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The evaluation of two-dimensional lattice sums via
Ramanujan’s theta functions

by

Ping Xu (Urbana, IL)

1. Introduction. In general, elementary evaluations are rare for higher-
dimensional lattice-type sums. They have been studied for many years in
the mathematical physics community. The most famous higher-dimensional
sum is Madelung’s constant from crystallography. In this paper, we analyze
various generalized two-dimensional lattice sums, one of which arose from
the solution to a certain Poisson equation. We evaluate certain lattice sums
in closed form using results from Ramanujan’s theory of theta functions,
continued fractions and class invariants. For instance,
∞∑

n=−∞
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m=−∞

(−1)n

(8m)2 + (4n+ 1)2
= −
√

2π

16
log

(
√
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√√
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√
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In [5], Berndt, Lamb and Rogers evaluated in closed form the sum

(1.1) F(a,b)(q) :=
∞∑

n=−∞

∞∑
m=−∞

(−1)m+n

(xm)2 + (an+ b)2
, q = e−π/x,

for any positive rational value of x, and for certain values of (a, b) ∈ N2.
They used the notation F(a,b)(x) instead of F(a,b)(q). We use F(a,b)(q) here
so that we can state Theorem 3.3 more easily and clearly. The authors of
[5] first proved the following theorem.

Theorem 1.1. Suppose that a and b are integers with a≥2 and (a, b)=1,
and that Rex > 0. Then

(1.2)

F(a,b)(q) = −2π

ax

a−1∑
j=0

ω−(2j+1)b log

∞∏
m=0

(1− ω2j+1q2m+1)(1− ω−2j−1q2m+1),

where ω = eπi/a and q = e−π/x.
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Now, for any positive rational number x and positive integers a and b,
in addition to (1.1), we consider two new types of sums:

G(a,b)(q) :=

∞∑
n=−∞

∞∑
m=−∞

(−1)m

(xm)2 + (an+ b)2
,(1.3)

H(a,b)(q) :=

∞∑
n=−∞

∞∑
m=−∞

(−1)n

(xm)2 + (an+ b)2
,(1.4)

where q = e−π/x.

Before we establish the evaluations of F(a,b)(q), G(a,b)(q) and H(a,b)(q),
we first note that these double sums are conditionally convergent. However,
it is possible to convert them into single sums which are absolutely and
rapidly convergent by substituting the partial fractions decomposition for
csch(z) [12, p. 28, Entry 1.217]:

∞∑
m=−∞

(−1)m

(am+ b)2 + c2
=

π

ac

[
sinh

(
πc
a

)
cos
(
πb
a

)
cosh2

(
πc
a

)
− cos2

(
πb
a

)].
While we have [5, eq. (2.1)] for F(a,b)(q), we are able to rewrite G(a,b)(q) and
H(a,b)(q) as the following absolutely and rapidly convergent sums which can
be calculated to high numerical precision:

G(a,b)(x) =
∞∑

n=−∞

π

x

cosech
[π(an+b)

x

]
an+ b

;(1.5)

H(a,b)(x) =
∞∑
n=1

2π

anx

sinh
(
πnx
a

)
cos
(
πb
a

)
cosh2

(
πnx
a

)
− cos2

(
πb
a

) +
π2 cot

(
πb
a

)
csc
(
πb
a

)
a2

.(1.6)

Indeed, one just need sum from (n,−50, 50) for (1.5) and (n, 1, 100) for (1.6)
to get many decimal places accurately.

In analogy with Theorem 1.1 for F(a,b)(q), we are able to prove results
for G(a,b)(q) and H(a,b)(q). Moreover, it can be shown that G(a,b)(q) can be
recast in the theory of F(a,b), which is done in Section 3. In Section 6, we
study the theory of G(a,b)(q) with the aid of the results on F(a,b) and derive
many explicit examples afterwards.

The authors of [5] simplified Theorem 1.1 for a ∈ {3, 4, 5, 6} and b = 1 us-
ing classical results for theta functions and q-series, and evaluated in closed
form certain classes of double series. When a > 6, the situation is much
more complicated; we study the case (a, b) = (8, 1) in detail in Section 5
and derive an explicit example afterwards. The case a = 12 can be derived
in a similar fashion. Similarly, we can also derive the theory of H(a,b), and
more double series can be evaluated. Although the main theorems on all
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these three types of sums are similar and not difficult to prove, the ex-
amination of special cases of H(a,b) is quite different from those of F(a,b).
In Section 4, we consider H(a,b) for a ∈ {3, 4, 5, 6} and b = 1. The re-
sulting formulas are closely related to continued fractions including the fa-
mous Rogers–Ramanujan continued fraction, Ramanujan’s cubic continued
fraction, the Ramanujan–Göllnitz–Gordon continued fraction and continued
fractions of order 12. We are able to produce many explicit examples from
the values of these continued fractions. In these instances, we assume b = 1
without loss of generality, because other possible values of the lattice sums
can be easily recovered from the case when b = 1.

Inspired by all the nice results for F(a,b)(q), G(a,b)(q) and H(a,b)(q), we
consider a generalization of these lattice sums that is defined by

(1.7) J(a,b,s,t)(q) :=
∞∑

n=−∞

∞∑
m=−∞

eπimseπint

(xm)2 + (an+ b)2
,

where q = e−π/x. In Section 3, we prove the main theorem for J(a,b,s,t)(q) in
analogy with Theorem 1.1, and the main theorems for G(a,b)(q) and H(a,b)(q)
follow easily. We then specialize to the case (a, b) = (2, 1) in Section 7. For
certain s and t, we are able to obtain very nice evaluations. Ramanujan’s
cubic continued fraction plays an important role in determining explicit
examples. For instance,

∞∑
n=−∞

∞∑
m=−∞

e
2
3
πime

2
3
πin

2m2 + (2n+ 1)2
=

π

4
√

2
e−πi/3 log 3.

Recently, Bailey, Borwein, Crandall and Zucker [2] studied a class of lat-
tice sums arising from solutions to Poisson’s equation. They determined
some closed-form evaluations using Jacobi theta functions for the series
ψ2(x, y) defined by

ψ2(x, y) =
1

π2

∑
m,n even

cos(mπx) cos(nπy)

m2 + n2
.

As graphically illustrated in [10], ψ2(x, y) is the ‘natural’ potential of the
2-dimensional jellium crystal, that is, the solution to the Poisson equation
of the physical model of the jellium,

∇2ψ2(r) = 1−
∑
m∈Z2

δ2(r−m),

where r = (x, y) and δ2(r) = δ(x)δ(y) is the Dirac delta function, with the
integral of this δ2 over R2 being unity.
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We are thus motivated to consider the class of sums when b = 0 in
J(a,b,s,t)(q), that is,

(1.8) J(a,0,s,t)(q) :=
∑
m,n∈Z

(m,n) 6=(0,0)

eπimseπint

(xm)2 + (an)2
.

Clearly,

Re{J(1,0,2x,2y)(e−π)} = 4π2ψ2(x, y).

After proving the main theorem for J(a,0,s,t)(q) in Section 3, we examine
J(a,0,s,t)(q) when a ∈ {1, 2} in Section 8. While the authors of [2] are mainly
interested in applying numerical methods to first deduce the values of lattice
sums, our rigorous determinations focus from the start on Ramanujan’s
theory of theta functions. We not only rigorously derive all the evaluations
of ψ2(x, y) established in [2], but also produce further nice results such as∑

(m,n)6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
m2 + n2

=
π

6
log

2−
√

3

3
√

3
.

The explicit values of the two class invariants and Ramanujan’s cubic con-
tinued fraction are frequently applied during the examinations.

2. Preliminary results. Let us begin by introducing the standard no-
tation

(a; q)∞ :=
∞∏
n=0

(1− aqn), |q| < 1.

We now introduce Ramanujan’s general theta function f(a, b) and the fa-
mous Jacobi triple product identity for f(a, b) [3, p. 35, Entry 19]. For
|ab| < 1,

(2.1) f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Following Ramanujan’s notation for theta functions, define

ϕ(q) = f(q, q) =
∞∑

n=−∞
qn

2
,(2.2)

ψ(q) = f(q, q3) =

∞∑
n=0

qn(n+1)/2,(2.3)

χ(q) = (−q; q2)∞,(2.4)

f(−q) = (q; q)∞.(2.5)
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From Entry 24 in Chapter 16 of Ramanajan’s Third Notebook [3, p. 39], we
have

(2.6)
f(q)

f(−q)
=

ψ(q)

ψ(−q)
=

χ(q)

χ(−q)
=

√
ϕ(q)

ϕ(−q)
,

and

(2.7) χ(q)χ(−q) = χ(−q2).

If n is any positive rational number and q = exp(−π
√
n), the two class

invariants Gn and gn are defined by

(2.8) Gn := 2−1/4q−1/24χ(q) and gn := −2−1/4q−1/24χ(−q).

In the notation of Weber [16], Gn = 2−1/4f(
√
−n) and gn = 2−1/4f1(

√
−n).

The term invariant is due to Weber. From the definitions, it follows easily
that Gn = G1/n is equivalent to the identity [3, p. 43, Entry 27(v)]

(2.9) eα/24χ(e−α) = eβ/24χ(e−β),

where αβ = π2.

There are four continued fractions that play important roles in this pa-
per. First of all, let us recall the famous Rogers–Ramanujan continued frac-
tion and its product representation:

R(q) :=
q1/5

1 +

q

1 +

q2

1 + · · ·
= q1/5

(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

, |q| < 1.

