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Counting rational points near planar curves
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Ayla Gafni (University Park, PA)

1. Introduction. In this paper, we give an explicit asymptotic formula
for the number of rational points with bounded denominator near a suf-
ficiently smooth planar curve. This result expands on Theorem 3 of [6],
and it may serve to provide quantitative information about Khinchin-type
manifolds.

Our results are motivated by the convergence side of Khinchin theory,
and so we will begin with an overview of the relevant points therein. We
say that ψ : R+ → R+ is an approximating function if it is decreasing and
satisfies ψ(x) → 0 as x → ∞. Given an approximating function ψ, we say
that a point (y1, . . . , yn) ∈ Rn is simultaneously ψ-approximable if there
exist infinitely many q ∈ N such that

(1) max
1≤i≤n

‖qyi‖ ≤ ψ(q).

Here ‖x‖= minm∈Z |x−m|. We denote by S(ψ) the set of all simultaneously
ψ-approximable points in Rn. Khinchin’s theorem gives a criterion for the
n-dimensional Lebesgue measure | · |Rn of S(ψ), namely

|S(ψ)|Rn =

{
0 if

∑
q≥1 ψ(q)n <∞,

Full if
∑

q≥1 ψ(q)n =∞,
where “Full” means that the complement of the set has measure 0.

Current research in metric Diophantine approximation focuses on ex-
tending this theorem to m-dimensional manifolds in Rn. Let M ⊂ Rn be
a manifold and denote the induced Lebesgue measure on M by | · |M. We
say that M is of Khinchin type for convergence if |M ∩ S(ψ)|M = 0 for
any approximating function ψ with

∑
q≥1 ψ(q)n < ∞. Similarly, we say

that M is of Khinchin type for divergence if |M ∩ S(ψ)|M = Full for any
approximating function ψ with

∑
q≥1 ψ(q)n =∞.
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In this paper we are specifically concerned with curves in R2. Beresnevich
et al. [1] established that any C(3) non-degenerate planar curve is of
Khinchin type for divergence. Vaughan and Velani [6] showed that such
curves are also of Khinchin type for convergence. The proof of the con-
vergence case relies on an upper bound on the number of rational points
near the curve. The present paper provides an asymptotic formula for the
number of rational points near a curve. These results may lead to informa-
tion about the growth of the number of solutions to (1) with q ≤ Q, as
Q → ∞, which in turn would hopefully yield a quantitative version of the
Khinchin-type theorem. The aim of the quantitative theorem would be to
obtain a result similar to that of Schmidt [3], which was a sharpening of the
classical Khinchin theorem.

2. Statement of results

Definition 1. Let η, ξ ∈ R, η < ξ, I = [η, ξ] and f : I → R be
such that f ′′ is continuous and bounded away from 0 on I. For Q ≥ 1 and
0 < δ < 1/2, define

N(Q, δ) := card{(a, q) ∈ Z× N : 1 ≤ q ≤ Q, ηq < a ≤ ξq, ‖qf(a/q)‖ < δ}.
When dealing with rational points in Rn, we consider the “denominator”

of the point to be the least common denominator of the coordinates of the
point. Then N(Q, δ) counts the number of rational points with denominator
q ≤ Q that lie within a (δ/q)-neighborhood of the curve that graphs f . When
we apply our results to Khinchin theory, the parameter δ will be replaced
by a suitable approximating function ψ(q). It is therefore reasonable, when
finding asymptotic formulae, to bound δ from below in terms of Q.

The computations are easier when all values of q are of the same order
of magnitude, so we will in fact be working with a slightly different object,
namely

Ñ(Q, δ) := card{(a, q) ∈ Z×N : Q < q ≤ 2Q, ηq < a ≤ ξq, ‖qf(a/q)‖ < δ}.
Theorem 1 gives an explicit asymptotic formula for Ñ(Q, δ). We translate
this back to N(Q, δ) in Theorem 2.

Theorem 1. Suppose that 0 < θ < 1 and f ′′ ∈ Lipθ([η, ξ]). If Q−
1+θ
3−θ+ε

≤ δ < 1/2, then

Ñ(Q, δ) = 3(ξ − η)δQ2 + E(Q, δ),

where the error term satisfies (1)

(2) E(Q, δ)�

{
δ2/3Q5/3(logQ)2/3 if δ � Q

1−2θ
2−θ (logQ)−

5−θ
2−θ ,

δ
2

5−θQ
3(3−θ)
5−θ if δ � Q

1−2θ
2−θ (logQ)−

5−θ
2−θ .

