] which involves the Fejér kernel

ϕ(w) :=
(

sin(πw)
πw

)2

.

By Jordan’s inequality, ϕ(w) ≥ 4/π2 for |w| ≤ 1/2, and the Fourier trans-
form has the simple shape

ϕ̂(y) =
�

R
ϕ(w)e(yw) dw = max(0, 1− |y|).

Therefore,

(3.11) Q(Rj)

= 2Λ
1/2�

−1/2

|Rj(T + 2Λw)|2 dw ≤ π2

2
Λ

�

R
ϕ(w)|Rj(T + 2Λw)|2 dw

=
π2

2
Λ

∑

1≤h1,h2≤T

∑′′

m1∈Mj(h1)
m2∈Mj(h2)

γ(h1,m1, T )γ(h2,m2, T )(h1m1h2m2)−1+q/2

(|(h1,m1)|q|(h2,m2)|q)q−1/2

× e(−T (|(h1,m1)|q − |(h2,m2)|q))

×
�

R
ϕ(w)e(−2Λw(|(h1,m1)|q − |(h2,m2)|q)) dw

� Λ
∑

1≤h1,h2≤T

∑′′

m1∈Mj(h1)
m2∈Mj(h2)

γ(h1,m1, T )γ(h2,m2, T )(h1m1h2m2)−1+q/2

(|(h1,m1)|q|(h2,m2)|q)q−1/2

×max(0, 1− 2Λ| |(h1,m1)|q − |(h2,m2)|q|).
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We recall that m ∈ Mj(h) implies that |(h,m)|q � m � 2jh. Further-
more, for a term of the last multiple sum to be nonzero it is necessary that
| |(h1,m1)|q−|(h2,m2)|q| < (2Λ)−1, hence h1 � h2 and m1 � m2. Therefore,
the last expression in (3.11) is

(3.12) � Λ2−j(q+1)
∑

1≤h1≤T
h−3

1

∑

m1∈Mj(h1)

γ(h1,m1, T )

×
∑

(h2,m2)∈Z2
+

||(h1,m1)|q−|(h2,m2)|q|<(2Λ)−1

γ(h2,m2, T ).

We now have to distinguish if we are dealing with γ1 or γ2, recalling the
respective definitions: For γ1(h,m, T ), we know that this is bounded and
vanishes for |(h,m)|q ≤M . Further, denote by A∗q(U) the number of lattice
points v ∈ Z2 with |v|q ≤ U ; then it is known that

(3.13) A∗q(U) =
2Γ 2(1/q)
qΓ (2/q)

U2 +O(U2/3)

for any fixed q with 1 < q < 2. This asymptotic formula is contained in
Theorem 3.6 of Krätzel [10], p. 116. From this it is immediate that, for any
fixed (h1,m1),

(3.14)
∑

(h2,m2)∈Z2

| |(h1,m1)|q−|(h2,m2)|q|<(2Λ)−1

1� |(h1,m1)|q
Λ

+ |(h1,m1)|2/3q .

Thus, for γ = γ1, the expression in (3.12) is

� Λ2−jq
∑

1≤h1≤T
2jh1�M

h−2
1

(
2jh1

Λ
+ (2jh1)2/3

)
(3.15)

� 2−j(q−1) log T + ΛM−1/62−j(q−5/6)
∑

1≤h1≤T
h
−7/6
1

� 2−j(q−1)(log T + ΛM−1/6).

For γ = γ2, we may use that γ2(h,m, T )� hT−1. Thus (3.12) is now, again
by (3.14),

� Λ2−j(q+1) T−2
∑

1≤h1≤T
h−1

1

∑

m1∈Mj(h1)

( |(h1,m1)|q
Λ

+|(h1,m1)|2/3q

)
(3.16)

� Λ2−j(q+1)T−2
∑

1≤h1≤T

(
22jh1

Λ
+ 25j/3h

2/3
1

)

� 2−j(q−1)(1 + ΛT−1/3).
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Let us summarize what we have proved so far: The remainder term in
question can be represented as

(3.17) Pk(u) =
J∑

j=0

(−8Σj(M,u) +∆j(M,u)),

where Σj(M,u) has been defined in (3.8) and ∆j(M,u) satisfies (in view
of (3.9), (3.10), (3.15), (3.16))

Q(∆j(M,u))� 2−j(q−1)(T log T + ΛTM−1/6 + ΛT 2/3) + Λ(log T )2.