The second one is Ramanujan’s cubic continued fraction, which is defined
by

(2.10) G(q) :=
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 + · · ·
, |q| < 1.

From Ramanujan’s Lost Notebook [1, p. 94, eq. (3.3.1a) and p. 95, eq.
(3.3.6)], we have

(2.11) G(q) = q1/3
(q; q2)∞
(q3; q6)3∞

= q1/3
χ(−q)
χ3(−q3)

.

Thirdly, the Ramanujan–Göllnitz–Gordon continued fraction is defined as

(2.12) T (q) :=
q1/2

1 + q +

q2

1 + q3 +

q4

1 + q5 +

q6

1 + q7 + · · ·
, |q| < 1.

Ramanujan recorded a product representation of T (q) on p. 229 of his Second
Notebook [14], namely,

(2.13) T (q) = q1/2
(q; q8)∞(q7; q8)∞
(q3; q8)∞(q5; q8)∞

.
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The last one is the continued fraction of order 12 defined by

(2.14)

K(q) :=
q(1− q)
1− q3 +

q3(1− q2)(1− q4)
(1− q3)(1 + q6) +

q3(1− q8)(1− q10)
(1− q3)(1 + q12) + · · ·

, |q|< 1.

This is a special case of one of the fascinating continued fraction identities
recorded by Ramanujan in his Second Notebook [14], [3, p. 24, Entry 12].
Indeed, replacing q by q3 and letting a = q and b = q2 in [3, Entry 12], we
can obtain the product representation

(2.15) K(q) = q
f(−q;−q11)
f(−q5;−q7)

= q
(q, q12)∞(q11, q12)∞
(q5, q12)∞(q7, q12)∞

.

The addition formula for theta functions [3, p. 48, Entry 31] is stated
below.

Lemma 2.1. Let Un = an(n+1)/2bn(n−1)/2 and Vn = an(n−1)/2bn(n+1)/2.
Then, for each positive integer n,

(2.16) f(U1, V1) =

n−1∑
r=0

Urf

(
Un+r
Ur

,
Vn−r
Ur

)
.

We also need the following two lemmas [3, p. 36, Entry 20], [3, p. 45,
Entry 29].

Lemma 2.2. If αβ = π, Re(α2) > 0, and n is any complex number, then

(2.17)
√
α f(e−α

2+nα, e−α
2−nα) = en

2/4
√
β f(e−β

2+inβ, e−β
2−inβ).

Lemma 2.3. If ab = cd, then

(i) f(a, b)f(c, d) + f(−a,−b)f(−c,−d) = 2f(ac, bd)f(ad, bc),

(ii) f(a, b)f(c, d)+f(−a,−b)f(−c,−d) = 2af

(
b

c
,
c

b
abcd

)
f

(
b

d
,
d

b
abcd

)
.

As special cases of the above lemma [3, p. 51, Example (iv)], we have

ϕ(−q) + φ(q2) = 2
f2(q3, q5)

ψ(q)
,(2.18)

ϕ(−q)− φ(q2) = −2
f2(q, q7)

ψ(q)
.(2.19)

3. Main theorem. We begin this section by proving the main theorem
for J(a,b,s,t)(q) defined by (1.7).

Theorem 3.1. Suppose that a and b are integers with a≥ 2 and (a, b) = 1,
s and t are any real numbers with at least one not being an even number,
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and Rex > 0. Then

J(a,b,s,t)(q)

= − π

ax

a−1∑
j=0

ω−(2j+t)b log
∞∏

m=−∞
(1− ω2j+tq|2m+s|)(1− ω−(2j+t)q|2m+s|),

where ω = eπi/a and q = e−π/x.

Proof. Let N be a positive integer. Since the series J(a,b,s,t) is not ab-
solutely convergent, we adopt the convention

∑
n = limN→∞

∑
−N<n<N .

Then we have

(3.1)
∑

−N<n<N

∑
m∈Z

eπimseπint

(xm)2 + (an+ b)2

= π
∑

−N<n<N
eπint

∞�

0

e−π(an+b)
2u
(∑
m∈Z

eπimse−πm
2x2u

)
du.

Now we apply (2.17) with α =
√
π/(x

√
u), β = x

√
uπ, and n = πs/(x

√
u)

to deduce that

(3.2)
∑
m∈Z

eπims−πm
2x2u =

1

x
√
u

∑
m∈Z

e−
π(m+s/2)2

x2u .

Using (3.2) and inverting the order of summation and integration twice by
absolute convergence in (3.1), we obtain∑

−N<n<N

∑
m∈Z

eπimseπint

(xm)2 + (an+ b)2

=
π

x

∑
−N<n<N

eπint
∞�

0

e−π(an+b)
2u
∑
m∈Z

e−
π(m+s/2)2

x2u
du√
u

=
π

x

∑
m∈Z

∑
−N<n<N

eπint
∞�

0

e−π(an+b)
2u−π(m+s/2)2

x2u
du√
u
.

Applying the elementary formula [12, p. 384, eq. (3.471), no. 9], [7, p. 39],

(3.3)

∞�

0

e−π(A
2u+B2/u) du√

u
=
e−2π|A||B|

|A|
,

we have

(3.4)
∑

−N<n<N

∑
m∈Z

eπimseπint

(xm)2+(an+ b)2
=
π

x

∑
m∈Z

∑
−N<n<N

eπintq|2m+s||an+b|

|an+ b|
.

Now we introduce a variable r and establish the following claim by com-
paring Taylor series coefficients in r and letting N →∞:



64 P. Xu

(3.5)∑
−∞<n<∞

eπintr|an+b|

|an+ b|
= −1

a

a−1∑
j=0

ω−(2j+t)b log(1− ω2j+tr)(1− ω−(2j+t)r).

Note that if both s and t are even numbers, then we have log 0 at m = 0
on the right-hand side of the above identity. Therefore we exclude this case
in the assumption of the theorem to ensure the convergence of the series.
Similarly to [5, eq. (2.5)], we use a crude error estimate to bound the terms
where n ≥ N and n ≤ −N as follows:

∑
−N<n<N

eπintr|an+b|

|an+ b|
= −1

a

a−1∑
j=0

ω−(2j+t)b log[(1− ω2j+tr)(1− ω−(2j+t)r)]

(3.6)

+O

(
rN

(1− r)N

)
.

To complete the proof, we substitute (3.6) into (3.4) and take the limit as
N →∞.

Note that F(a,b)(q) = J(a,b,1,1)(q), G(a,b)(q) = J(a,b,1,0)(q) and H(a,b)(q) =
J(a,b,0,1)(q). Thus we have the following corollary.

Corollary 3.2. Suppose that a and b are integers with a ≥ 2, (a, b) = 1,
and assume that Re x > 0. Then

G(a,b)(q) = −2π

ax

a−1∑
j=0

ω−2jb log
∞∏
m=0

(1− ω2jq2m+1)(1− ω−2jq2m+1),(3.7)

H(a,b)(q)(3.8)

= − π

ax

a−1∑
j=0

ω−(2j+1)b log
∏
m∈Z

(1− ω2j+1q2|m|)(1− ω−2j−1q2|m|),

where ω = eπi/a and q = e−π/x.

The following theorem shows that G(a,b)(q) can be placed within the
theory of F(a,b).

Theorem 3.3.

(i) Suppose that a and b are integers with a ≥ 2 and (2a, b) = 1, and
that Rex > 0. Then

(3.9) G(2a,b)(q) = 1
2F(a,b)(q) + 1

2G(a,b)(q).

(ii) If we further assume that a is any odd integer, then

(3.10) G(a,b)(q) =

{
F(a,b)(−q) if b is even,

−F(a,b)(−q) if b is odd.
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Proof. We begin by proving (3.10). Note that sin(2jbπ/a) does not ap-
pear in the summation below since G(a,b)(q) is real-valued and the imaginary
terms sum to 0. Now from (3.7), we have

G(a,b)(q) = −2π

ax

a−1∑
j=0

cos

(
2jbπ

a

)
log

∞∏
m=0

(
1− 2 cos

(
2jπ

a

)
q2m+1 + q4m+2

)

= −4π

ax

(a−1)/2∑
j=0

cos

(
2jbπ

a

)
log

∞∏
m=0

(
1− 2 cos

(
2jπ

a

)
q2m+1 + q4m+2

)

+
2π

ax
log

∞∏
m=0

(1− q2m+1)2

=
4π

ax

(a−1)/2∑
j=0

cos

(
(a−2jb)π

a

)
log

∞∏
m=0

(
1+2 cos

(
(a−2j)π

a

)
q2m+1+ q4m+2

)

+
2π

ax
log

∞∏
m=0

(1− q2m+1)2

=
4π

ax

(a−1)/2∑
j=0

cos

([
a− 2

(
a−1
2 − j

)
b
]
π

a

)
× log

∞∏
m=0

(
1 + 2 cos

([
a− 2

(
a−1
2 − j

)]
π

a

)
q2m+1 + q4m+2

)

+
2π

ax
log

∞∏
m=0

(1− q2m+1)2

=
4π

ax

(a−1)/2∑
j=0

cos

(
[a(1− b) + (2j + 1)b]π

a

)
× log

∞∏
m=0

(
1 + 2 cos

(
(2j + 1)π

a

)
q2m+1 + q4m+2

)
+

2π

ax
log

∞∏
m=0

(1− q2m+1)2

= −4π

ax

(a−1)/2∑
j=0

(−1)b cos

(
(2j + 1)bπ

a

)
× log

∞∏
m=0

(
1 + 2 cos

(
(2j + 1)π

a

)
q2m+1 + q4m+2

)
+

2π

ax
log

∞∏
m=0

(1− q2m+1)2
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= −(−1)b 4π
ax

(a−1)/2∑
j=0

cos

(
(2j + 1)bπ

a

)
log

∞∏
m=0

(
1 + 2 cos

(
(2j + 1)π

a

)
q2m+1 + q4m+2

)

+ (−1)b 2π
ax

log

∞∏
m=0

cos

((
2 · a−1

2
+ 1
)
πb

a

)(
1 + 2 cos

((
2 · a−1

2
+ 1
)
π

a

)
q2m+1 + q4m+2

)
= (−1)bF(a,b)(−q).