(1) The first range of δ will not occur when θ ≤ 1/2.
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Theorem 2. For θ, f , and δ as above, we have

N(Q, δ) = (ξ − η)δQ2 + F (Q, δ),

where F (Q, δ) satisfies the bound given by (2).

Corollary 3. For θ, f , and δ as above, we have

Ñ(Q, δ) ∼ 3(ξ − η)δQ2.

Corollary 4. For θ, f , and δ as above, we have

N(Q, δ) ∼ (ξ − η)δQ2.

3. Proof of Theorem 1. For convenience we extend the definition
of f to R by defining f(β) to be 1

2(β − ξ)2f ′′(ξ) + (β − ξ)f ′(ξ) + f(ξ) when

β > ξ and 1
2(β− η)2f ′′(ξ) + (β− η)f ′(ξ) + f(ξ) when β < η. Note that then

f ′′ ∈ Lipθ(R) and f ′′ is still bounded away from 0 and is bounded.

We follow the methods of the proof of [6, Theorem 3]. Let K be a
sufficiently large integer that will be determined later. Let S+

K(α), S−K(α)
be the Selberg functions for the interval J = (−δ, δ). These functions are
trigonometric polynomials of degree at most K with the properties that
S−K(α) ≤ χJ(α) ≤ S+

K(α) for all α and
	
T S
±
K(α) dα = 2δ ± 1

K+1 . See [2,
Section 7.2] for more details about these functions.

From the definition of Ñ(Q, δ) and the properties of the Selberg func-
tions, we see that

Ñ(Q, δ) =
∑

Q<q≤2Q

∑
ηq<a≤ξq

χJ(‖qf(a/q)‖)

≤
∑

Q<q≤2Q

∑
ηq<a≤ξq

S+
K(qf(a/q))

=
∑

Q<q≤2Q

∑
ηq<a≤ξq

K∑
k=−K

Ŝ+
K(k)e(kqf(a/q)) = N+

0 +N+
1 ,

where

N+
0 :=

∑
Q<q≤2Q

∑
ηq<a≤ξq

Ŝ+
K(0),

N+
1 :=

∑
0<|k|≤K

Ŝ+
K(k)

∑
Q<q≤2Q

∑
ηq<a≤ξq

e(kqf(a/q)).

We wish to find a suitable upper bound for N+
0 . Recall that Ŝ+

K(0) =	
T S

+
K(α) dα = 2δ + 1

K+1 . Since there are at most (ξ − η)q + 1 integers



94 A. Gafni

in the interval (ηq, ξq], we have

N+
0 ≤

(
2δ +

1

K + 1

)(
(ξ − η)

Q(3Q+ 1)

2
+Q

)
= 3(ξ − η)δQ2 + (ξ − η + 2)δQ+

3(ξ − η)Q2

2(K + 1)
+

(ξ − η + 2)Q

2(K + 1)

= 3(ξ − η)δQ2 +O(δQ+K−1Q2).

Using S−K in place of S+
K , we similarly find that

Ñ(Q, δ) ≥ N−0 +N−1

where

N−0 :=
∑

Q<q≤2Q

∑
ηq<a≤ξq

Ŝ−K(0) ≥ 3(ξ − η)δQ2 +O(δQ+K−1Q2),

N−1 :=
∑

0<|k|≤K

Ŝ−K(k)
∑

Q<q≤2Q

∑
ηq<a≤ξq

e(kqf(a/q)).

It can easily be shown that |Ŝ±K(k)| ≤ |Ŝ±K(0)| � δ + K−1. For conve-
nience we define

N1 :=
∑

0<|k|≤K

(δ +K−1)
∣∣∣ ∑
Q<q≤2Q

∑
ηq<a≤ξq

e(kqf(a/q))
∣∣∣.

It then follows that N+
1 , N

−
1 � N1. Thus from the above analysis, we see

that

Ñ(Q, δ) = 3(ξ − η)δQ2 +O(N1 + δQ+K−1Q2).

In other words,

(3) E(Q, δ) := Ñ(Q, δ)− 3(ξ − η)δQ2 � N1 + δQ+K−1Q2.