To proceed further, let δ be a positive constant, less than 1
2 (q−1) and small

compared to (log T )/J . Then, by Cauchy’s inequality,

Q
( J∑

j=0

∆j(M,u)
)
≤
T+Λ�

T−Λ

J∑

j=0

2−jδ
J∑

j=0

2jδ|∆j(M,u)|2 du

�
J∑

j=0

2jδQ(∆j(M,u))� T log T + ΛTM−1/6 + ΛT 2/3.

Adding up the main terms Σj(M,u), we arrive at:

Proposition. Uniformly in T − Λ ≤ u ≤ T + Λ,

Pk(u) = Σ(M,u) +∆(M,u),

with
Q(∆(M,u))� T log T + ΛTM−1/6 + ΛT 2/3

and

Σ(M,u) :=
−8u1/2

π
√
k − 1

∑

1≤h≤T
τ

(
h

[T ] + 1

)

×
∑′

|(h,m)|q≤M
h≤m≤h2J+1

(hm)−1+q/2

|(h,m)|q−1/2
q

cos(π/4 + 2πu|(h,m)|q),

where
∑′ means that the terms corresponding to m = h and m = h2J+1

get a factor 1/2.

Next we infer from the definition in Lemma 1 that τ(w) = 1 + O(w2).
Therefore, defining

Σ(0)(M,u)

:=
−8u1/2

π
√
k − 1

∑

1≤h≤T

∑′

|(h,m)|q≤M
h≤m≤h2J+1

(hm)−1+q/2

|(h,m)|q−1/2
q

cos(π/4 + 2πu|(h,m)|q),
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it is immediate that

(3.18) Σ(M,u) = Σ(0)(M,u) +O(K1(M)T−3/2),

where K1(M),K2(M), . . . will denote appropriate bounds depending on M
(but not on T ). If we keep M fixed and make T (and thus u) large, the sum-
mation conditions h ≤ T and m ≤ h2J+1 ultimately become meaningless,
and Σ(0)(M,u) becomes equal to

Σ(1)(M,u) :=
−4u1/2

π
√
k − 1

∑

|(h,m)|q≤M
h,m∈N∗

(hm)−1+q/2

|(h,m)|q−1/2
q

cos(π/4 + 2πu|(h,m)|q).

We now square out (Σ(1)(M,u))2, using the elementary formula

cosA cosB =
1
2

(cos(A−B) + cos(A+B)),

and integrate over u ∈ [T−Λ, T +Λ]. The main contribution comes from the
diagonal terms, i.e. those with |(h1,m1)|q = |(h2,m2)|q, and reads altogether

16
π2(k − 1)

ΛT
∑

|(h1,m1)|q=|(h2,m2)|q≤M
h1,m1,h2,m2∈N∗

(h1m1h2m2)−1+q/2

|(h1,m1)|2q−1
q

.

By Lemma 2 and the definition of the constant Ck in (1.13), this is equal to

4ΛT (Ck +O(M−1/2)).

All the other terms are pretty small: In fact,

T+Λ�

T−Λ

cos
sin

(2πu(|(h1,m1)|q ± |(h2,m2)|q))u du

� T

| |(h1,m1)|q ± |(h2,m2)|q|
,

which contributes altogether � K2(M)T to Q(Σ(1)(M,u)). Going back
to (3.18) and to the Proposition, and applying Cauchy’s inequality one more
time, we end up with

Q(Pk) = 4CkΛT +O(K3(M)T ) +O(T (Λ log T )1/2)(3.19)

+O(ΛTM−1/12) +O(ΛT 5/6).

Therefore, for any fixed M ,
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lim sup
T→∞

∣∣∣∣
1
ΛT
Q(Pk)− 4Ck

∣∣∣∣�M−1/12,

if we recall our condition (1.16). Since M can be chosen arbitrarily large,
the proof of our Theorem is thereby complete.

We finally establish (1.15). To this end, it suffices to choose M = 1/2 in
the above argument; then all sums over 0 < |(h,m)|q ≤ M are empty, and
(3.19) yields what we claimed, since now Λ � log T .
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