This completes the proof of (3.10). It remains to prove (3.9) from (3.7):

G(2a,b)(q)

= − π

ax

2a−1∑
j=0

e
πibj
a log

∞∏
m=0

(1− e
πij
a q2m+1)(1− e−

πij
a q2m+1)

= − π

ax

{ a−1∑
j=0

e
πib(2j+1)

a log

∞∏
m=0

(1− e
πi(2j+1)

a q2m+1)(1− e−
πi(2j+1)

a q2m+1)

+
a−1∑
j=0

e
πib(2j)
a log

∞∏
m=0

(1− e
πi(2j)
a q2m+1)(1− e−

πi(2j)
a q2m+1)

}
.

= 1
2F(a,b)(q) + 1

2G(a,b)(q).

To finish this section, we prove the main theorem for J(a, 0, s, t) defined
by (1.8).

Theorem 3.4. Suppose that a is a positive integer, s and t are any real
numbers with at least one not being an even number, and Rex > 0. Then

J(a,0,s,t)(q) = − π

ax

a−1∑
j=0

log
∞∏

m=−∞
(1− ω2j+tq|2m+s|)(1− ω−(2j+t)q|2m+s|)

+
∑
m 6=0

eπims

(xm)2
,

where ω = eπi/a and q = e−π/x.

Proof. The proof is similar to the proof of Theorem 3.1. The main differ-
ence is that the index (m,n) cannot be (0, 0). Therefore, we need to separate
the sum when n = 0 at the very beginning, and thus we have

(3.11)
∑

−N<n<N
n6=0

∑
m∈Z

eπimseπint

(xm)2 + (an)2
=
π

x

∑
m∈Z

∑
−N<n<N
N 6=0

eπintq|2m+s||an|

|an|
.

Then we claim that for |r| < 1,

(3.12)
∑
n6=0

eπintr|na|

|na|
= −1

a

a−1∑
j=0

log[(1− ω2j+tr)(1− ω−(2j+t)r)].
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Indeed, by expanding the right side of (3.12) as Taylor series in r, we have

−1

a

a−1∑
j=0

log[(1− ω2j+tr)(1− ω−(2j+t)r)]

=
1

a

a−1∑
j=0

∞∑
k=1

(
rk

k
eπik(2j+t)/a +

rk

k
e−πik(2j+t)/a

)

=
1

a

∞∑
k=1

rk

k

(
eπikt/a

a−1∑
j=0

e2πijk/a + e−πikt/a
a−1∑
j=0

e−2πijk/a
)

=
1

a

∑
na≥1

r|na|

|na|
eπint · a+

1

a

∑
na≥1

r|na|

|na|
e−πint · a

=
∑
na≥1

r|na|

|na|
eπint +

∑
na≤1

r|na|

|na|
eπint =

∑
n6=0

eπintr|na|

|na|
.

To finish the argument, we use the same idea as in the proof of Theorem
3.1.

4. Examinations of H(a,b) for a ∈ {3, 4, 5, 6} and explicit examples.
Although the proofs of (3.8) and Theorem 1.1 are similar, the examinations
of special cases of H(a,b) are quite different from those of F(a,b), and they
are actually more difficult, because we have even powers of q instead of
odd powers in the evaluation. In this section, we examine the cases where
a ∈ {3, 4, 5, 6}.

Let us prove a couple of lemmas before the examinations.

Lemma 4.1. For |q| < 1, we have

(4.1)
∏
m≥1

(1−
√

2 q2m + q4m)

=
qf(−q32)
f(−q2)

√
f(−q4)
f(−q8)

(
1√
T (q4)

− (
√

2 + 1)
√
T (q4)

)
,

(4.2)
∏
m≥1

(1 +
√

2 q2m + q4m)

=
qf(−q32)
f(−q2)

√
f(−q4)
f(−q8)

(
1√
T (q4)

+ (
√

2− 1)
√
T (q4)

)
,

(4.3)
∏
m≥1

1−
√

2 q2m + q4m

1 +
√

2 q2m + q4m
=

1− (
√

2 + 1)T (q4)

1 + (
√

2− 1)T (q4)
,

where T (q) is the Ramanujan–Göllnitz–Gordon continued fraction (2.12).
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Proof. The equality (4.3) can be easily derived from (4.1) and (4.2).
Here we give the proof of (4.1) only, as the proof of (4.2) is similar. Letting
ω = eπi/4 and using the Jacobi triple product identity (2.1) for Ramanujan’s
general theta function f(a, b), we have∏

m≥1
(1−

√
2 q2m + q4m) =

∏
m≥1

(1− (ω + ω−1)q2m + q4m)(4.4)

=
∏
m≥1

(1− ωq2m)(1− ω−1q2m)

= (ωq2; q2)∞(ω−1q2; q2)∞

=
1

(q2; q2)∞

f(−ω,−ω−1q2)
1− ω

.

Applying the addition formula (2.16) with n = 4, a = −ω and b = −ω−1q2,
we obtain

f(−ω,−ω−1q2) = (1− ω)f(−q12,−q20) + (ω2 + ω3)q2f(−q4,−q28).
It follows that

(4.5)
f(−ω,−ω−1q2)

1− ω
= f(−q12,−q20)− (

√
2 + 1)q2f(−q4,−q28).

To complete the proof, we substitute (4.5) into (4.4), divide both the de-
nominator and numerator by

√
f(−q12,−q20)f(−q4,−q28), use the product

representation (2.13) of the Ramanujan–Göllnitz–Gordon continued frac-
tion, and manipulate theta products to deduce that

f(−q12;−q20)f(−q4;−q28) = f2(−q32)f(−q4)
f(−q8)

.

Lemma 4.2. For |q| < 1, we have

(4.6)
∏
m≥1

(1−
√

3 q2m + q4m)

=
f(−q30,−q42)

f(−q2)
(1 + (

√
3 + 1)J(q6) + (2 +

√
3)K(q6)),

(4.7)
∏
m≥1

(1 +
√

3 q2m + q4m)

=
f(−q30,−q42)

f(−q2)
(1 + (

√
3− 1)J(q6) + (2−

√
3)K(q6)),

(4.8)
∏
m≥1

1−
√

3 q2m + q4m

1 +
√

3 q2m + q4m
=

1− (
√

3 + 1)J(q6) + (2 +
√

3)K(q6)

1 + (
√

3− 1)J(q6) + (2−
√

3)K(q6)
,

where J(q) := q1/3 f(−q
3,−q9)

f(−q5,−q7) , and K(q) = q f(−q,−q
11)

f(−q5,−q7) is the continued frac-

tion of order 12 defined by (2.14).
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The proof is similar to that of Lemma 4.1, and we leave this calculation
as an exercise to the reader.

Theorem 4.3. Suppose that q = e−π/x. Let G(q), T (q) and K(q) be
the continued fractions defined in (2.10), (2.12) and (2.14), respectively. Let
J(q) be the function defined in Lemma 4.2. Then

H(3,1)(q) =
2π

9x
log

8(1 +G3(q2))

1− 8G3(q2)
,(4.9)

H(4,1)(q) = − π√
2x

log

√
2− 1− T (q4)

1 + (
√

2− 1)T (q4)
,(4.10)

H(5,1)(q) =
2π

5x
log 2 +

π

5x
log

χ(−q10)
χ5(−q2)

− π√
5x

log

√
5ϕ(q5)− ϕ(q)√
5ϕ(q5) + ϕ(q)

(4.11)

− π

5
√

5x
log

(1− α5R5(q))(1− β5R5(q2))

(1− β5R5(q))(1− α5R5(q2))
,

H(6,1)(q) =
π√
3x

log(2 +
√

3)
1 + (

√
3− 1)J(q6) + (2−

√
3)K(q6)

1 + (
√

3 + 1)J(q6) + (2 +
√

3)K(q6)
.(4.12)

Proof. We begin by proving (4.9). If we set (a, b) = (3, 1), then (3.8)
immediately reduces to

(4.13) H(3,1)(q)

= − π

3x

2∑
j=0

cos

(
(2j + 1)π

3

)
log

∏
m∈Z

(
1− 2 cos

(
(2j + 1)π

3

)
q2|m| + q4|m|

)

= − π

3x
log

∏
m∈Z

1− q2|m| + q4|m|

1 + 2q2|m| + q4|m|
= − π

3x
log

1

4

∏
m≥1

(1− q2m + q4m)2

(1 + 2q2m + q4m)2

=
2π

3x
log 2− 2π

3x
log

∏
m≥1

1 + q6m

(1 + q2m)3
=

2π

3x
log 2− 2π

3x
log

χ3(−q2)
χ(−q6)

.