In order to find an upper bound for E(Q, δ), we need to compute an upper
bound for N1 in terms of δ, K, and Q. This part of the proof is entirely
similar to the proof of [6, Theorem 3], and many of the details are omitted
here.

Consider the function F (α) = kqf(a/q), which has derivative kf ′(a/q).
Given k with 0 < |k| ≤ K, we define

H− = binf kf ′(β)c − 1, H+ = dsup kf ′(β)e+ 1,

h− = dinf kf ′(β)e+ 1, h+ = bsup kf ′(β)c − 1,

where the extrema are taken over the interval [η, ξ]. By [5, Lemma 4.2], we
have∑
ηq<a≤ξq

e(kqf(a/q)) =
∑

H−≤h≤H+

ξq�

ηq

e(kqf(α/q)− hα) dα+O(log(2 +H)),
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where H = max(|H−|, |H+|). Therefore

(4) N1 = N2 +O
( ∑

0<|k|≤K

(δ +K−1)
∑

Q<q≤2Q
log(2 +H)

)
,

where

N2 =
∑

0<|k|≤K

(δ +K−1)
∣∣∣ ∑
Q<q≤2Q

∑
H−≤h≤H+

ξq�

ηq

e(kqf(α/q)− hα) dα
∣∣∣.

Since H � |k| ≤ K, the error term in (4) satisfies

(5)
∑

0<|k|≤K

(δ +K−1)
∑

Q<q≤2Q
log(2 +H)� (δ +K−1)KQ logK.

By a change of variables, the integral in the expression for N2 can be
written as

q

ξ�

η

e(q(kf(β)− hβ)) dβ.

The function g(β) = q(kf(β) − hβ) has second derivative qkf ′′(β), which
has modulus lying between constant multiples of q|k|. Thus, by [4, Lemma
4.4], for any subinterval I of [η, ξ],

(6)
�

I
e
(
q(kf(β)− hβ)

)
dβ � 1√

q|k|
.

Thus the contribution to N2 from any h with H−≤ h≤ h− or h+≤ h≤H+ is

�
∑

0<|k|≤K

(δ +K−1)
∑

Q<q≤2Q
q

1√
q|k|
� δK1/2Q3/2 +K−1/2Q3/2,

and so

(7) N2 = N3 +O(δK1/2Q3/2 +K−1/2Q3/2),

where

N3 =
∑

0<|k|≤K

(δ +K−1)
∣∣∣ ∑
Q<q≤2Q

q
∑

h−<h<h+

ξ�

η

e
(
q(kf(β)− hβ)

)
dβ
∣∣∣.

Since f ′ is continuous and inf kf ′(β) < h− < h < h+ < sup kf ′(β), and
since f ′′ is continuous and non-zero, it follows by the intermediate value
theorem that there is a unique βh = βk,h ∈ [η, ξ] such that kf ′(βh) = h. Let

λh = λk,h = ‖kf(βh)− hβh‖.
By (6), the terms of N3 with λh ≤ Q−1 contribute

� (δ +K−1)
∑

0<|k|≤K

∑
h−<h<h+
λh≤Q−1

∑
Q<q≤2Q

q1/2|k|−1/2.
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By [6, Lemma 2.3] this is

� (δ +K−1)Q3/2(K3/2Qε−1 +K1/2 logK),

where ε is any positive real number. Thus

(8) N3 = N4 +O
(
(δ +K−1)Q3/2(K3/2Qε−1 +K1/2 logK)

)
,

where

N4 =
∑

0<|k|≤K

(δ +K−1)
∣∣∣ ∑
Q<q≤2Q

q
∑

h−<h<h+
λh>Q

−1

ξ�

η

e (q(kf(β)− hβ)) dβ
∣∣∣.

Let βh = βk,h be as above and let µ = (ξ − η)/2. Define

A1 := [η, ξ] \ [βh − µ, βh + µ], A2 := [βh − µ, βh + µ] \ [η, ξ].

From the proof of [6, Theorem 3], we see that for i = 1, 2,
�

Ai

e
(
q(kf(β)− hβ)

)
dβ � 1

q(h− h−)
+

1

q(h+ − h)
.

Therefore

(9) N4 = N5 +O

(
(δ +K−1)Q

∑
0<|k|≤K

∑
h−<h<h+

1

(h− h−)
+

1

(h+ − h)

)
,

where

N5 =
∑

0<|k|≤K

(δ +K−1)
∣∣∣ ∑
h−<h<h+
λh>Q

−1

∑
Q<q≤2Q

q

βh+µ�

βh−µ
e
(
q(kf(β)− hβ)

)
dβ
∣∣∣.