Notice that we used χ(−q) = 1/(−q; q)∞ in the last equality above. To finish
the calculation, let us take α = 1−φ4(−q)/φ4(q) and β = 1−φ4(−q3)/φ4(q3),
so that β has degree 3 over α in the theory of modular equations. Then using
[3, p. 124, Entry 12],

χ(−q) = 21/6(1− x)1/12(xq)−1/24,

we have

q1/3
χ(−q)
χ3(−q3)

= 2−1/3
(1− α)1/12β1/8

(1− β)1/4α1/24
,

χ3(−q)
χ(−q3)

= 21/3
(1− α)1/4β1/24

(1− β)1/12α1/8
.

Since α and β admit birational parameterizations α = p(2 + p)3/(1 + 2p)3
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and β = p3(2 + p)/(1 + 2p) [3, p. 230, Entry 5(vi)], we deduce that

q1/3
χ(−q)
χ3(−q3)

=

(
p

2(1 + p)

)1/3

,(4.14)

χ3(−q)
χ(−q3)

=

(
2(1− p)2

(2 + p)(1 + 2p)

)1/3

.(4.15)

Now if v = q1/3χ(−q)/χ3(−q3) = G(q), as given in (2.11), then we solve
(4.14) for p to obtain

(4.16) p =
1− 4v3 +

√
1− 8v3

4v3
,

and it follows that

(4.17)
χ3(−q)
χ(−q3)

=

(
1− 8v3

1 + v3

)1/3

by substituting (4.16) into (4.15). Replacing q by q2 and substituting (4.17)
into (4.13) completes the proof of (4.9).

Notice that if (a, b) = (4, 1), then (3.8) becomes

H(4,1)(q) = − π

4x

3∑
j=0

cos

(
(2j + 1)π

4

)
× log

∏
m∈Z

(
1− 2 cos

(
(2j + 1)π

4

)
q2|m| + q4|m|

)

= −
√

2π

4x
log

∏
m∈Z

1−
√

2 q2|m| + q4|m|

1 +
√

2 q2|m| + q4|m|

= −
√

2π

2x
log

(
(
√

2− 1)
∏
m≥1

1−
√

2 q2m + q4m

1 +
√

2 q2m + q4m

)
.

Using (4.3), we are led to the closed form (4.10).

We set α = 2 cos
(
3
5π
)

= 1−
√
5

2 , and β = 2 cos
(
1
5π
)

= 1+
√
5

2 . With (a, b) =
(5, 1) in (3.8), we have

(4.18) H(5,1)(q)

= − π

5x

4∑
j=0

cos

(
(2j + 1)π

5

)
log

∏
m∈Z

(
1− 2 cos

(
(2j + 1)π

5

)
q2|m| + q4|m|

)

= − π

5x
log

∏
m∈Z

(1− αq2|m| + q4|m|)α(1− βq2|m| + q4|m|)β

(1 + q2|m|)2

= − π

5x
log

∏
m∈Z

(1 + q10|m|)1/2

(1 + q2|m|)5/2

(
1− βq2|m| + q4|m|

1− αq2|m| + q4|m|

)√5/2
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= − π

5x
log

1

4

(√
5− 1√
5 + 1

)√5
− π

5x
log

χ5(−q2)
χ(−q10)

− π√
5x

log
∏

m even

1− βqm + q2m

1− αqm + q2m
.

Factorizations of certain theta-function identities of degree 5 are given by
[1, p. 30, Entry 1.7.2(i),(ii)]:

ϕ(q) +
√

5ϕ(q5) =
(1 +

√
5)f(−q2)∏

n odd

(1 + αqn + q2n)
∏
n even

(1− βqn + q2n)
,

ϕ(q)−
√

5ϕ(q5) =
(1−

√
5)f(−q2)∏

n even

(1− αqn + q2n)
∏
n odd

(1 + βqn + q2n)
,

from which we deduce that

(4.19)∏
m even

1− βqm + q2m

1− αqm + q2m

∏
m odd

1 + αqm + q2m

1 + βqm + q2m
=

(
√

5 + 1)(
√

5ϕ(q5)− ϕ(q))

(
√

5− 1)(
√

5ϕ(q5) + ϕ(q))
.

Now we use two of the most important formulas for the Rogers–Ramanujan
continued fraction from Ramanujan’s Lost Notebook [1, pp. 21–22, Entry
1.4.1], (

1√
t

)5

− (α
√
t)5 =

1

q1/2

√
f(−q)
f(−q5)

∞∏
n=1

1

(1 + αqn + q2n)5
,

(
1√
t

)5

− (β
√
t)5 =

1

q1/2

√
f(−q)
f(−q5)

∞∏
n=1

1

(1 + βqn + q2n)5
,

to obtain

(4.20)
∏
m odd

1 + βqm + q2m

1 + αqm + q2m
= 5

√
(1− α5R5(q))(1− β5R5(q2))

(1− β5R5(q))(1− α5R5(q2))
.

To complete the proof of (4.11), we substitute (4.19) and (4.20) into (4.18).

Now if (a, b) = (6, 1), we can easily prove (4.12) by applying Lemma 4.2.
From (3.8), we have

H(6,1)(q) = − π

6x

5∑
j=0

cos

(
(2j + 1)π

6

)
(4.21)

× log
∏
m∈Z

(
1− 2 cos

(
(2j + 1)π

6

)
q2|m| + q4|m|

)
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= −
√

3π

6x
log

∏
m∈Z

1−
√

3 q2|m| + q4|m|

1 +
√

3 q2|m| + q4|m|

=
π√
3x

log(2 +
√

3)
∏
m≥1

1 +
√

3 q2m + q4m

1−
√

3 q2m + q4m
.

Applying (4.8), we are led to the closed form (4.12).

Next we consider explicit examples of H(a,b)(q) from Theorem 4.3. We
first derive examples for H(3,1)(q) from (4.9). It is clear that the formulas

for G(q) can also be used to evaluate H(3,1)(q). When x = 1/
√

2 we appeal
to [1, p. 100, eq. (3.4.4)]. We have

(4.22) G(e−
√
2π) =

−2 +
√

6

2
.

Thus we obtain
∞∑

n=−∞

∞∑
m=−∞

(−1)n

2m2 + (3n+ 1)2
=

√
2π

9
log(4 + 2

√
6).

Similarly, set x = 3
√

2. We use [1, p. 100, eq. (3.4.5)] to find that

(4.23) G3(e−
√
2π/3) =

−2 +
√

6

4
.

Therefore
∞∑

n=−∞

∞∑
m=−∞

(−1)n

18m2 + (3n+ 1)2
=

√
2π

27
log(44 + 18

√
6).

As another example, when x = 1 we appeal to [1, p. 100, eq. (3.4.3)] to
obtain

(4.24) G(e−2π) =
−(1 +

√
3) +

√
6
√

3

4
,

and thus

(4.25)

∞∑
n=−∞

∞∑
m=−∞

(−1)n

m2 + (3n+ 1)2
=

2π

9
log
(
2 +
√

3 +
√

9 + 6
√

3
)
.

Now we derive explicit examples from (4.10), which include the Ramanu-
jan–Göllnitz–Gordon continued fraction on the right-hand side. When x = 8

we appeal to [9, p. 84, eq. (4.2)] to find that T (e−π/2) =
√√

2 + 1 − 4
√

2,
which yields

∞∑
n=−∞

∞∑
m=−∞

(−1)n

(8m)2 +(4n+ 1)2
=−
√

2π

16
log

(
√

2− 1)−
(√√

2 + 1− 4
√

2
)

1+(
√

2−1)
(√√

2+1− 4
√

2
) .
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When x = 8
3

√
3 we appeal to [9, p. 86]. We have

T (e−π
√
3/2) =

√√
6 +
√

2 + 1−
√√

6 +
√

2,

and hence

∞∑
n=−∞

∞∑
m=−∞

(−1)n

(8m)2 + 3(4n+ 1)2

= −
√

6π

48
log

(
√

2− 1)−
(√√

6 +
√

2 + 1−
√√

6 +
√

2
)

1 + (
√

2− 1)
(√√

6 +
√

2 + 1−
√√

6 +
√

2
) .

We can find further evaluations for H(4,1)(q) by applying other formulas in
[9, p. 84, eqs. (4.3), (4.4)] and [9, p. 86, Examples].

Now we examine the more difficult case of H(6,1). We consider x = 6,

which yields q6 = e−π. We appeal to [13, Theorem 5.1] to find that

(4.26) K(e−π) =
(6
√

3− 9)1/4 − 1

(6
√

3− 9)1/4 + 1
.

We still need to examine J(e−π). We apply [13, Lemma 3.1] first to obtain

J(q) =
2q1/3χ(q)ψ(−q3)
ϕ(q) + ϕ(q3)

.

So we can evaluate J(e−π) from formulas for ϕ(e−π), ϕ(e−3π), ψ(−e−3π)
and χ(e−π). We appeal to [17, Lemma 5.1, Theorem 5.5], [18, Theorem 5.6]
and [4, p. 326, Entry 2(viii)] respectively. For a = π−1/4/Γ (3/4) we have

ϕ(e−π) = a, ψ(−e−3π) = a2−3/43−1/2e3π/8(2
√

3− 3)1/4,

ϕ(e−3π) = a2−13−3/8
√√

3 + 1, χ(e−π) = e−π/2421/4.

Simplify the resulting quotient to obtain

(4.27) J(e−π) =

√
2 (2−

√
3)1/4

33/8 + 2−1/4
√√

3 + 1
.

To finish the calculation, we just need to insert (4.26) and (4.27) into (4.12)
and simplify. Hence

∞∑
n=−∞

∞∑
m=−∞

(−1)n

(6m)2 + (6n+ 1)2

=
π

6
√

3
log

(
2+
√

3

2

(
5−
√

3 +
√

2 · 33/4 +
4
√

6
√

3− 9(1 +
√

3 +
√

2 · 33/4)
))
.
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5. Simplification of F(8,1) and explicit example

Theorem 5.1. Suppose that q = e−π/x. Then

(5.1) F(8,1)(q)

= − π

4x

√
2 +
√

2 log
A(q)−

√
1 +
√

2/2 q
√
C(q)−

√
1−
√

2/2 q
√
D(q)

A(q) +
√

1 +
√

2/2 q
√
C(q) +

√
1−
√

2/2 q
√
D(q)

− π

4x

√
2−
√

2 log
B(q)−

√
1−
√

2/2 q
√
C(q) +

√
1 +
√

2/2 q
√
D(q)

B(q) +
√

1−
√

2/2 q
√
C(q)−

√
1 +
√

2/2 q
√
D(q)

,

where

A(q) =
ϕ(−q64)
ψ(−q16)

+
√

2 q4
ψ(−q32)
ψ(−q16)

, C(q) =
ϕ(q16)

ψ(−q16)
+

ϕ(q32)

ψ(−q16)
,

B(q) =
ϕ(−q64)
ψ(−q16)

−
√

2 q4
ψ(−q32)
ψ(−q16)

, D(q) =
ϕ(q16)

ψ(−q16)
− ϕ(q32)

ψ(−q16)
.

Proof. If (a, b) = (8, 1), then (1.2) reduces to

(5.2) F(8,1)(q)

= − π

4x

7∑
j=0

cos

(
(2j + 1)π

8

)
log

∞∏
m=0

(
1− 2 cos

(
(2j + 1)π

8

)
q2m+1 + q4m+2

)

= − π

4x
log

∞∏
m=0

(
1− 2 cos

(
π
8

)
q2m+1 + q4m+2

1 + 2 cos
(
π
8

)
q2m+1 + q4m+2

)2 cos(π8 )

×
(

1− 2 cos
(
3π
8

)
q2m+1 + q4m+2

1 + 2 cos
(
3π
8

)
q2m+1 + q4m+2

)2 cos( 3π
8 )

= − π

4x
log

∞∏
m=0

(
(1− 2 cos

(
π
8

)
q2m+1 + q4m+2)(1− q2m+2)

(1 + 2 cos
(
π
8

)
q2m+1 + q4m+2)(1− q2m+2)

)2 cos(π8 )

×
(

(1− 2 cos
(
3π
8

)
q2m+1 + q4m+2)(1− q2m+2)

(1 + 2 cos
(
3π
8

)
q2m+1 + q4m+2)(1− q2m+2)

)2 cos( 3π
8 )
.

Letting ξ = eπi/8 and using the Jacobi triple product identity (2.1), we find

F (q) :=
∞∏
m=0

(
1 + 2 cos

(
π

8

)
q2m+1 + q4m+2

)
(1− q2m+2)

= (−ξq; q2)∞(−ξ̄q; q2)∞(q2; q2)∞ =

∞∑
n=−∞

ξnqn
2

=

∞∑
n=−∞

(−1)n[q(8n)
2

+ ξq(8n+1)2 + ξ2q(8n+2)2 + · · ·+ ξ7q(8n+7)2 ].
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Note that F (q) is real-valued, so the imaginary terms above sum to 0. There-
fore we only need to consider the real parts. First, we have

Re

∞∑
n=−∞

(−1)n(ξ2q(8n+2)2 + ξ6q(8n+6)2)

= 2 Re
∞∑

n=−∞
(−1)nξ2q(8n+2)2 =

√
2
∞∑

n=−∞
(−1)nq4(4n+1)2

=
√

2
( ∞∑
n=0

(−1)nq4(4n+1)2 −
∞∑
n=0

(−1)nq4(4n+3)2
)

=
√

2
∞∑
n=0

(−1)n(n+1)/2q4(2n+1)2 =
√

2 q4ψ(−q32).

Now we consider

Re

∞∑
n=−∞

(−1)n[ξq(8n+1)2 + ξ7q(8n+7)2 ]

= Re
(
ξ

∞∑
n=−∞

(−1)n[q(8n+1)2 − q(8n+7)2 ]
)

= 2 cos

(
π

8

) ∞∑
n=−∞

(−1)nq(8n+1)2 = 2 cos

(
π

8

)
q
∞∑

n=−∞
(−1)nq16n(4n+1)

= 2 cos

(
π

8

)
qf(−q16·3,−q16·5) =

√
2 cos

(
π

8

)√
ψ(−q16)[ϕ(q16) + ϕ(q32)],

where we apply (2.18) in the last identity. If we use (2.19), then we find

Re

∞∑
n=−∞

(−1)n[ξ3q(8n+3)2 + ξ5q(8n+5)2 ]

=
√

2 cos

(
3π

8

)√
ψ(−q16)[ϕ(q16)− ϕ(q32)].

Combining the results above, we are led to the closed form

F (q) = ϕ(−q64) +
√

2q4ψ(−q32)(5.3)

+
√

2 cos

(
π

8

)
q
√
ψ(−q16)[ϕ(q16) + ϕ(q32)]

+
√

2 cos

(
3π

8

)
q
√
ψ(−q16)[ϕ(q16)− ϕ(q32)].

Similarly, we can derive a formula for the other factor in the denominator
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of (5.2). Thus,

(5.4) G(q) :=
∞∏
m=0

(
1 + 2 cos

(
3π

8

)
q2m+1 + q4m+2

)
(1− q2m+2)

= ϕ(−q64)−
√

2 q4ψ(−q32) +
√

2 cos

(
3π

8

)
q
√
ψ(−q16)[ϕ(q16) + ϕ(q32)]

−
√

2 cos

(
3π

8

)
q
√
ψ(−q16)[ϕ(q16)− ϕ(q32)].

To complete the proof, we just need to apply (5.3), (5.4) and the facts that

cos

(
π

8

)
=

√
2 +
√

2

2
and cos

(
3π

8

)
=

√
2−
√

2

2
.

The formula for a = 12 can be deduced in a similar fashion. However,
the formula is more complicated and thus we do not give it here. We will
need to apply Lemma 2.3 to obtain formulas similar to (2.18) and (2.19),
namely,

f(q5, q7) =

√
f(−q6)ϕ(q3)χ(−q6) + f(−q2)ϕ(−q3)χ(−q2)

2χ(−q2)
,

f(q, q11) =

√
f(−q6)ϕ(q3)χ(−q6)− f(−q2)ϕ(−q3)χ(−q2)

2q2χ(−q2)
.

We conclude this section by proving a formula for F(8,1) from (5.1). In
principle, these calculations are straightforward exercises if the values of
ϕ(q), ϕ(q2), ϕ(−q2), ϕ(−q4), ψ(−q) and ψ(−q2) are known. However, (5.1)
is a long equation, so in practice, we only identify one instance where q16

is reasonably simple, that is, when q16 = e−π. We appeal to [17, Theorems
5.5, 5.7] and [18, Theorems 5.6, 5.7]. For a = π−1/4/Γ (3/4) we have

ϕ(e−π) = a, ϕ(−e−4π) = a2−7/16(
√

2 + 1)1/2,

ϕ(e−2π) = a2−1(
√

2 + 2)1/2, ψ(−e−π) = a2−3/4eπ/8,

ϕ(−e−2π) = a2−1/8, ψ(−e−2π) = a2−15/16eπ/4(
√

2− 1)1/4.

After simplification, we obtain

A(e−π) = 215/16e−π/8{(
√

2 + 1)1/4 + (
√

2− 1)1/4},

B(e−π) = 215/16e−π/8{(
√

2 + 1)1/4 − (
√

2− 1)1/4},

C(e−π) = e−π/8(23/4 + (
√

2 + 1)1/2),

D(e−π) = e−π/8(23/4 − (
√

2 + 1)1/2).
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With all the calculations above, we have

∞∑
n=−∞

∞∑
m=−∞

(−1)m+n

(16m)2 + (8n+ 1)2

= − π

64

√
2 +
√

2 log

√
2a−

√
2 +
√

2 c−
√

2−
√

2 d
√

2a+
√

2 +
√

2 c+
√

2−
√

2 d

− π

64

√
2−
√

2 log

√
2b−

√
2−
√

2 c+
√

2 +
√

2 d
√

2b+
√

2−
√

2 c−
√

2 +
√

2 d
,

where

a = 215/16{(
√

2 + 1)1/4 + (
√

2− 1)1/4}, c = 23/4 + (
√

2 + 1)1/2,

b = 215/16{(
√

2 + 1)1/4 − (
√

2− 1)1/4}, d = 23/4 − (
√

2 + 1)1/2.

Curiously,
√

2 +
√

2 is the connective constant of the honeycomb lattice
(see [11]).

6. Examination of G(a,b) and explicit examples. The authors of
[5] examined F(a,b) for a ∈ {3, 4, 5, 6}, and we have just considered the case
a = 8 in the previous section. Applying Theorem 3.3, we can easily express
G(a,b) for a ∈ {3, 5, 6, 10, 12} in terms of F(a,b). Moreover, it can be easily
derived from (3.7) that

G(2,1)(q) = −π
x

log
∞∏

m=−∞

(1− q2m+1)2

(1 + q2m+1)2
(6.1)

= −2π

x
log

(q; q2)∞
(−q; q2)∞

= −2π

x
log

χ(−q)
χ(q)

,

where χ(q) is defined in (2.4). Combining (3.9), (6.1) and the fact that
F(2,1) = 0, we can examine the case when a = 4. Indeed, we have

(6.2) G(4,1)(q) = −π
x

log
χ(−q)
χ(q)

.