Note that the error term in (9) is

(10) � (δ +K−1)Q
∑

0<|k|≤K

logK � (δ +K−1)QK logK.

We are left to deal with N5. Again by the proof of [6, Theorem 3], we
have∑
Q<q≤2Q

q

βh+µ�

βh−µ
e
(
q(kf(β)− hβ)

)
dβ � Q1/2λ−1h |k|

−1/2 +Q(3−θ)/2|k|(−1−θ)/2.

Using [6, Lemma 2.3] it then follows that

N5�(δ+K−1)
∑

0<|k|≤K

∑
h−<h<h+
λh>Q

−1

(Q1/2λ−1h |k|
−1/2+Q(3−θ)/2|k|(−1−θ)/2)(11)

�(δ+K−1)(Q1/2+εK3/2 +Q3/2K1/2 logK +Q(3−θ)/2K(3−θ)/2).
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We now have our upper bound for N1. Combining the error terms in (5),
(7), (8), (10), and (11) leads to

(12) N1 � (δK + 1)Q

(
Q1/2 logK

K1/2
+ logK +

K1/2

Q1/2−ε + (KQ)(1−θ)/2
)
.

Thus we see that

(13) E(Q, δ)

� Q2

K
+ (δK + 1)Q

(
Q1/2 logK

K1/2
+ logK +

K1/2

Q1/2−ε + (KQ)(1−θ)/2
)
.

The goal now is to find the choice of K that minimizes E(Q, δ). To
simplify the computations, we allow K ∈ R for the time being. We will take

the floor function of our choice later to get back to K ∈ N. If K > Q1− 2
3
ε,

then

δKQ

(
K

Q

)1/2

Qε > δQ2,

and hence is too big to give an asymptotic formula. Thus we may suppose
that K ≤ Q1−2ε/3. Then, since θ < 1, we obtain

(14) E(Q, δ)� K−1Q2 + (δK + 1)Q

((
Q

K

)1/2

logK + (KQ)(1−θ)/2
)
.

If δK ≤ 1 thenK−1Q2 ≥ δQ2, and we do not get our asymptotic formula.
So we assume that δK > 1 and (14) simplifies to

(15) E(Q, δ)� K−1Q2 + δK1/2Q3/2 logQ+ δ(KQ)(3−θ)/2.

We replaced logK by logQ in the above bound to simplify our computations.
This is valid because the restrictions we have placed on δ andK so far require
that logK � logQ. The optimal choice for K will occur when two of the
three terms in (15) are equal. So we may reduce our analysis to three cases:

K = δ−2/3Q1/3(logQ)−2/3, K = δ
−2
5−θQ

1+θ
5−θ , and K = Q

θ
2−θ (logQ)

θ
2−θ . These

cases will yield three upper bounds for E(Q, δ). We will then compare them
to find the least upper bound.

Case 1: K = δ−2/3Q1/3(logQ)−2/3. With this choice of K we have

K−1Q2 = δK1/2Q3/2 logQ = δ2/3Q5/3(logQ)2/3,

δ(KQ)(3−θ)/2 = δθ/3Q
2
3
(3−θ)(logQ)−

1
3
(3−θ).

Straightforward computations to find the dominating terms show that

E(Q, δ)�

{
δ2/3Q5/3(logQ)2/3 if δ � Q

1−2θ
2−θ (logQ)−

5−θ
2−θ ,

δθ/3Q
2
3
(3−θ)(logQ)−

1
3
(3−θ) if δ � Q

1−2θ
2−θ (logQ)−

5−θ
2−θ .
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Case 2: K = δ
−2
5−θQ

1+θ
5−θ . In this case we have

K−1Q2 = δ(KQ)(3−θ)/2 = δ
2

5−θQ
3(3−θ)
5−θ ,

δK1/2Q3/2 logQ = δ
4−θ
5−θQ

8−θ
5−θ (logQ).

Thus,

E(Q, δ)�

{
δ

4−θ
5−θQ

8−θ
5−θ (logQ) if δ � Q

1−2θ
2−θ (logQ)−

5−θ
2−θ ,

δ
2

5−θQ
3(3−θ)
5−θ if δ � Q

1−2θ
2−θ (logQ)−

5−θ
2−θ .

Case 3: K = Q
θ

2−θ (logQ)
θ

2−θ . We now have

δK1/2Q3/2 logQ = δ(KQ)(3−θ)/2 = δQ
3−2θ
2−θ (logQ)

4−3θ
2(2−θ) ,

K−1Q2 = Q
4−θ
2−θ (logQ)

θ
2(2−θ) .

We obtain

E(Q, δ)� Q
4−θ
2−θ (logQ)

θ
2(2−θ) .

Comparing the bounds from each of the three cases, we find that the
least upper bound is given by

E(Q, δ)�

{
δ2/3Q5/3(logQ)2/3 if δ � Q

1−2θ
2−θ (logQ)−

5−θ
2−θ ,

δ
2

5−θQ
3(3−θ)
5−θ if δ � Q

1−2θ
2−θ (logQ)−

5−θ
2−θ .

Hence we will chooseK=bδ−2/3Q1/3(logQ)−2/3cwhen δ�Q
1−2θ
2−θ (logQ)−

5−θ
2−θ

and K = bδ
−2
5−θQ

1+θ
5−θ c when δ � Q

1−2θ
2−θ (logQ)−

5−θ
2−θ . Since we have the ad-

ditional assumption that δ < 1/2, the first range for δ will only occur if
θ > 1/2. This completes the proof of Theorem 1.

4. Proof of Theorem 2. We obtain N(Q, δ) from Ñ(Q, δ) by a dyadic
sum. That is,

N(Q, δ) =

∞∑
r=1

Ñ

(
Q

2r
, δ

)
.

It is easy to see that this sum converges since Ñ(Q/2r, δ) = 0 if 2r−1 > Q.
To avoid restrictions on δ in terms of Q/2r, we will use the estimate for
E(Q, δ) given by (13). We have

N(Q, δ) =

∞∑
r=1

Ñ

(
Q

2r
, δ

)
=

∞∑
r=1

(
3(ξ − η)δ

(
Q

2r

)2

+ E

(
Q

2r
, δ

))

=
∞∑
r=1

3(ξ − η)δ
Q2

4r
+
∞∑
r=1

Fr(Q, δ),
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where

Fr(Q, δ)�
Q2

4rK
+(δK+1)

(
Q3/2 logK

23r/2K1/2
+
Q logK

2r
+
K

1
2Q1/2+ε

2r(1/2+ε)
+
K

1−θ
2 Q

3−θ
2

2
r(3−θ)

2

)
.

Since r only appears as an exponent of (1/2)α for various values of α > 0,
it is clear by the convergence of the geometric series that

F (Q, δ) :=
∞∑
r=1

Fr(Q, δ)

� Q2

K
+(δK+1)Q

(
Q1/2 logK

K1/2
+logK+

K1/2

Q1/2−ε + (KQ)(1−θ)/2
)
.

Note that this is the same estimate that is given for E(Q, δ) in (13). Thus
the proof of Theorem 1 gives the bound for F (Q, δ). We now return to the
main term of N(Q, δ). We have

N(Q, δ) =

∞∑
r=1

3(ξ − η)δ
Q2

4r
+ F (Q, δ) = 3(ξ − η)δQ2 1/4

1− 1/4
+ F (Q, δ)

= (ξ − η)δQ2 + F (Q, δ),

as desired.

5. Proof of the corollaries. Denote the piecewise upper bound given
in (2) by E1(Q, δ). To prove both corollaries, it is clearly enough to show
that

E1(Q, δ)

δQ2
→ 0

as Q→∞ and δ → 0. We will call upon the assumption that δ ≥ Q−
1+θ
3−θ+ε.

When δ � Q
1−2θ
2−θ (logQ)−

5−θ
2−θ , we have

E1(Q, δ)

δQ2
� δ2/3Q5/3(logQ)2/3

δQ2

= (δQ)−1/3(logQ)2/3 ≤ Q−
2−2θ
3(3−θ)−

ε
3 (logQ)2/3,

which tends to 0 asQ→∞. On the other hand, when δ�Q
1−2θ
2−θ (logQ)−

5−θ
2−θ ,

we have

E1(Q, δ)

δQ2
� δ

2
5−θQ

3(3−θ)
5−θ

δQ2
= δ−

3−θ
5−θQ−

1+θ
5−θ ≤ Q−ε

3−θ
5−θ ,

which also tends to 0 as Q→∞.
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