By iterating, we can now examine the cases where a ∈ {8, 16}.
Now we produce explicit examples for G(a,b)(q). We first consider the

simple case when (a, b) = (3, 1). From (3.10) and (4.17), we can easily derive
that

(6.3) G(3,1)(q) =
2π

9x
log

1 +G3(q)

1− 8G3(q)
,

where G(q) is Ramanujan’s cubic continued fraction (2.10). We can use
formulas for G(q) to evaluate G(3,1)(q). When x = 1/

√
2 we appeal to (4.22).



78 P. Xu

After simplification, it follows from (6.3) that
∞∑

n=−∞

∞∑
m=−∞

(−1)m

m2 + 2(3n+ 1)2
=

√
2π

9
log

2 +
√

6

4
.

Similarly, when x =
√

3, we appeal to [1, p. 105] to find that G(e−π/
√
3) =√

3−1
41/3

. After simplification, we have

∞∑
n=−∞

∞∑
m=−∞

(−1)m

3m2 + (3n+ 1)2
=

2π

9
√

3
log

5 + 3
√

3

2
.

Now we examineG(6,1)(q) from (3.9). It follows from [5, eq. (3.3)] and (6.3)
that

G(6,1)(q) =
π

9x
log

(1 + v3)(1− 8u3)

(1− 8v3)(1 + u3)
,

where u = G(−q) and v = G(q). When x = 1 we appeal to [8, p. 350, eqs.
(4.1) and (4.2)] to find that

G(−e−π) =
1−
√

3

2
, G(e−π) =

(1 +
√

3)
(
−(1 +

√
3) +

√
6
√

3
)

4
,

which yield

(6.4)
∞∑

n=−∞

∞∑
m=−∞

(−1)m

m2 + (6n+ 1)2
=
π

9
log
(
1 + 33/4

√
2−
√

3
)
.

Next we consider G(4,1)(q) and then G(8,1)(q). Recall from (6.2) that

(6.5) G(4,1)(q) = −π
x

log
χ(−q)
χ(q)

= −π
x

log
ψ(−q)
ψ(q)

= − π

2x
log

ϕ(−q)
ϕ(q)

.

The formulas for ϕ(q) and ψ(q) can be used to evaluate G(4,1). For example,
many explicit evaluations can be found in [4, p. 325], [17] and [18]. Set x = 4.
By [4, p. 325, Entry 1], for a = π1/4/Γ (3/4) we have

ϕ(e−π/4) = a(1 + 2−1/4), ϕ(−e−π/4) = a(1− 2−1/4).

It follows from (6.5) that

(6.6)

∞∑
n=−∞

∞∑
m=−∞

(−1)m

16m2 + (4n+ 1)2
=
π

8
log

4
√

2 + 1
4
√

2− 1
.

Using (3.9), we can obtain the formula for G(8,1)(e
−π/4) from F(4,1)(e

−π/4)

and G(4,1)(e
−π/4). We first evaluate F(4,1)(q) at x = 4 from [5, eq. (3.4)].

Similarly to the evaluation of [5, eq. (3.18)], we appeal to [4, Examples 9.4]
to find that α4 = (

√
2− 1)4, and thus

(6.7)

∞∑
n=−∞

∞∑
m=−∞

(−1)m+n

16m2 + (4n+ 1)2
=

π

4
√

2
log

1 +
√√

2− 1

1−
√√

2− 1
.
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Substituting (6.6) and (6.7) into (3.9) leads to
∞∑

n=−∞

∞∑
m=−∞

(−1)m

16m2 + (8n+ 1)2
=

π

16
log

4
√

2 + 1
4
√

2− 1
+

π

8
√

2
log

1 +
√√

2− 1

1−
√√

2− 1
.

7. Examination of J(a,b,s,t)(q) and explicit examples. Simplification
of J(a,b,s,t)(q) is difficult when (s, t) 6= (1, 0), (0, 1) or (1, 1). However, we can
get several nice evaluations for (a, b) = (2, 1).

Theorem 7.1. Assume that s and t are any real numbers with at least
one not being an even integer, and Rex > 0. With q = e−π/x, we have

(7.1)
∞∑

n=−∞

∞∑
m=−∞

eπimseπint

(xm)2 + (2n+ 1)2
= − π

2x
e−

πit
2

× log
∏
m≥0

(
1− 2 cos(πt2 )q2m+s + q4m+s

)(
1− 2 cos

(
πt
2

)
q2m+2−s + q4m+4−2s)(

1 + 2 cos
(
πt
2

)
q2m+s + q4m+s

)(
1 + 2 cos

(
πt
2

)
q2m+2−s + q4m+4−2s

) .
Proof. The proof is straightforward. We apply (7.1) with a = 2 and b = 1

to obtain
∞∑

n=−∞

∞∑
m=−∞

eπimseπint

(xm)2 + (2n+ 1)2

= − π

2x
e−

πit
2 log

∏
m∈ Z

(1− e
πit
2 q|2m+s|)(1− e−

πit
2 q|2m+s|)

(1 + e
πit
2 q|2m+s|)(1 + e−

πit
2 q|2m+s|)

= − π

2x
e−

πit
2

× log
∏
m≥0

(1−e
πit
2 q2m+s)(1−e−

πit
2 q−(2m+s))(1−e

πit
2 q2m+2−s)(1−e−

πit
2 q−(2m+2−s))

(1+e
πit
2 q2m+s)(1+e−

πit
2 q−(2m+s))(1+e

πit
2 q2m+2−s)(1+e−

πit
2 q−(2m+2−s))

= − π

2x
e−

πit
2 log

∏
m≥0

(1−2 cos (πt
2
)q2m+s+q4m+2s)(1−2 cos (πt

2
)q2m+2−s+q4m+4−2s)

(1+2 cos (πt
2
)q2m+s+q4m+2s)(1+2 cos (πt

2
)q2m+2−s+q4m+4−2s)

.

Theorem 7.2. With Rex > 0 and q = e−π/x, we have
∞∑

n=−∞

∞∑
m=−∞

(−1)me
2
3
πin

(xm)2 + (2n+ 1)2
=
π

x
e−

πi
3 log

ψ(q)ψ(−q3)
ψ(−q)ψ(q3)

,(7.2)

∞∑
n=−∞

∞∑
m=−∞

e
1
3
πime

2
3
πin

(xm)2 + (2n+ 1)2
(7.3)

=
π

2x
e−

πi
3 log

(
− G(q−1/3)ψ(q)ψ(q3)

G(−q1/3)ψ(−q)ψ(−q3)

)
,

∞∑
n=−∞

∞∑
m=−∞

e
2
3
πime

2
3
πin

(xm)2 + (2n+ 1)2
=

π

2x
e−

πi
3 log

ϕ2(−q2)
ϕ(−q

2
3 )ϕ(−q6)

,(7.4)

where G(q) is Ramanujan’s cubic continued fraction (2.10).
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Proof. If we set t = 2
3 , then (7.1) immediately reduces to

(7.5)
∞∑

n=−∞

∞∑
m=−∞

eπimse
2
3
πin

(xm)2 + (2n+ 1)2

= − π

2x
e−

πi
3 log

∏
m≥0

(1− q2m+s + q4m+2s)(1− q2m+2−s + q4m+4−2s)

(1 + q2m+s + q4m+2s)(1 + q2m+2−s + q4m+4−2s)

= − π

2x
e−

πi
3 log

(qs; q2)∞(q2−s; q2)∞(−q3s; q6)∞(−q6−3s; q6)∞
(−qs; q2)∞(−q2−s; q2)∞(q3s; q6)∞(q6−3s; q6)∞

.

We begin by proving (7.2). If s = 1, then (7.5) becomes

∞∑
n=−∞

∞∑
m=−∞

(−1)me
2
3
πin

(xm)2 + (2n+ 1)2
= −π

x
e−

πi
3 log

(q; q2)∞(−q3; q6)∞
(−q; q2)∞(q3; q6)∞

=
π

x
e−

πi
3 log

χ(q)χ(−q3)
χ(−q)χ(q3)

=
π

x
e−

πi
3 log

ψ(q)ψ(−q3)
ψ(−q)ψ(q3)

,

where we applied (2.6) in the last identity.

Next, we prove (7.3). Notice that if we set s = 1
3 , then (7.5) becomes

(7.6)
∞∑

n=−∞

∞∑
m=−∞

e
1
3
πime

2
3
πin

(xm)2 + (2n+ 1)2

= − π

2x
e−

πi
3 log

(q1/3; q2)∞(q5/3; q2)∞(−q; q6)∞(−q5; q6)∞
(−q1/3; q2)∞(−q5/3; q2)∞(q; q6)∞(q5; q6)∞

.

To manipulate the q-products on the right side of (7.6), we first replace q
by q3 to obtain

(q; q6)∞(q5; q6)∞(−q3; q18)∞(−q15; q18)∞
(−q; q6)∞(−q5; q6)∞(q3; q18)∞(q15; q18)∞

=
(q; q2)∞(−q3; q6)2∞(q9; q18)∞

(−q; q2)∞(q3; q6)2∞(−q9; q18)∞

=
χ(−q)χ2(q3)χ(−q9)
χ(q)χ2(−q3)χ(q9)

.

We recall from (2.11) that

(7.7) G(−q) = −q1/3χ(q)/χ3(q3), G(q) = q1/3χ(−q)/χ3(−q3).

After replacing q by q1/3 in the above identity and simplifying, we have

∞∑
n=−∞

∞∑
m=−∞

e
1
3
πime

2
3
πin

(xm)2 + (2n+ 1)2
=

π

2x
e−

πi
3 log

(
− G(−q1/3)ψ(q)ψ(q3)

G(q1/3)ψ(−q)ψ(−q3)

)
.

Now it remains to prove (7.4). Similarly to the proof of (7.3), we set t = 2
3
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in (7.5), manipulate the resulting q-products and simplify to obtain

∞∑
n=−∞

∞∑
m=−∞

e
2
3
πime

2
3
πin

(xm)2 + (2n+ 1)2

=
π

2x
e−

πi
3 log

f2(−q2)χ2(−q2)
f(−q2/3)f(−q6)χ(−q2/3)χ(−q6)

.

Finally, we use (2.7) to complete the proof.

Now we derive some explicit examples from Theorem 7.2. All of our
identities follow from well-known q-series evaluations. We first examine an
example from (7.2). This case is relatively easy to evaluate. When x = 1 we
appeal to [18, Theorems 5.6, 5.7]. For a = π−1/4/Γ (3/4) we have

ψ(−e−π) = a2−3/4eπ/8,(7.8)

ψ(e−π) = a2−5/8eπ/8,(7.9)

ψ(−e−3π) = a2−3/43−1/2e3π/8(2
√

3− 3)1/4,(7.10)

ψ(e−3π) =
ae3π/8

21/833/8
√

1 +
√

2 4
√

3 +
√

3
.(7.11)

With all the evaluations above, from (7.2) we get

(7.12)

∞∑
n=−∞

∞∑
m=−∞

(−1)me
2
3
πin

m2 + (2n+ 1)2
= πe−πi/3 log

1 +
√

2 4
√

3 +
√

3√
2(1 +

√
3)

.

If we equate the real and imaginary parts of (7.12), then lattice sums in-
volving sine and cosine functions can be evaluated. We obtain, respectively,

∞∑
n=−∞

∞∑
m=−∞

(−1)m cos
(
2
3πn

)
m2 + (2n+ 1)2

=
π

2
log

1 +
√

2 4
√

3 +
√

3√
2(1 +

√
3)

,

∞∑
n=−∞

∞∑
m=−∞

(−1)m sin
(
2
3πn

)
m2 + (2n+ 1)2

= −
√

3π

2
log

1 +
√

2 4
√

3 +
√

3√
2(1 +

√
3)

.

Similarly, when x = 1/
√

3, we have [18, Theorems 4.7(iii), 4.10(x)]

ψ(−e−
√
3π)

ψ(−e−3
√
3π)

= 31/4e−
√
3π/4

√
3

3
√

4− 1
,

ψ(e−
√
3π)

ψ(e−3
√
3π)

= 31/4e−
√
3π/4 31/6(1−

√
3 +
√

3 3
√

4)1/3

21/12( 3
√

2− 1)2/3(1 +
√

3)1/6
.

Thus we obtain

(7.13)
∞∑

n=−∞

∞∑
m=−∞

(−1)me
2
3
πin

m2 + 3(2n+ 1)2
=

√
3

9
πe−πi/3 log

1−
√

3 +
√

3 3
√

4
4
√

2(
√

3 + 1)1/2
.
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To calculate further examples from (7.2), we rewrite the ψ-quotient on
the right-hand side of (7.2) in terms of Ramanujan’s cubic continued frac-
tion. We appeal to (2.6), (7.7) and [4, p. 330, eq. (4.6)] to deduce that

ϕ(q)

ϕ(q3)
=

(
1 + 8q

χ3(q)

χ9(q3)

)1/4

= (1− 8qG3(−q))1/4,

and therefore we can rewrite (7.2) as

(7.14)
∞∑

n=−∞

∞∑
m=−∞

(−1)me2/3πin

(xm)2 + (2n+ 1)2
=

π

8x
e−πi/3 log

1− 8G3(−q)
1− 8G3(q)

.

Besides (7.12) and (7.13), we can derive more examples from (7.2) by
applying formulas for G(q) and G(−q). For instance, when x = 3, we have
[1, p. 105], [6, Corollary 4.6]

G(−e−π/3) = −
(

1 +
√

3

4

)1/3

,(7.15)

G(e−π/3) =
1

2

(
1−

(
3− b
1 + b

)2)1/3

with b =
√

2
√

3 + 3,(7.16)

and thus we obtain

(7.17)
∞∑

n=−∞

∞∑
m=−∞

(−1)me2/3πin

9m2 + (2n+ 1)2
=

π

12
e−πi/3 log

√
3 + 2

√
3(1 +

√
3 + 2

√
3)

3−
√

3 + 2
√

3
.

Now we examine (7.3). When x = 1, we have similar evaluations for
ψ(−e−π), ψ(e−π), ψ(−e−3π), ψ(e−3π), G(−e−π/3) and G(e−π/3) to the pre-
vious example, namely, (7.8), (7.9), (7.10), (7.11), (7.15) and (7.16). By a
direct computation, we obtain

∞∑
n=−∞

∞∑
m=−∞

e
1
3
πime

2
3
πin

m2 + (2n+ 1)2

=
π

2
e−πi/3 log 21/4(2 +

√
3)1/4

(√
2
√

3 + 3 + 1
)(

1 +
√

2 4
√

3 +
√

3
)−1/2

.

After further simplification, we obtain the very neat and nice formula

(7.18)

∞∑
n=−∞

∞∑
m=−∞

e
1
3
πime

2
3
πin

m2 + (2n+ 1)2
=
π

4
e−πi/3 log(2 +

√
3).

Equate the real and imaginary parts to obtain

∞∑
n=−∞

∞∑
m=−∞

cos
(
1
3πm+ 2

3πn
)

m2 + (2n+ 1)2
=
π

8
log(2 +

√
3),



Evaluation of two-dimensional lattice sums 83

∞∑
n=−∞

∞∑
m=−∞

sin
(
1
3πm+ 2

3πn
)

m2 + (2n+ 1)2
= −

√
3π

8
log(2 +

√
3).

Next, we examine (7.4). Theoretically, the calculation is also straightfor-
ward if the values of the ϕ-functions on the right side are known. In prac-
tice, it is actually difficult to simultaneously obtain the values of ϕ(−q2/3),
ϕ(−q2) and ϕ(−q6). However, we can rewrite the right side in terms of
cubic continued fractions. From Ramanujan’s Lost Notebook [1, p. 96, eq.
(3.3.10)], we have

ϕ(−q1/3)
ϕ(−q3)

= 1− 2G(q).

In [17, Theorem 4.3], J. Yi proved that for P = ϕ(q)/ϕ(q3) and Q =
ϕ(q3)/ϕ(q9),

(7.19)

(
Q

P

)2

= PQ+
3

PQ
− 3.

Now we apply (7.19) with P = ϕ(−q2/3)/ϕ(−q2) and Q = ϕ(−q2)/ϕ(−q6)
to find that

Q

P
=

ϕ2(−q2)
ϕ(−q2/3)ϕ(−q6)

, PQ =
ϕ(−q2/3)
ϕ(−q6)

= 1− 2G(q2).

To evaluate Q/P , we only need to know the value of the relative cubic
continued fraction. We give a couple of examples here.

If we set x =
√

2, then G(q2) = G(e−
√
2π) = (−1 +

√
6)/2, as given

in (4.22). It follows that PQ = 3−
√

6. Applying (7.19), we have

(7.20)
ϕ2(−e−

√
2π)

ϕ(−e−
√
2π/3)ϕ(−e−3

√
2π)

=
√

3,

which implies

(7.21)

∞∑
n=−∞

∞∑
m=−∞

e
2
3
πime

2
3
πin

2m2 + (2n+ 1)2
=

π

4
√

2
e−πi/3 log 3.

Again, if we equate the real parts and imaginary parts of (7.21), then we
obtain, respectively,

∞∑
n=−∞

∞∑
m=−∞

cos
(
2
3πm+ 2

3πn
)

2m2 + (2n+ 1)2
=

π

8
√

2
log 3,

∞∑
n=−∞

∞∑
m=−∞

sin
(
2
3πm+ 2

3πn
)

2m2 + (2n+ 1)2
= −
√

3π

8
√

2
log 3.
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When x = 1, the value of G(e−2π) (see (4.24)) yields

ϕ(−e−2π/3)
ϕ(−e−2π)

ϕ(−e−2π)

ϕ(−e−6π)
= 1− 2G(e−2π) =

3 +
√

3 +
√

6
√

3

2
.

Substituting this last result into (7.19) and simplifying, we deduce that

(7.22)
ϕ2(−e−2π)

ϕ(−e−2π/3)ϕ(−e−6π)
= 31/4.

Thus we obtain

(7.23)

∞∑
n=−∞

∞∑
m=−∞

e
2
3
πime

2
3
πin

m2 + (2n+ 1)2
=
π

8
e−πi/3 log 3.

8. Examination of J(a, 0, s, t) and explicit examples. Now we ex-
amine J(a, 0, s, t) from Theorem 3.4 in two cases: a = 1 and a = 2. Calcu-
lation easily shows

(8.1)
∑
m,n∈Z

(m,n)6=(0,0)

eπimseπint

(xm)2 + n2

=
∑
m6=0

eπims

(xm)2
− π

x
log

∞∏
m=−∞

(1− 2 cos(πt)q|s+2m| + q2|s+2m|)

and

(8.2)
∑
m,n∈Z

(m,n)6=(0,0)

eπimseπint

(xm)2 + (2n)2

=
∑
m6=0

eπims

(xm)2
− π

2x
log

∞∏
m=−∞

(
1− 2 cos

(
πt

2

)
q|s+2m| + q2|s+2m|

)

×
(

1 + 2 cos

(
πt

2

)
q|s+2m| + q2|s+2m|

)
.

Before we derive explicit examples from (8.1) and (8.2), let us recall
the definition of the Weber–Ramanujan class invariants Gn and gn from
(2.8). The table at the end of Weber’s book [16, pp. 721–726] contains
the values of 105 class invariants. Without the knowledge of class field
theory, Ramanujan calculated class invariants independently for different
reasons. His table of 46 class invariants does not contain any values that
are in Weber’s book. As G. N. Watson [15] remarked, “For reasons which
had commended themselves to Weber and Ramanujan independently, it
is customary to determine Gn for odd values of n, and gn for even val-
ues of n.” With the help of the properties of χ, i.e., (2.6), (2.7) and
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(2.9), we can calculate many values of χ-functions using the values of
class invariants in the tables [16, pp. 721–726], [4, pp. 189–204]. For in-
stance,

χ(e−π) = 21/4e−π/24G1 = e−π/2421/4,

χ(−e−2π) = 21/4e−π/12g4 = e−π/1223/8,

χ(e−3π) = 21/4e−π/8G9 = e−π/821/12(1 +
√

3)1/3,

χ(−e−6π) = 21/4e−π/4g36 = e−π/421/8
(
2 +
√

3 +
√

9 + 6
√

3
)1/3

,

χ(e−π/3) = eπ/9χ(e−3π) = e−π/7221/12(1 +
√

3)1/3,

χ(e−π/2) = e3π/48χ(e−2π) = e3π/48
ψ(e−2π)χ(−e−2π)

ψ(−e−2π)

= e−π/4821/16(
√

2 + 1)1/4.

Example 8.1.∑
(m,n)6=(0,0)

(−1)m+n

m2 + n2
= −π log 2,(8.3)

∑
(m,n)6=(0,0)

(−1)m+n

(2m)2 + n2
= −π

4
log(4 + 3

√
2),(8.4)

∑
(m,n)6=(0,0)

(−1)n

m2 + (2n)2
=
π

4
log

4 + 3
√

2

2
,(8.5)

∑
(m,n)6=(0,0)

(−1)m+n

3m2 + 7n2
= − π√

21
log(2−1/3(

√
7−
√

3)(3 +
√

7)2/3),(8.6)

∑
(m,n)6=(0,0)

cos
(
πm
3

)
cos
(
πn
3

)
m2 + n2

=
π

3
log(2 +

√
3),(8.7)

∑
(m,n)6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
m2 + n2

=
π

6
log

2−
√

3

3
√

3
,(8.8)

∑
(m,n)6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
2m2 + n2

= − π

2
√

2
log 3,(8.9)

∑
(m,n)6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
m2 + (2n)2

=
π

6
log

2−
√

3

33/4
.(8.10)

Note that (8.3) is the classical lattice evaluation [7, eq. (9.2.4)]. By in-
terchanging the order of m and n and using the special values of the cosine



86 P. Xu

function, we very easily see that∑
(m,n) 6=(0,0)

(−1)n cos
(
πm
2

)
m2 + (2n)2

=
∑

(m,n) 6=(0,0)

(−1)m cos
(
πn
2

)
(2m)2 + n2

=
∑

(m,n) 6=(0,0)

cos
(
πm
2

)
cos
(
πn
2

)
m2 + n2

=
1

4

∑
(m,n)6=(0,0)

(−1)m+n

m2 + n2
= −π

4
log 2.

Identities (8.3), (8.4), (8.5), (8.7) and (8.8) can be found in [2, Ex. 18,
Appendix C]. However, those authors can only rigorously establish (8.3),
(8.4), (8.5) and (8.7). The authors of [2] obtain (8.8) experimentally, and

moreover, they have a misprint in their evaluation: π
6 log

(
2−
√
3√

3

)
instead of

π
6 log

(
2−
√
3

3
√
3

)
on the right-hand side of (8.8). Using (8.1) and (8.2), we can

derive all these identities from well-known q-series evaluations.

We derive some explicit formulas from (8.1) first. If we set s = t = 1,
then (8.1) immediately reduces to∑

m,n∈Z
(m,n)6=(0,0)

(−1)m+n

(xm)2 + n2
= −4π

x
logχ(q) +

∑
m 6=0

(−1)m

(xm)2
.

Note that
∑

m 6=0(−1)m/m2 = −π2/6. When x = 1, then χ(q) = χ(e−π) =

e−π/2421/4, and therefore we have (8.3). Similarly, when x = 2, we have
χ(q) = χ(e−π/2) = e−π/4821/16(

√
2 + 1)1/4. Thus we obtain (8.4). We can

obtain many additional formulas using the explicit values of the class in-
variants Gn and gn. For instance, when x =

√
3/
√

7, we have G7/3 =

2−1/3(
√

7 −
√

3)1/4(3 +
√

7)1/6 [4, p. 341]. This completes the evaluation
of (8.6).

If we set s = t = 1/3 and then s = 1/3, t = −1/3, we obtain∑
(m,n)6=(0,0)

eπim/3eπin/3

m2 + n2
=

∑
(m,n)6=(0,0)

eπim/3e−πin/3

m2 + n2

= −π
x

log
χ2(q)

χ(q1/3)χ(q3)
+
∑
m 6=0

eπim/3

(xm)2
.

Equate the real parts of each side to find that∑
(m,n)6=(0,0)

cos
(
πm
3 + πn

3

)
m2 + n2

=
∑

(m,n)6=(0,0)

cos
(
πm
3 −

πn
3

)
m2 + n2

= −π
x

log
χ2(q)

χ(q1/3)χ(q3)
+
∑
m 6=0

cos
(
πm
3

)
(xm)2

.
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Therefore we also have∑
(m,n)6=(0,0)

cos
(
πm
3

)
cos
(
πn
3

)
m2 + n2

= −π
x

log
χ2(q)

χ(q1/3)χ(q3)
+
∑
m 6=0

cos
(
πm
3

)
(xm)2

.

When x = 1, we have

χ2(q)

χ(q1/3)χ(q3)
=

χ2(e−π)

χ(e−π/3)χ(e−3π)
= eπ/182−1/3(

√
3− 1)2/3.

Note that
∑

m 6=0
cos(πm/3)

m2 = π2/18. The last two identities lead to (8.7).
Now we examine a more complicated case when s = t = 2/3. Similarly

to the previous case, we find that

(8.11)∑
(m,n) 6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
(xm)2 + n2

= −π
x

log
f2(−q2)

f(−q2/3)f(−q6)
+
∑
m 6=0

cos
(
2πm
3

)
(xm)2

.

To calculate the theta function quotient on the right side above, we first
apply (2.6) to obtain

f2(−q2)
f(−q2/3)f(−q6)

=
ϕ2(−q2)

ϕ(−q2/3)ϕ(−q6)
χ(−q2/3)χ(−q6)

χ2(−q2)
.

Consider the case x = 1. Recall that we have (7.22) for the ϕ-quotient. So
it remains to calculate the χ-quotient

χ(−q2/3)χ(−q6)
χ2(−q2)

=
χ(−q2/3)χ(−q2)χ(−q6)

χ3(−q2)
= q−2/9G(q2/3)χ(−q2)χ(−q6).

We appeal to [1, p. 39, eq. (3.3.9)], (7.15) and (7.16) to find that

G(e−2π/3) = −G(e−π/3)G(−e−π/3) = 2−5/3(
√

3− 1)1/3
(√

2
√

3 + 3− 1
)
,

which yields

(8.12)
χ(−e−2π/3)χ(−e−6π)

χ2(−e−2π)
= e−π/92−1/6(

√
3− 1)1/3(2 +

√
3)1/3.

Notice that
∑

m 6=0
cos(2πm/3)

m2 = −π2/9. Substituting all these results into
(8.11) and simplifying, we complete the proof of (8.8). Similarly, when x =√

2, we first appeal to [4, p. 200] and (4.23) to find that g2 = 1, g18 =

(
√

2 +
√

3)1/3 and G(e−
√
2π/3) = 1√

2
(−
√

2 +
√

3)1/3, and therefore

χ(−e−
√
2π/3)χ(−e−3

√
2π)

χ2(−e−
√
2π)

= e
√
2π/9G(e−

√
2π/3)χ(−e−

√
2π)χ(−e−3

√
2π)

= e−
√
2π/18.

Substituting (7.20) and the result above into (8.11), and simplifying, we
complete the proof of (8.9).
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We conclude this section by deriving (8.10) from (8.2). If we set s = t =
2/3, then (8.2) reduces to

∑
(m,n) 6=(0,0)

cos
(
2πm
3

)
cos
(
2πn
3

)
(xm)2 + (2n)2

= − π

2x
log

(
f2(−q2)

f(−q2/3)f(−q6)
χ(−q2/3)χ(−q6)

χ2(−q2)

)
+
∑
m6=0

cos
(
2πm
3

)
(xm)2

= − π

2x
log

(
ϕ2(−q2)

ϕ(−q2/3)ϕ(−q6)

(
χ(−q2/3)χ(−q6)

χ2(−q2)

)2)
+
∑
m 6=0

cos
(
2πm
3

)
(xm)2

.

Set x = 1. Substituting (7.22) and (8.12) into the identity above, and sim-
plifying, we obtain (8.10).
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